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Abstract: The tetrahydrofuran portion 3 of verrucosidin I, a potent neurotoxin, is synthesized in an 
enmtiomerically pure form via the stereoselective osmylation of the chiral hydroxy diene ester 5 as a key step. 

The stereoselective synthesis of structurally complex tetrahydrofuran units has currently received 

extensive attention.2 Development of a new methodology for the stereocontrolled construction of highly 

functional&d tetrahydrofurans poses a considerable synthetic challenge. 

From the fungus Penicillium verrucosum var. cyclopiwn, verrucosidin, a potent neurotoxin, was isolated, 

the structure of which was established to be 1 by chemical, spectroscopic and x-ray crystallographic studies.3p4 

Very recently Yamamura and coworkers synthesized its degradation product 2 starting from D-glucose, 

establishing the absolute configuration of verrucosidin. 5 Thus, verrucosidin bears a close structural relationship 

to a group of biologically active polyene mycotoxins viz. citreoviridin, aurovertins and asteltoxin, which are 

known to act as potent inhibitors of oxidative phosphorylation. 6 Herein we report an enantio- and stereoselective 

synthesis of tetrahydrofuran 3, which confirms the absolute configuration of verrucosidin.7 

OH 

Shown below is our retrosynthetic plan for construction of the substituted tetrahydrofuran unit 3, wherein 

bicyclic lactone 4 contains all oxygen functions in the required relative configurations. A salient feature of this 

approach involves the highly regio- and stereoselective osmylation of chiral diene ester 5. 
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The requisite E,Z-diene ester 5 was prepared in good yield starting from readily available (S)-ethyl lactate 

as outlined in Scheme I. The yne ester 6, obtained via a modified Wittig dichloroolefination and subsequent 

elimination, was then converted to the trisubstituted E ester 7 by the procedure of Mukaiyama.879 An iterative 

homologation followed by the dimethylcuprate addition10 and deprotection, proceeded cleanly to afford the 

desired E,Z-diene ester 5, [a]: = t13.7” (c 0.8, CHC13).9 

Next it was gratifying to find that the Os04-catalyzed hydroxylation (0.02 equiv. 0~04, 1.2 equiv. 

NMO,ll 1:l THF-H20, O’C) of this compound provided an 85% yield of a single lactone S!9 None of the other 

possible regio- and stereoisomers were found. IL13 Upon treatment with NaHC03 in methanol, it was then 

smoothly converted into bicyclic lactone 4 (90%), [a]: = +5.6” (c 1.0, CHC13).9 The stereochemical 

assignment was unambiguously made by the difference NOE spectroscopy, and confirmed by its further chemical 

transformations to the authentic degradation product 3 (vide infra). l4 An excellent diastereoselectivity (2 10: 1) 

was also observed for osmylation of the trisubstituted ester 7, and a single lactone was obtained from the 

corresponding free hydroxy ester. 15 The “sense” and “extent” of asymmetric induction in these stereoselective 

0~04 reactions are in good agreement with those previously reported by Kishi16a and Stork.16b 
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dihydropyran, PPTS; b. LAH, ether; c. Swern oxid.; d. BrCC13, HMPT, -23°C; 

2 equiv. "BuLi / ClC02Me, -78OC; 6. PhSNa, MeOH; g. MeMgBr, CuI, THF, -78°C; 

Ph3P=CHC1, THF, -78°C; i. MeLi / ClC02Me, -78OC; j. Me2CuLi, THF, -78°C; 

PPTS, MeOH; P. O~O~(0.02 equiv), NMO(1.2 equiv), THF-H20, 0°C; m. NaHC03, MeOH. 

With 4 (possessing all four contiguous chiral centers of verrucosidin) in hand, we required a one-carbon 

degradation of the lactone moiety, which turned out not to be a trivial problem. Although a silyl ketene acetal 

formation followed by oxidative cleavage was envisioned for this purpose, numerous attempts to generate a ketene 

acetal fai1ed.l’ Other unsuccessful attempts included a modified Barbier-Wieland degradation, the ketene 
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thioacetal formation with bis(dimethylaluminum)ethanedithiolate, 18 and an a-hydroxy lactone route through the 

action of iodobenzene diacetate, Golds reagent or MoGPH. 

Formation of a dihydrofuran would provide an entry to the desired product 3 via an oxidative cleavage. 

The DIBAL-H reduction of 4 followed by treatment with benzeneselenol in the presence of BF3. Et20 gave 

cleanly phenylselenide 10 in 60-70% yield. 19 10 was then smoothly oxidized to yield selenoxide 11. However, 

the phenylselenoxide 11 could not be converted into enol ether 12 through the thermal elimination process. 

Under forcing conditions only the starting lactone 4 was isolated. 
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a. DIBAL-H, CH2C12, -78°C; b. PhSeH, BF3.Et20, -78°C; c. 03, -78°C; 

d. Ph3P=CH2, THF; e. PdC12(PhCN)2, PhH, ++; d. MsCl, pyr, CH2C12, RT; 

9. NaOMe, MeOH; h. Ox, CH2C12-MeOH, -78°C / NaBH4. 

Finally, the desired transformation to tetrahydrofuran 3 was achieved by a simple series of transformations 

featuring olefin isomerization through the aegis of Pd(I1) as shown in Scheme II.20 The Wittig reaction 

(Ph3P=CH2, THF, -78’C) of the lactol obtained before gave allyltetrahydrofuran 13, [cr]k5 = +0.17” (c 1.0, 

CHC13), in 70% overall yield.9 Olefin 13 was then isomerized [PdC12(PhCN)2, benzene, 80°C, 90%] to 

provide 14 (Z8:1),*1 which was further converted into epoxide 15 in a straightforward manner [ 1. MsCl, pyr, 

CH2C12, RT; 2. NaOMe, MeOH, RT]. Subsequent ozonolysis followed by reductive workup with NaBI gave 

the desired alcohol 3. Alcohol 3 thus obtained was spectroscopically and chromatographically identical with the 

degradation product from verrucosidin. As the authentic alcohol could not be obtained pure, the Mosher esters** 

were prepared; 400-MHz 1H spectra showed that synthetic 3 was >95% optically pure, but enantiomeric to the 

natural material. 

In summary, we have developed an efficient route to 3 and also confirmed the absolute configuration of 

verrucosidin as shown in 1.23 Total synthesis of verrucosidin in the correct absolute configuration is currently in 

progress. Further synthetic applications of the strategy outlined above to other members of this group of polyene 

mycotoxins are underway as well. 
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