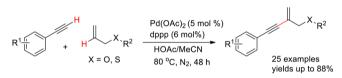


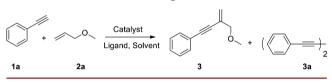
Correction to Pd(II)-Catalyzed Dehydrogenative Olefination of Terminal Arylalkynes with Allylic Ethers: General and Selective Access to Branched 1,3-Enynes

Yin-Lin Shao, Xiao-Hong Zhang,* Jiang-Sheng Han, and Ping Zhong*


Org. Lett. 2012, 14, 5242-5245. DOI: 10.1021/ol302400p

Supporting Information

A fter re-examination of the NMR data, we conclude that the products reported in the paper are branched enynes, not linear. We apologize for this error. See below for a full list of corrections and revised Supporting Information:


1. The title is corrected to read Pd(II)-Catalyzed Dehydrogenative Olefination of Terminal Arylalkynes with Allylic Ethers: General and Selective Access to Branched 1,3-Enynes.

2. The Table of Contents and Abstract graphics are corrected as follows:

3. The graphics in Tables 1-3 are corrected as follows:

4. The name of compound 3 should be (3-(methoxymethyl)but-3-en-1-yn-1-yl)benzene.

5. Pages 5243 and 5245. "Z-1,3-enynes" should be used in the Abstract and line 22 (left column) of p 5243 and "1,3-enyne" in line 10 (left column) of p 5245.

Received: June 3, 2014 **Published:** June 17, 2014

ACS Publications

ONS © 2014 American Chemical Society

Table 2. Pd-Catalyzed Dehydrogenative Olefination of Terminal Alkynes with Allyl Methyl Ethers (Sulfide) a,b

R ¹	н + н	Х _{СН3} —	Pd(OAc) ₂ (5 mol %) dppp (6 mol%) HOAc/MeCN R ¹ []	X.CH3
	X = C		80 °C, N ₂ , 48 h	3-14
entry	R^1	ether	product	yield (%)
1	Н	<i>∕</i> ^0∖	С сн _з	76
2	p-Me	~^°~	нас СНа	72
3	m-Me	~^°~	СH ₃ 5	65
4	p-Et	~~ ⁰ ~	G	69
5	p-n-Bu	~^0 <u>`</u>	ССС ^{-сн} з 7	65
6	p-OMe	~^°~	H ₃ CO ^{CH3}	70
7	m-Cl	<i>∞</i> _0_	CI 9	44
8	p-Cl	<i>∕</i> 0∖	CI CI CH3	45
9	p-F	<i>∕</i> 0∖	F CH3	40
10	p-Br	<i>∕</i> _0	Br CH ₃	47
11	p-NO ₂	<i>∽</i> ∕0∖	0 ₂ N 13	33
12	Н	s	С ^{сна} 14	25
13	1-hexyne	~^°\	CH3	NR

^aReaction conditions: arylacetylene (0.3 mmol), allyl methyl ether (3.0 mmol), Pd(OAc)₂ (5 mol %), DPPP (6 mol %), solvent (2 mL, v/v = 1:3), 80 °C, 48 h. ^bIsolated yields.

Table 3. Pd-Catalyzed Dehydrogenative Olefination of Terminal Alkynes with Allyl Phenyl Ethers a,b

R ¹	+ H		OAc) ₂ (5 mol %) p (6 mol%) OAc/MeCN °C, N ₂ , 48 h	15-25
entry	R^1	ether	product	yield (%)
1	Н	OPh	OPh 15	85
2	p-Me	OPh	H ₃ C OPh 16	86
3	m-Me	OPh	ОРЬ СН ₃ 17	83
4	p-Et	OPh	OPh 18	74
5	p-n-Bu	OPh	OPh 19	88
6	p-OMe	OPh	насо 20	79
7	m-Cl	OPh	OPh CI 21	70
8	p-Cl	OPh	CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C	75
9	p-F	OPh	F 23	55
10	p-Br	OPh	Br 24	75
11	p-NO ₂	OPh	0 _{2N} 0Ph	49
12	1-hexyne	OPh	OPh	NR

^{*a*}Reaction conditions: arylacetylene (0.3 mmol), allyl phenyl ether (3.0 mmol), Pd(OAc)₂ (5 mol %), DPPP (6 mol %), solvent (2 mL, v/v = 1:3), 80 °C, 48 h. ^{*b*}Isolated yields.

ASSOCIATED CONTENTSupporting Information

Revised version containing the correct structures and names for the products reported. This material is available free of charge via the Internet at http://pubs.acs.org.