A Simple Synthesis of 4-Substituted 5,5-Diethoxycarbonyl-3-formyl-2,3-dihydrofurans

Z. ARNOLD, V. KRAL

Institute of Organic Chemistry and Biochemistry of the CzechAcademy of Sciencs, Prague, Czechoslovakia

G. V. KRYSHTAL, L. A. YANOVSKAYA*

N.D. Zelinsky Institute of Organic Chemistry of the Academy of Sciences of USSR, Leninsky Prospect 47, Moscow 117 334, U.S.S.R.

Polyfunctional 2,3-dihydrofurans are of interest for the synthesis of natural compounds¹ and potentially physiologically active compounds. 4-Substituted 5,5-diethoxycarbonyl-3-formyl-2,3-dihydrofurans 5 have not been prepared previously. We have found that substituted methylenemalonic aldehydes 3² react with bromomalonic ester 1 under phase transfer catalysis to give compounds 5 in satisfactory yields (51-75%).

Of the simple α,β -unsaturated aldehydes, only acrolein reacts with 1 under the above conditions. However, instead of the corresponding dihydrofuran derivative, 1,1-diethoxycarbonyl-2-formylcyclopropane is formed³.

The formation of compounds 5 may be explained by the generation of the carbanion 2 which is added to the activated double bond of 3. Intramolecular substitution of the bromine in intermediate 4 with simultaneous cyclization

Product No. F	duct R	Yield [%]	b.p. [°C]/torr or m.p. [°C]	n_{D}^{20}	Molecular formula ^a	$U.V. (C_2H_5OH)$ $\lambda_{max}(\epsilon_{max})$	I.R. (CCl ₄) v[cm ⁻¹]	¹H-N.M.R. (CCl₄/TMS) ∂[ppm]
12	C ₆ H ₅	51	158–160°/0.5	1.5375	C ₁₇ H ₁₈ O ₆ (318.3)	255 (13444), 220 (13711), 201 (23111)	1622, 1672, 1745	0.75 (t, 3 H, $J = 7$ Hz, CH ₃); 1.27 (t, 3 H, $J = 7$ Hz, CH ₃); 3.52 (m, 2 H, CH ₂); 4.23 (m, 2 H, CH ₂); 5.1 (d, 1 H, $J = 2$ Hz, 4-H); 7.15 (s, 5 H _{arom}); 7.45 (d, 1 H, J
4	4-Cl $-$ C ₆ H ₄ $-$	09	197–199°/0.5	1.5345	C ₁₇ H ₁₇ ClO ₆ (352.8)	255 (13044), 223 (13528), 201 (26631)	1623, 1673, 1745	= 2 Hz, 2-H); 9.5 (s, 1H, CHO) 0.84 (t, 3 H, $J = 7$ Hz, CH ₃); 1.28 (t, 3 H, $J = 7$ Hz, CH ₃); 1.28 (t, 3 H, $J = 7$ Hz, CH ₃); 3.16 (m, 2 H, CH ₂); 4.28 (m, 2 H, CH ₂); 5.15 (d, 1H, $J = 2$ Hz, 4-H); 7.00–7.35 (m, 4 H _{arom}); 7.55 (d, 1 H, J
10	$4-\mathrm{H_3CO}-\mathrm{C_6H_4}-$	74	∘02–69	ı	C ₁₈ H ₂₀ O ₇ (348.3)	255 (10385), 230 (10513), 201 (25236)	1620, 1670, 1740	= 2 Hz, 2-H); 9.5 (s, 1H, CHO) 0.8 (t, 3H, J = 7 Hz, CH ₃); 1.2 (t, 3H, J = 7 Hz, CH ₃); 3.6 (m, 2H, CH ₂); 4.2 (m, 2H, CH ₂); 4.65 (s, 3H, H ₃ CO); 5.1 (d, 1H, J = 2 Hz, 4-H); 6.6–7.1 (m, 4 H _{arom}); 7.5 (d, 1H, J = 2 Hz, 2 H); 9.4 (s, 1H,
14	C ₆ H ₅ —CH=CH— (<i>trans</i>)	55	111–112°	1	C ₁₉ H ₂₀ O ₆ (344.4)	256 (21962), 204 (18155)	1620, 1675, 1745	CHO) 1.1 (t, 3H, $J = 7$ Hz, CH ₃); 1.3 (t, 3H, $J = 7$ Hz, CH ₂); 4.1 (q, 2H, $J = 7$ Hz, CH ₂); 4.8 (dd, 1H, $J = 8$ Hz, 2 Hz, 4-H); 5.9 (dd, 1H, $J = 8$ Hz, 2 Hz, 4-H); 5.9 (dd, 1H, $J = 16$ Hz, 8 Hz, C ₆ H ₅ —CH=CH—); 6.6 (d, 1H, $J = 16$ Hz, C ₆ H ₅ —CH=CH—); 7.25 (s, 5H ₈ , CH=CH—); 7.25 (s, 5H ₈ , CH=CH); 7.4 (d, 1H, $J = 2$ Hz, 2-H); 9.7
1e	2-thienyl	75	170-175°/0.5	1.5313	C ₁₅ H ₁₆ O ₆ S (324.4)	285 (11071), 241 (11596), 202 (22116)	1620, 1670, 1740	(s, 1H, CHO) 0.9 (t, 3H, J = 7 Hz, CH ₃); 1.3 (t, 3H, J = 7 Hz, CH ₃); 3.75 (q, 2H, CH ₂ , J = 7 Hz); 4.25 (q, 2H, CH ₂ , J = 7 Hz); 5.4 (d, 1H, J = 2 Hz, 4-H); 6.7-7.2 (m, 3 H _{thienv}); 7.5 (d, 1H, J = 2 Hz, 2-H); 9.5
=	H ₃ C—(CH=CH) ₂ — (trans, trans)	09	210–215°/0.5	1.5085	C ₁₆ H ₂₀ O ₆ (308.3)	255 (13862), 233 (20793)	1620, 1672. 1747	(s, 1H, CHO) 1.22 (t, 3H, $J = 7$ Hz, CH ₃); 1.30 (t, 3H, $J = 7$ Hz, CH ₃); 1.72 (d, 3H, $J = 6$ Hz, CH ₃); 4.15 (q, 2H, $J = 7$ Hz, CH ₂); 4.54 (d, 1H _{otel} , $J = 7$ Hz, CH ₂); 4.54 (d, 1H _{otel} , $J = 8$ Hz); 5.15 (dd, 1H, $J = 8$ Hz, 14 Hz, 4-H); 5.6–6.25 (m, 3H _{otel}); 7.4 (d, 1H, $J = 2$ Hz, 2-H); 9.54 (s, 1H, CHO)

' Satisfactory microanalysis obtained: C \pm 0.41; H \pm 0.21; Cl \pm 0.23; S \pm 0.34.

yields products 5. Thus, this reaction sequence represents the first example for the formation of the 2,3-dihydrofuran ring as the result of a Michael addition at the double bond of α,β -unsaturated aldehydes.

The purity of liquid products 5 has been checked by G. L. C. (LHM-8 MD-5 gas chromatograph; glass column with 5% SE-30 on Chromaton N-AW-DMCS) and the purity of crystalline products has been checked by T.L.C. (Silufol plates; 1/20 ethyl acetate/benzene).

4-Substituted 5,5-Diethoxycarbonyl-3-formyl-2,3-dihydrofurans 5; General Procedure:

A solution of 1 (2.39 g, 0.01 mol) and 3 (0.01 mol) in dimethylform-amide (2.5 ml) is added to a suspension of potassium carbonate (1.38 g, 0.01 mol) and a catalytic amount of benzyltriethylam-monium chloride (0.23 g, 0.001 mol) in dimethylformamide (2.5 ml) at room temperature with efficient stirring. After stirring for 2 h, filtration, and evaporation of the solvent under reduced pressure, the residue is distilled or recrystallized from n-hexane (Table).

Received: December 19, 1983 (Revised form: April 10, 1984)

^{*} Address for correspondence.

¹ Y.S. Rao, Chem. Rev. 76, 625 (1976).

² Z. Arnold, V. Král, D. Dvořák, Tetrahedron Lett. 23, 1725 (1982).

³ G.V. Kryshtal, N.I. Shtemenko, L.A. Yanovskaya, *Izv. Akad. Nauk SSSR Ser. Khim.* 1980, 2420; C.A. 94, 46812 (1981).

R.F. Newton, S.M. Roberts, R.J.K. Taylor, *Synthesis* **1984** (6), 449-478:

The structure of compound 305 (p. 475) should be:

305 (EMD 46335)

H. Sard, R.P. Duffley, L.R. Robertson, R.K. Razdan, *Synthesis* **1984** (6), 506-509:

The fourth sentence in the paragraph above Scheme A (p. 507) should read:

This racemic compound could be preferentially enriched by a single recrystallization from ethanol as the (-)-dibenzoyl-L-tartrate salt 5a (96% yield).

C.K. Ghosh, N. Tewari, A. Bhattacharya, Synthesis 1984 (7), 614-615:

Compounds 2a-d should be named as 3-ethoxy-10-oxo-4,4a-dihydro-3H,10H-pyrano[4,3-h][1]benzopyrans.

Abstract 6925, Synthesis 1984 (7), 624:

The structure of reagent 5 should be:

$$(H_3C)_3Sn-N < R^3 (5)$$

M. Sato, N. Katsumata, S. Ebine, Synthesis 1984 (8), 685:

The title compound should be named 4,5-Dihydrobenzocyclo-butene-4,5-dione.

R.E. Doolittle, Synthesis 1984 (9), 730-732:

The structure of product 3 (p. 730) should be:

$$n-C_7H_{15}-C=C=C-CH_2-CH_2-OH$$

Y. Nakayama, Y. Sanemitsu, Synthesis 1984 (9), 771-772:

The structure of compound 6 (p. 772) should be:

$$H_3C$$
 $C=N-NH-C-SCH_3$

6

I. Reichelt, H.-U. Reissig, Synthesis 1984 (9), 786-787;

The title compounds **2** should be named as 3-oxo-2,3,4,5-tetrahydropyridazines

M. Tirant, T.D. Smith, Synthesis 1984 (10), 833-834

The names for products **2a** and **3a** should be bis[2-hydroxybenzylidenehydrazino] sulfide and 2-hydroxyethyl 2-hydroxybenzylidenehydrazino sulfide, respectively.

Abstract 6971, Synthesis 1984 (10), 892:

The structures of products 4 and 5 should be:

Abstract 6976, Synthesis 1984 (10), 894:

The structure of product 8 should be:

$$R^2 \xrightarrow{R^3} N-SO_2$$

E. A. Mistryukov, I. K. Korshevetz, Synthesis 1984 (11), 947-949:

Compound 10 should be named as 1-(1-cyclohexenyl)-3-diethylaminopropyne.

Z. Arnold, V. Kral, G. V. Kryshtal, L. A. Yanovskaya, *Synthesis* **1984** (11), 974–976:

The title compounds 5 should be named as 3-substituted 2,2-diethoxycarbonyl-4-formyl-2,3-dihydrofurans.

G.J. Atwell, W.A. Denny, Synthesis 1984 (12), 1032-1033:

The structure of products 4a-f (p. 1032) should be:

$$C_6H_5CH_2O-C-NH-(CH_2)_n-NH-C-OCH_2C_6H_5$$

R.G. McR. Wright, Synthesis 1984 (12), 1058-1061:

Formula 8 should be replaced by: