

Bioorganic & Medicinal Chemistry Letters 12 (2002) 3583-3586

Novel 1',1'-Chain Substituted Δ^8 -Tetrahydrocannabinols

Demetris P. Papahatjis,^{a,*} Spyros P. Nikas,^a Thanos Andreou^a and Alexandros Makriyannis^{b,*}

^aInstitute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation,

48 Vass. Constantinou, Athens 116-35, Greece

^bDepartments of Pharmaceutical Sciences and Molecular and Cell Biology and the Center for Drug Discovery, University of Connecticut, 372 Fairfield Road, Storrs, CT 06269, USA

Received 10 June 2002; accepted 12 September 2002

Abstract—1',1'-Cyclopropyl side chain substituents enhance the affinities of Δ^8 -tetrahydrocannabinol and respective cannabidiol analogues for the CB1 and CB2 cannabinoid receptors. The results support the hypothesis for a subsite within CB1 and CB2 binding domain at the level of the benzylic side chain carbon in the tetrahydrocannabinol and cannabidiol series. Efficient procedures for the synthesis of 1',1'-cyclopropyl analogues are described. © 2002 Elsevier Science Ltd. All rights reserved.

The discovery of CB1 and CB2 the two known cannabinoid receptors¹⁻³ and the availability of suitable biochemical test systems has opened the door for developing detailed information on the structural features of their respective binding site(s). A review⁴ of the existing literature recognized four pharmacophores on the cannabinoid structure associated with cannabinergic activity. Of these, the aliphatic side chain was shown to play a pivotal role in determining receptor binding affinity and pharmacological activity, as was first demonstrated by Adams.^{5a} His studies showed that substituting the *n*-pentyl chain of (-)- Δ^{8} -tetra-hydrocannabinol ((-)- Δ^{8} -THC) **1a** (Fig. 1) with a 1',1'-dimethylheptyl chain **1b** led to a 100-fold increase in potency. Since then, a considerable number of structure-activity correlations have dealt with the cannabinoid side chain and most of them have focused on its length, branching and spatial orientation as well as on the introduction of multiple bonds and heterogroups.⁵ Earlier work from our own laboratories⁶ demonstrated that structural modifications at the benzylic position of the side chain prototype 1b led to profound effects on the affinities of the respective ligands for both CB1 and CB2 as exemplified by the 1', 1'-dithiolane derivative 1c. This increase in affinity was attributed to a hydrophobic subsite within each of the CB1 and CB2 binding sites at

Figure 1.

the level of the benzylic side chain carbon, and suggested the significance of the side chain's orientation and conformation in determining cannabinergic activity.

We have now sought to further refine our understanding on the structural requirements for ligand interaction with this putative CB1/CB2 subsite through the further elaboration of the C-1',1'-substituents. Earlier work had demonstrated that the presence of two benzylic methyl groups enhances a ligand's affinity for both cannabinoid receptors. It is also well established that the Δ^9 - and Δ^8 -isomers in the tetrahydrocannabinol series and their respective cannabidiols have very similar SAR profiles. In the present study we have substituted the 1',1'-gem-dimethyl group with a sterically more confined cyclopropyl group. Furthermore, by introducing gem-dihalo substitution at the C-2"

^{*}Corresponding authors. Tel.: +30-10-7273885; fax: +30-10-7273831; e-mail: dpapah@eie.gr, (D.P. Papahatjis); tel.: +1-860-486-2133; fax: +1-860-486-3089; e-mail: makriyan@uconnvm.uconn.edu (A. Makriyannis).

⁰⁹⁶⁰⁻⁸⁹⁴X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00785-0

position of the cyclopropyl ring (Scheme 1) we sought to probe the stereochemical limits of this novel pharmacophore. As with earlier work, the design of our analogues has included a seven-carbon side chain as the optimal length for cannabinergic activity.^{4c} We have also extended our SAR to include the bicyclic synthetic intermediates **4a**–**4c** which represent modifications of cannabidiol **2a**, a significant constituent of cannabis that has been shown to bind weakly to both CB1 and CB2.

Available procedures for the synthesis of $(-)-\Delta^8$ -THC analogues generally involve the condensation of a suitable chiral terpene with 5-substituted resorcinols.⁶⁻⁸ Thus, terpenylation of the resorcinol derivatives 3a, 3b, and 3c (Scheme 1) with (+)-cis/trans-p-mentha-2,8dien-1-ol9 in the presence of catalytic amounts of p-toluenesulfonic acid afforded cannabidiols 4a, 4b, and 4c, respectively.¹⁰ The presence of the cyclopropyl and di-halocyclopropyl substituents evidently enhances the regioselectivity of the reaction with yields greater than 75%. Treatment of cannabidiols 4a-4c with catalytic amounts of boron trifluoride etherate resulted in a clean cyclization reaction to produce the respective tricyclic tetrahydrocannabinols¹⁰ 5a-5c in 87-90% yields in which the initially formed Δ^9 -THCs that should be isolatable under controlled conditions were converted to the respective thermodynamically more stable Δ^8 -isomers.

5-(1-Hexyl-cyclopropyl)resorcinol **3a** was synthesized from the corresponding 1-(3,5-dimethoxyphenyl)cyclopropanecarboxaldehyde **6** (Scheme 2), which was in turn obtained from commercially available 3,5-dimethoxybenzaldehyde in five steps by a methodology recently

Scheme 1. Reagents and conditions: (a) (+)-*cis/trans-p*-mentha-2,8-dien-1-ol, *p*-TSA, C₆H₆, 10 °C to rt, 2–3 h, 75–84%; (b) BF₃·Et₂O, CH₂Cl₂, 0 °C to rt, 4 h, 87–90%.

Scheme 2. Reagents and conditions: (a) $Br^- Ph_3P^+$ -(CH₂)₄CH₃, (Me₃Si)₂N⁻K⁺, THF, rt, 2h, 96%; (b) TsNHNH₂, CH₃COONa, DME, H₂O, reflux, 5h, 96%; (c) 9-I-9-BBN, hexane, -78 °C to 0 °C, 3h, 95%.

developed in our laboratories.¹¹ Freshly prepared (butylmethylene)triphenylphosphorane was coupled with aldehyde 6 affording the intermediate alkene 7 in excellent yield (96%). However, reduction of the double bond of 7 using palladium on active carbon was found to be complicated by the susceptibility of the cyclo-propyl ring to rapid degradation under catalytic hydrogenation conditions. The problem was solved by using a diimide based reduction¹² of alkene 7 to give 1,3-dimethoxy-5-(1-hexyl-cyclopropyl)benzene 8 in 96% yield after purification. Treatment of 8 with 9-iodo-9-BBN in hexane¹³ produced resorcinol 3a in 95% yield.

We have recently described⁶ the efficient synthesis of 1-(dimethoxyphenyl)-1-heptan-1-one 9. This compound has served as the starting point for the synthesis of requisite resorcinols 3b and 3c by a reaction sequence depicted in Scheme 3.

Thus, the labile (methylene)triphenylphosphorane was prepared from commercially available methyl triphenylphosphonium iodide and immediately treated with phenone 9 in a Wittig olefination reaction affording alkene 10 in 93% yield after purification. Exposure of 10 to dichloro and dibromo carbene, prepared in situ¹⁴ under basic conditions, provided the dichloro and dibromo cyclopropyl derivatives 11b and 11c. Cleavage of the two phenolic methyl ether groups was accomplished by exposure to boron tribromide¹⁵ in methylene chloride for 3 days affording resorcinols 3b and 3c in 63-86% yields. It should be pointed out that analogues 4b, 4c, 5b, and 5c were obtained as 1:1 diastereomeric mixtures as indicated by their respective ¹H NMR spectra. The abilities of cannabinoids 4a, 5a and the diastereomeric mixtures 4b, 4c, 5b, and 5c to displace radiolabeled CP-55,940 from purified rat forbrain synaptosomes and mouse spleen synaptosomes were determined as described elsewhere.⁶ K_i values calculated from the respective displacement curves are listed in Table 1 and serve as indicators for the affinities of these cannabinoid analogues for the CB1 and CB2 receptors.

The present results indicate that the presence of a 1',1'-cyclopropyl group leads to analogues with enhanced affinities for both CB1 and CB2 and support the hypothesis of respective subsites within the two receptors' binding domains. This subsite is capable of accommodating a hydrophobic cyclopropyl group as

 $\begin{array}{l} \mbox{Scheme 3. Reagents and conditions: (a) } I^- \mbox{Ph}_3 P^+ \mbox{-} CH_3, (Me_3Si)_2 N^- K^+, \\ THF, rt, 1.5 \mbox{h}, 93\%; (b) \mbox{Me}_3 CO^- K^+, CHX_3, hexane, -10 \ ^\circ C \ to \ rt, 2- \\ 2.5 \mbox{h}, 56-89\%; (c) \mbox{BBr}_3, CH_2 Cl_2, -78 \ ^\circ C \ to \ -20 \ ^\circ C, 3 \ days, 63-86\%. \end{array}$

Table 1. Affinities (*K*_i) of cannabinoid analogues 4a, 4b, 4c and 5a, 5b, 5c for the CB1 and CB2 receptors

Compd	CB1 $(K_i, nM)^a$	CB2 (<i>K</i> _i , nM) ^a
1a ^{5c}	47.6	39.3
1b ^{4c}	0.83	0.49
1c ⁶	0.32	0.52
2a ¹⁶	1265	230
2c ⁶	136	50
4 a	$59(\pm 7)$	$99(\pm 15)$
4b	$665(\pm 161)$	$33(\pm 9)$
4c	$189(\pm 29)$	$63(\pm 16)$
5a	$0.44(\pm 0.07)$	$0.86(\pm 0.16)$
5b	$1.27(\pm 0.27)$	$0.29(\pm 0.06)$
5c	0.71 (±0.21)	1.0 (±0.36)

 ${}^{a}K_{i}$ values of the cannabinoid analogues were obtained from three independent experiments run in duplicate and are expressed as the mean of three values, standard deviation is given in parentheses.

well as the significantly bulkier C-2",2"-dichloro and dibromo groups. Our data show that the cyclopropyl analogue 5a exhibits similar affinities for CB1 and CB2 as its gem-dimethyl prototype 1b, although the presence of the cyclopropyl group appears to lead to slightly enhanced selectivity for CB1. This preference is reversed with the introduction of gem-dichloro substitution in the cyclopropyl ring (5b). Conversely, the bulkier gemdibromocyclopropyl analogue (5c) has almost equal affinities for both receptors. As expected, the cannabidiol analogues 2a,¹⁶ 2c, and 4a-4c have affinities for CB1 and CB2 over two orders of magnitude weaker than the respective tetrahydrocannabinols. However, the two series appear to exhibit similar SAR trends. This suggests similar binding motifs for the benzylic chain substituents at CB1 and CB2 for tetrahydrocannabinol and cannabidiol analogues. We conclude that this study adds to earlier work pointing to the presence of a CB1/CB2 subsite at the level of the benzylic side chain carbon in the tetrahydrocannabinol and cannabidiol series. We have also observed some preference for CB1 or CB2 based on the different benzylic substituents. However, these selectivities are relatively modest and do not allow us to identify any specific trends. These will have to await the development of additional side chain substituted ligands aimed at probing the stereochemical features of this intriguing putative subsite.

Acknowledgements

This work was supported by the National Hellenic Research Foundation and by grants from the National Institute on Drug Abuse DA03801, DA09158 and DA07215. We also thank Joy Erickson for her technical support.

References and Notes

- 1. Devane, W. A.; Dysarz, F. A.; Johnson, M. R.; Melvin,
- L. S.; Howlett, A. C. Mol. Pharmacol. 1988, 34, 605.
- 2. Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.

3. For a review on the cannabinoid receptors, see: Pertwee, R. G. *Pharmacol. Ther.* **1997**, *74*, 129.

4. (a) Makriyannis, A.; Rapaka, R. S. *Life Sci.* 1990, 47, 2173.
(b) Razdan, R. K. *Pharmacol. Rev.* 1986, 38, 21. (c) Khanolkar, A. D.; Palmer, S. L.; Makriyannis, A. *Chem. Phys. Lipids* 2000, 108, 37.

 (a) Adams, R.; Harfenist, M.; Lowe, S. J. Am. Chem. Soc.
 1949, 71, 1624. (b) Huffman, J. W.; Liddle, J.; Duncan, S. G., Jr.; Yu, S.; Martin, B. R.; Wiley, J. L. Bioorg. Med. Chem.
 1998, 6, 2383. (c) Busch-Petersen, J.; Hill, W. A.; Fan, P.; Khanolkar, A.; Xie, X. Q.; Tius, M. A.; Makriyannis, A. J. Med. Chem. 1996, 39, 3790. (d) Khanolkar, A. D.; Lu, D.; Fan, P.; Tian, X.; Makriyannis, A. Bioorg. Med. Chem. Lett.
 1999, 9, 2119. (e) Martin, B. R.; Jefferson, R.; Winckler, R.; Wiley, J. L.; Huffman, J. W.; Crocker, P. J.; Saha, B.; Razdan, R. K. J. Pharmacol. Exp. Ther. 1999, 290, 1065. (f) Singer, M.; Ryan, W. J.; Saha, B.; Martin, B. R.; Razdan, R. K. J. Med. Chem. 1998, 41, 4400.

6. Papahatjis, D. P.; Kourouli, T.; Abadji, V.; Goutopoulos, A.; Makriyannis, A. J. Med. Chem. **1998**, 41, 1195.

7. Petrzilka, T.; Haeflinger, W.; Sikemeier, C. Helv. Chim. Acta 1969, 52, 1102.

8. Pitt, C. G.; Hobbs, D. T.; Schram, H.; Twine, C. E., Jr.; Williams, D. L. J. Lab. Comp. 1975, 11, 551.

9. (+)-*cis/trans-p*-Mentha-2,8-dien-1-ol was supplied by Firmenich Inc., Princeton, NJ.

10. All new compounds (3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c, 7, 8, 10, 11b, and 11c) were fully characterized by NMR, MS, and HRMS spectra. Selected data of final cannabinoids:

4a. ¹H NMR (CDCl₃) δ 6.30 (brs, 2H), 5.95 (brs, 1H, –OH), 5.57 (s, 1H, 2-H), 4.66 (s, 1H), 4.60 (brs, 1H, –OH), 4.55 (s, 1H), 3.83 (m, 1H, 3-H), 2.37 (td, $J_1 = 10.4$ Hz, $J_2 = 4.3$ Hz, 1H, 4-H), 2.26–2.06 (m, 2H, 5-H, 6-H), 1.79 (brs, 5H, 5-H, 6-H, 7-CH₃), 1.63 (s, 3H, 10-CH₃), 1.47 (m, 2H, 2'–CH₂–), 1.19 (m, 8H), 0.84 (t, J = 6.1 Hz, 3H, 7'-CH₃), 0.71 (m, 2H, cyclopropyl), 0.56 (m, 2H, cyclopropyl); MS *m*/*z* (rel intensity) 368 (M⁺, 43), 300 (77), 285 (100), 247 (38), 229 (37), 121 (19). Exact mass calcd for C₂₅H₃₆O₂, 368.2715; found, 368.2710.

4b. ¹H NMR (CDCl₃) δ 6.31 (m, 1H), 6.23 (m, 1H), 6.12 (brs, 1H, –OH), 5.60 (m, 1H, 2-H), 4.79 (brs, 1H, –OH), 4.63 (s, 1H), 4.48 (s, 1H), 3.84 (m, 1H, 3-H), 2.33 (m, 1H, 4-H), 2.21–2.10 (m, 2H, 5-H, 6-H), 2.06 (m, 1H, 2'-H), 1.80 (m, 6H, 7-CH₃, 5-H, 6-H, –CHCCl₂), 1.60 (m, 4H, 10-CH₃, 2'-H), 1.45 (d, *J* = 7.3 Hz, 1H, –CHCCl₂), 1.18 (m, 8H), 0.82 (t, *J* = 6.7 Hz, 3H, 7'-CH₃); MS *m*/*z* (rel intensity) 436 (M⁺, 100), 401 (56), 365 (52), 329 (44), 317 (92), 261 (58). Exact mass calcd for C₂₅H₃₄Cl₂O₂, 436.1936; found, 436.1932.

4c. ¹H NMR (CDCl₃) δ 6.28 (m, 2H), 6.10 (brs, 1H, –OH), 5.61 (m, 1H, 2-H), 4.70 (brs, 1H, –OH), 4.62 (s, 1H), 4.47 (s, 1H), 3.83 (m, 1H, 3-H), 2.35 (m, 1H, 4-H), 2.21–2.05 (m, 2H, 5-H, 6-H), 2.01 (m, 1H, 2'-H), 1.99 (d, J=7.3 Hz, 1H, –CHCBr₂), 1.80 (m, 5H, 7-CH₃, 5-H, 6-H), 1.60 (m, 5H, 10-CH₃, 2'-H, –CHCBr₂), 1.17 (m, 8H), 0.82 (2t, overlapping, 3H, 7'-CH₃, mixture of diastereomers); MS *m*/*z* (rel intensity) 526 (M⁺, 40), 447 (26), 446 (28), 445 (25), 363 (34), 361 (35), 298 (40), 283 (89), 213 (100), 135 (34). Exact mass calcd for C₂₅H₃₄Br₂O₂, 524.0926; found, 524.0920.

5a. ¹H NMR (CDCl₃) δ 6.34 (d, J = 1.2 Hz, 1H), 6.19 (d, J = 1.2 Hz, 1H), 5.42 (m, 1H, 8-H), 4.62 (s, 1H, -OH), 3.18 (dd, $J_1 = 16.5$ Hz, $J_2 = 4.3$ Hz, 1H, 10α-H), 2.68 (m, 1H, 10a-H), 2.14 (m, 1H), 1.90–1.77 (m, 3H), 1.69 (s, 3H, 9-CH₃), 1.46 (m, 2H, 2'-CH₂-), 1.37 (s, 3H, 6-CH₃), 1.21 (m, 8H), 1.09 (s, 3H, 6-CH₃), 0.84 (t, J = 6.7 Hz, 3H, 7'-CH₃), 0.73 (m, 2H, cyclopropyl), 0.57 (m, 2H, cyclopropyl); MS *m*/*z* (rel intensity) 368 (M⁺, 100), 353 (6), 325 (15), 297 (37), 285 (39), 246 (15). Exact mass calcd for C₂₅H₃₆O₂, 368.2715; found, 368.2708.

5b. ¹H NMR (CDCl₃) δ 6.30 and 6.26 (d, J=1.4 Hz, 0.5H each, mixture of diastereomers), 6.20 and 6.17 (d, J=1.4 Hz, 0.5H each, mixture of diastereomers), 5.42 (m, 1H, 8-H), 4.90

(s, 1H, –OH), 3.19 (dd, J_1 =17.2 Hz, J_2 =3.9 Hz, 1H, 10α-H), 2.69 (td, J_1 =10.7 Hz, J_2 =4.5 Hz, 1H, 10a-H), 2.13 (m, 1H), 1.99 (m, 3H), 1.79 (m, 2H, 2'-H and –CHCCl₂), 1.69 (s, 3H, 9-CH₃), 1.46 (m, 2H, 2'-H and –CHCCl₂), 1.37 (s, 3H, 6-CH₃), 1.19 (m, 8H, –CH₂–), 1.10 and 1.09 (2s, 1.5H each, 6-CH₃), mixture of diastereomers), 0.83 (t, J=6.2 Hz, 3H, 7'–CH₃); MS m/z (rel intensity) 436 (M⁺, 35), 401 (20), 365 (19), 329 (13), 104 (37), 73 (100). Exact mass calcd for C₂₅H₃₄Cl₂O₂, 436.1936; found, 436.1941.

5c. ¹H NMR (CDCl₃) δ 6.30 and 6.26 (d, J=1.7 Hz, 0.5H each, mixture of diastereomers), 6.20 and 6.17 (d, J=1.7 Hz, 0.5H each, mixture of diastereomers), 5.42 (m, 1H, 8-H), 4.90 (s, 1H, -OH), 3.20 (m, 1H, 10α-H), 2.69 (td, J_1 =10.6 Hz, J_2 =4.5 Hz, 1H, 10a-H), 2.10 (m, 2H, 7-H, 2'-H), 1.99 (m, 1H, -CHCBr₂), 1.96–1.79 (m, 3H), 1.69 (s, 3H, 9-CH₃), 1.62 (m, 2H, 2'-H, -CHCBr₂), 1.38 (s, 3H, 6-CH₃), 1.19 (m, 8H, -CH₂-), 1.09 and 1.08 (2s, 1.5H each, 6-CH₃, mixture of diaster-

eomers), 0.84 and 0.83 (2t, 1.5H each, J=6.2 Hz, 3H, 7'-CH₃, mixture of diastereomers); MS m/z (rel intensity) 526 (M⁺, 100), 447 (46), 445 (45), 366 (67), 365 (71), 296 (57), 283 (68), 213 (55), 135 (54). Exact mass calcd for C₂₅H₃₄Br₂O₂, 524.0926; found, 524.0927.

11. Papahatjis, D. P.; Nikas, S.; Tsotinis, A.; Vlachou, M.; Makriyannis, A. Chem. Lett. 2001, 3, 192.

12. Hart, D. J.; Hong, W. P.; Hsu, L. Y. J. Org. Chem. 1987, 52, 4665.

13. Furstner, A.; Seidel, G. J. Org. Chem. 1997, 62, 2332.

14. Billups, W. E.; Blakeney, A. J.; Chow, W. Y. Org. Synth. Coll. **1988**, *6*, 87.

15. McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968, 24, 2289.

16. Cannabidiol $2a^7$ was synthesized (31% yield) by the condensation of (+)-*cis/trans-p*-mentha-2,8-dien-1-ol with olivetol in the presence of catalytic amounts of *p*-toluenesulfonic acid.