Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2014, **12**, 4002

A concise approach for the synthesis of bitungolides: total syntheses of (–)-bitungolide B & E†

K. Mahender Reddy, J. Shashidhar and Subhash Ghosh*

The first total synthesis of (–)-bitungolide B and a second-generation total synthesis of (–)-bitungolide E are described. The cornerstone of the approach comprises a convergent and flexible route involving Brown crotylation, highly diastereoselective substrate controlled Paterson *anti*-aldol reaction, hydroxyl-directed 1,3-*syn/anti* reduction, Barton–McCombie deoxygenation and RCM reactions. *Via* this route, a common intermediate **13** is readily accessible for the synthesis of the family of bitungolides A–E and franklinolides A–C.

Accepted 25th March 2014 DOI: 10.1039/c4ob00250d

Received 3rd February 2014,

www.rsc.org/obc

Introduction

Marine organisms have produced a wide range of biologically active and structurally complex secondary metabolites. Bitungolides A–F are new examples of such secondary metabolites isolated from an Indonesian sponge *Theonella* cf. *swinhoei* by Tanaka *et al.* in 2002 (Fig. 1).¹

Bitungolides comprise a complex structure and a unique family of polyketides that display cytotoxic activity against 3Y1 rat normal fibroblast cells and also inhibit the dual specificity phosphatase VHR. The structure of bitungolides B-F were assigned by inference from the single crystal X-ray analysis of bitungolide A; however, the absolute stereochemistry of bitungolide E and bitungolide F was confirmed through their total synthesis by us and others.^{2,3} Recently Zhang et al. reported the isolation of three phosphodiester derivatives of bitungolides A, B and D called franklinolides A-C from an Australian sponge sample CMB-01989.⁴ Franklinolides displayed cytotoxicity against a human brain cancer cell line. This phosphodiester engenders the potent cytotoxic activity in franklinolides. Bitungolides have attracted considerable attention from both the synthetic and pharmacological communities, due to their intriguing structure and potent cytotoxic activities. So far one total synthesis of (-)-bitungolide E^{2b} and three total syntheses of (-)-bitungolide $F^{2a,3}$ have been achieved. However to date no total syntheses of bitungolides A-D or the phosphodiester derivatives of bitungolides A, B and D, franklinolides A-C,

Fig. 1 Structure of (+)-bitungolides, franklinolides.

have been reported. Fascinated by the complex architecture as well as the interesting biological profile of the bitungolides and franklinolides, we wanted to develop a synthetic strategy by which all the congeners of bitungolides A–E and franklinolides A–C could be synthesized. In this article we report the total synthesis of (–)-bitungolides B and E *via* common key intermediate **13**.

Results and discussion

Structural inspection of bitungolide B and bitungolide E revealed that they possess similar structural features except for

View Article Online

Fine Chemicals Laboratory, CSIR-Indian Institute of Chemical Technology,

Hyderabad-500 007, India. E-mail: subhash@iict.res.in; Fax: +91-40-27191604; Tel: +91-40-27191609

 $^{^{\}dagger}$ Electronic supplementary information (ESI) available: Copies of ^{1}H and ^{13}C NMR spectra. See DOI: 10.1039/c4ob00250d

the aromatic ring attached to the *E*,*E*-diene unit. In the case of bitungolide B the phenyl ring contains chlorine and hydroxyl groups whereas in the case of bitungolide E it is a simple phenyl ring. Thus retrosynthetically (-)-bitungolide B and (–)-bitungolide E could be derived from the α,β -unsaturated δ -lactones **9a** and **9b** (Scheme 1) *via* desilylation followed by Evans–Saksena reduction. The α,β -unsaturated δ -lactones 9a and 9b would be accessible through ring-closing metathesis of bis-olefinic compounds 10a and 10b respectively. The bisolefinic compounds 10a and 10b might be obtained via DDQmediated allylic alcohol oxidation, concomitant PMB deprotection of 11a and 11b followed by acrylation of the resulting hydroxy keto compounds. The E,E-diene unit in 11a and 11b could be introduced through the addition of ene-yne compounds 12a and 12b to an aldehyde obtained from alcohol 13 followed by Red-Al reduction of the resulting propargyl alcohols. Common intermediate 13 could be obtained by means of substrate-controlled Paterson anti-aldol reaction between aldehyde 14 and ketone 15.

Synthesis of common intermediate alcohol **13** started from known compound **16** (Scheme 2).⁵ Oxidation of alcohol **16** furnished an aldehyde, which on Grignard reaction with EtMgBr followed by hydrogenolysis of the benzyl ether gave a diol. Subsequent selective protection of the primary hydroxyl as the PMB ether⁶ followed by Dess–Martin periodinane oxidation⁷ of the secondary alcohol afforded ketone **15**. The highly diastereoselective addition of the boron enolate generated from ketone **15** under Paterson conditions⁸ to known aldehyde **14**⁹ prepared from aldehyde **17** according to the

known procedure, provided the desired β -hydroxy ketone **18** in 85% yield, with a diastereometric ratio of (20:1). In order to fix the C5 stereocenter in the final molecule, hydroxyl ketone 18 was subjected to hydroxy-directed 1,3-syn reduction (Table 1) with Et2BOMe¹⁰ and NaBH₄ in THF-MeOH (5:1), at -78 °C (entry 1). However to our surprise, the reduction of the ketone did not proceed at all. On the other hand reduction with Zn(BH₄)₂¹¹ provided the reduced product but the yield and selectivity were very poor (entry 2). Gratifyingly we found catecholborane,¹² in THF, at -78 °C to -20 °C, reduced hydroxy ketone 18 to 1,3-syn diol 19 (entry 3) with good yield (86%) and high selectivity (95% de). The 1,3-syn relationship was confirmed via the Rychnovsky method.^{13a,b} DDQ-mediated rearrangement of the PMB ether¹⁴ afforded secondary alcohol 20, which on deoxygenation under Barton-McCombie conditions¹⁵ yielded the deoxy compound 21 in 90% yield over two steps. Regioselective opening of the p-methoxybenzylidene acetal with DIBAL-H¹⁶ from the less hindered side afforded primary alcohol 22 in 90% yield. Oxidation of the primary alcohol 22 furnished an aldehyde, which on Julia-Kocienski olefination¹⁷ with 25 gave olefinic compound 23. Selective TBS deprotection of 23 provided common intermediate 13. The overall sequence proceeded in 14 steps from 16 with an overall yield of 27.8%. Thus, this highly functionalised core 13, which is a common moiety present in (-)-bitungolides A-E and franklinolides A-C, can be accessed in multi-gram quantities via a set of high yielding chemical transformations. Finally Parikh-Doering oxidation¹⁸ of 13 completed the synthesis of aldehyde fragment 24.

Scheme 2 Synthesis of the common intermediate 13. *Reagents and conditions*: (1) (a) DMP, CH_2Cl_2 , 0 °C, 2 h; (b) EtMgBr, THF, 0 °C, 2 h; (c) H_2 , Pd/C, MeOH, rt, 1 h; (d) PMBCl, NaH, DMF 0 °C, 3 h; (e) DMP, CH_2Cl_2 , 0 °C, 2 h, 72% over five steps; (2) $(c-C_6H_{11})_2BCl$, Et_3N , Et_2O , 0 °C, 2 h, then 14, -78 °C to -20 °C, 14 h, 85%; (3) catecholborane THF, -78 °C to -20 °C, 12 h, 86%; (4) DDQ, 4 Å, MS, CH_2Cl_2 , -10 °C, 2 h, 90%; (5) (a) NaHMDS, CS_2 Mel, THF, -78 °C, 2 h; (b) *nBu*₃SnH, AIBN, 120 °C, 1 h, 90% over two steps; (6) DIBAL-H, CH_2Cl_2 , -40 °C to -10 °C, 2 h, 90%; (7) (a) SO₃·Py, Et₃N, CH_2Cl_2 -DMSO (0.9 : 1.0), 0 °C 1.5 h, (b) 25, NaHMDS, THF, -78 °C to rt, 18 h, 78% over two steps; (8) HF·Py, THF, 0 °C to rt, 20 h, 93%; (9) SO₃·Py, Et₃N, CH_2Cl_2 -DMSO (0.9 : 1.0), 0 °C, 1.5 h, quantitative.

Table 1	Different reagents and	conditions screened	for the	reduction of the C5 ketor	ne
---------	------------------------	---------------------	---------	---------------------------	----

Entry	Conditions	Time	Temperature	Result	
1	Et ₂ B-OMe (1.2 eq.), NaBH ₄ (1.2 eq.) THE-MeOH (5 : 1)	24 h	−78 °C	No reaction, starting material recovered	
2^a	$Zn(BH_4)_2$ (0.2 M in Et ₂ O, 10 eq.), CH_2Cl_2	6 h	-40 °C	40% yield based on recovered starting material, 80% de 86% yield, 95% de	
3	Catecholborane (1 M, 10 eq.), THF	12 h	−78 °C to −20 °C		

 a In Zn(BH₄)₂ reaction a considerable amount of diol was complexed with Zn salts; stirring with silica gel in EtOAc for 5 h led to decomplexation and recovery of the required diol compound.

Synthesis of ene-yne fragment **12a** is depicted in Scheme 3. Protection of the commercially available known aldehyde **26** as the TBS ether followed by Horner–Wadsworth–Emmons olefination¹⁹ yielded α,β -unsaturated ester **27**, which on DIBAL-H reduction afforded allylic alcohol **28**. DMP oxidation of allylic alcohol **28** furnished an aldehyde **29**. Initial attempts to make alkyne **12a** from aldehyde **29** by Corey–Fuchs reaction²⁰ or by Ohira–Bestmann protocol²¹ did not yield satisfactory results. On the other hand, aldehyde **29** *via* Colvin rearrangement²² in the presence of TMSCHN₂, LDA in THF at reflux temperature, provided the desired ene-yne **12a** in 75% yield over two steps.

After achieving the fragments aldehyde 24 and ene-yne 12a, the final synthesis of (–)-bitungolide B was planned by assembling the fragments as depicted in Scheme 4. Addition of the anion generated from compound 12a to the aldehyde 24 yielded a diastereomeric mixture of propargylic alcohols which on Red-Al reduction²³ followed by DDQ-mediated one pot oxidation of the resulting allylic $alcohol^{24}$ and PMB-deprotection afforded the *E*,*E*-diene compound **30** in 60% yield over three steps.

Next, acylation of **30** was carried out with acryloyl chloride to give the bis-olefinic compound **10a** in 85% yield. Ringclosing metathesis²⁵ of bis-olefinic compound **10a** afforded **9a**. TBS deprotection of **9a** gave β -hydroxy ketone **31**, which on Evans–Saksena reduction²⁶ furnished (–)-bitungolide B (7). Similar to our previous observations, during the syntheses of other bitungolides E and F², the spectral data of 7 were identical with those reported for the natural product except for the specific rotation which was comparable in magnitude but opposite in sign { $[\alpha]_D^{25} = -44.3$ (*c* 0.3, CHCl₃); lit.¹ $[\alpha]_D^{27} = +42$ (*c* 4.2, CHCl₃)}. (–)-Bitungolide E (Scheme 5) was synthesized from aldehyde **24** and ene-yne **12b** *via* the same sequence as

Scheme 3 Synthesis of ene-yne fragment 12a. Reagents and conditions: (1) (a) TBSCl, imidazole, THF, 0 °C, 2 h; (b) NaH, THF, -78 °C 1 h 89% over two steps; (2) DIBAL-H, CH₂Cl₂, -78 °C to 0 °C, 1 h, 93%; (3) DMP, CH₂Cl₂, 0 °C, 2 h; (4) TMSCH₂N₂, LDA THF, -78 °C, 1 h then reflux for 3 h, 75% over two steps.

Scheme 4 Synthesis of (–)-bitungolide B. *Reagents and conditions*: (1) (a) **12a**, *n*BuLi, THF, –78 °C, 2 h; (b) Red-Al, THF, 0 °C, 1 h; (c) DDQ, CHCl₃, buffer, 0 °C, 1 h, 60% over three steps; (2) Acryloyl chloride, Et₃N, CH₂Cl₂, 0 °C, 2 h, 85%; (3) Grubbs 1st generation catalyst, CH₂Cl₂, 40 °C, 20 h, 85%; (4) HF–Py, CH₃CN, rt, 48 h, 80%; (5) Me₄NHB(OAc)₃, acetone–AcOH (1:1), –25 °C, 3 h, 78%.

Scheme 5 Synthesis of (–)-bitungolide E. *Reagents and conditions*: (1) (a) **12b**, *n*-BuLi, –78 °C, then aldehyde **24**, 45 min; (b) Red-Al, dry THF, 0 °C to rt, 1 h; (c) DDQ, CHCl₃ pH 7 buffer (20 : 1), 0 °C, 10 min, 46% over 4 steps; (2) acryloyl chloride, Et₃N, CH₂Cl₂, 0 °C to rt, 1 h, 79%; (3) G-1 catalyst, CH₂Cl₂, reflux, 20 h, 80%; (4) HF–Py complex, CH₃CN, 0 °C to rt, 15 h, 88%; (5) Me₄NBH(OAc)₃, CH₃CN–AcOH (1 : 1), –20 °C, 3 h, 84%.

Conclusion

In conclusion we have achieved the first total synthesis of (-)-bitungolide B (22 longest linear sequence from **16**, 7.5%), and the second generation total synthesis of (-)-bitungolide E (22 longest linear sequence, 5.97%). The common intermediate **13** for bitungolides and potent cytotoxic franklinolides was synthesized *via* highly diastereoselective substrate controlled *anti*-aldol reaction as a key step in multigram quantities. This strategy developed here is highly convergent and can be used for the synthesis of other congeners of bitungolides, franklinolides and their analogs for biological studies. Presently we are working in that direction.

Experimental section

General experimental methods

All the reactions were performed under nitrogen or argon atmosphere in oven-dried glass apparatus under magnetic stirring. Anhydrous solvents were dried and distilled by standard methods. Commercially available reagents were used without further purification unless otherwise noted. Column chromatography was carried out using silica gel (60-120 or 100-200 mesh) packed in glass columns. ¹H NMR and ¹³C NMR were recorded in CDCl₃ solvent on 300 MHz, 400 MHz, 500 MHz and 75 MHz, 100 MHz, 125 MHz spectrometers, respectively, using TMS as an internal standard. Chemical shifts are measured as ppm values relative to internal CHCl₃ δ 7.26 or TMS δ 0.0 for ¹H NMR and CHCl₃ δ 77 for ¹³C NMR. In ¹H NMR the multiplicity is defined as: s = singlet; d =doublet; t = triplet; q = quartet; dd = doublet of doublets; ddd = doublet of double of doublets; dt = doublet of triplets; m = multiplet; brs = broad singlet. Optical rotation values were recorded on a Horiba sepa 300 polarimeter using a 2 mL cell with a 10 mm path length. FTIR spectra were recorded on an Alpha (Bruker) infrared spectrophotometer. High resolution mass spectra (HRMS) [ESI⁺] were obtained using either a TOF or a double focusing spectrometer.

Synthesis of (*R*)-4-((4-methoxybenzyloxy)methyl)hexan-3-one (15). To a stirred solution of 16 (6 g, 30.93 mmol) in anhydrous CH_2Cl_2 (100 mL) was added Dess–Martin periodinane (13 g, 30.93 mmol) at 0 °C under N₂ atmosphere and the moxture was stirred for 45 min at room temperature. The reaction mixture was quenched with saturated aqueous NaHCO₃ (15 mL), saturated aqueous Na₂S₂O₃ (15 mL) and extracted with EtOAc (2 × 250 mL). The combined organic extracts were washed with water (20 mL), brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum, which gave the aldehyde. The

Organic & Biomolecular Chemistry

obtained aldehyde was purified by column chromatography, and was used in the next step without further characterization.

To a stirred solution of the above crude aldehyde in THF (120 mL) was added EtMgBr (123 mL, 1 M in THF, 123 mmol) at 0 °C under N₂ atmosphere and the mixture was stirred for 45 min. The reaction was quenched with water (20 mL) and diluted with EtOAc (200 mL). The layers were separated and the aqueous phase was further extracted with EtOAc (2 × 100 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under vacuum to afford a diastereomeric mixture of alcohols which was used directly for the next reaction.

To this crude diastereomeric mixture of alcohols in EtOAc (100 mL) was added Pd/C (1 g) and it was subjected to hydrogenation under atmospheric pressure using a H₂-filled balloon. After 2 h, the reaction mixture was filtered through a short pad of celite and the filter cake was washed with EtOAc. The filtrate and washings were combined and concentrated under vacuum to afford the crude 1,3-diols, which were used directly in the next reaction.

To a stirred solution of the above crude diol in DMF (200 mL) was added NaH (1.4 g, 33.99 mmol) at rt under N_2 atmosphere. After 75 min of stirring at rt, PMBCl (4.6 mL, 33.99 mmol) was added very slowly to the reaction mixture and stirred for another 30 min. Then the reaction mixture was quenched with saturated NH₄Cl (5 mL) and extracted with EtOAc (200 mL). The organic extract was washed with brine (15 mL), dried over Na₂SO₄, and concentrated under vacuum to afford a diastereomeric mixture of secondary alcohols, which was used directly in the next step.

To a stirred solution of the above crude secondary alcohol in anhydrous CH2Cl2 (85 mL) was added Dess-Martin periodinane (13 g, 30.93 mmol) at 0 °C under N₂ atmosphere and the mixture was stirred for 45 min at rt. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ (15 mL) and saturated $Na_2S_2O_3$ (15 mL) and extracted with EtOAc (2 × 250 mL). The combined organic extracts were washed with brine (15 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (SiO₂, 5% EtOAc-hexane) to afford 15 (5.5 g, 72% over five steps) as a colourless oil. R_f 0.6 (10% EtOAc in hexanes); $[\alpha]_{D}^{25} = -16.42$ (c 2.1 in CHCl₃); IR (neat): ν_{max} 2965, 2868, 1710, 1512, 1460, 1246, 1174, 1088, 1033, 819 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 7.2 \text{ (d}, J = 8.5 \text{ Hz}, 2\text{H}), 6.86 \text{ (d}, J = 8.6 \text{ Hz},$ 2H), 4.39 (ABq, J = 12.6 Hz, 2H), 3.79 (s, 3H), 3.57 (dd, J = 8.9, 8.7 Hz, 1H), 3.46 (dd, J = 9.0, 5.2 Hz, 1H), 2.76 (m, 1H), 2.56-2.40 (m, 2H), 1.60 (dq, J = 15.2, 7.6 Hz, 1H), 1.44 (dq, J = 14.9, 7.4 Hz, 1H), 1.03 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 213.9, 159.1, 130.2, 129.1 (2C), 113.7 (2C), 72.8, 70.9, 55.2, 53.5, 36.6, 21.8, 11.7, 7.4. HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₅H₂₂O₃Na 273.1461, found 273.1459.

Synthesis of (3*R*,5*R*,6*R*,7*R*,8*S*)-8,10-bis(*tert*-butyldimethylsilyloxy)-6-hydroxy-3-((4-methoxybenzyloxy)methyl)-5,7-dimethyl decan-4-one (18). To a solution of chlorodicyclohexylborane (13.9 mL, 13.9 mmol) in anhydrous ether (30 mL) at -78 °C were added dropwise triethylamine (2.4 mL, 16.75 mmol) followed by ketone 15 (2.4 g, 9.31 mmol) in ether (15 mL) via cannula. The milky mixture was stirred at 0 °C for 2.5 h. Then the solution was again cooled to -78 °C before slow addition of aldehyde 14 (5 g, 13.97 mmol) in anhydrous ether (15 mL) via cannula and the resulting solution was stirred for 2 h at the same temperature. Then the reaction mixture was kept at -25 °C overnight and after that it was stirred at 0 °C for 30 min and monitored by TLC. After completion of the reaction, it was quenched successively with MeOH (26 mL), pH = 7buffer (26 mL), H₂O₂ (50%) (26 mL) and it was stirred for another 30 min at room temperature and extracted with EtOAc $(2 \times 100 \text{ mL})$. The combined organic extracts were washed sequentially with water (20 mL), brine (20 mL) and dried over Na₂SO₄. The organic extracts were concentrated under vacuum and the residue was purified by column chromatography (SiO_2 , 60-120 mesh, 7% EtOAc-hexane) to afford 18 (4.76 g, 85%) as a colorless oil. $R_f 0.5$ (10% EtOAc in hexanes); $\left[\alpha\right]_D^{25} = -4.6$ (c 3.0 in CHCl₃); IR (neat): v_{max} 3481 (br), 2930, 2858, 1711, 1513, 1463, 1251, 1092, 1035, 1007, 836, 776 $\rm cm^{-1};\ ^1H\ NMR$ $(300 \text{ MHz}, \text{CDCl}_3) \delta = 7.21 \text{ (d}, J = 8.9 \text{ Hz}, 2\text{H}), 6.98 \text{ (d}, J = 8.9 \text{ Hz})$ Hz, 2H), 4.41 (ABq, J = 10.8 Hz, 2H), 4.16 (d, J = 9.8 Hz, 1H), 3.99 (m, 1H), 3.80 (s, 3H), 3.51-3.68 (m, 4H), 3.41 (brs, OH), 2.88 (m, 1H), 2.82 (m, 1H), 1.94-1.80 (m, 2H), 1.75-1.63 (m, 2H), 1.43 (m, 1H), 0.98 (d, J = 6.9 Hz, 3H), 0.92–0.86 (m, 24H), 0.09 (s, 6H), 0.04 (s, 3H), 0.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 216.7, 159.1, 130.3, 129.1 (2C), 113.7 (2C), 75.3, 72.9, 72.8, 70.3, 59.6, 55.2, 54.2, 49.3, 37.5, 35.7, 25.9 (6C), 21.1, 18.2, 17.9, 12.8, 11.8, 10.6, -4.4, -4.8, -5.4, -5.5. HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₃H₆₂NaO₆Si₂ 633.3977, found 633.3985.

Synthesis of (3R,4S,5S,6S,7R,8S)-8,10-bis(tert-butyldimethylsilyloxy)-3-((4-methoxybenzyloxy)methyl)-5,7-dimethyldecane-4,6-diol (19). A stirred solution of compound 18 (4 g, 6.55 mmol) in THF (50 mL) at -40 °C was treated with catecholborane (65 mL, 1 M in THF, 65.0 mmol). After stirring for 12 h at -40 °C the reaction mixture was quenched with MeOH and extracted with EtOAc (2×100 mL). The organic extract was washed with 3 N NaOH (2×50 mL), followed by water (20 mL), brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 10% EtOAc-hexanes) to afford 19 (3.4 g, 86%) as a colorless oil. $R_{\rm f}$ 0.4 (10% EtOAc in hexanes); $[\alpha]_{\rm D}^{25} = -9.3$ (c 1.7 in CHCl₃); IR (neat): ν_{max} 3619 (br), 3422 (br), 2954, 2932, 2859, 1513, 1464, 1250, 1089, 1037, 1006, 834, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ = 7.28 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 8.3 Hz, 2H), 4.47 (ABq, J = 11.3 Hz, 2H), 4.04-3.95 (m, 2H), 3.85 (dd, J = 9.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.69-3.48 (m, 4H), 1.92-1.65 (m, 5H), 1.50 (m, 1H), 1.32 (m, 1H), 1.01 (d, J =6.8 Hz, 3H), 0.93 (t, J = 6.8 Hz, 3H), 0.89 (s, 18H), 0.68 (d, J = 6.8 Hz, 3H), 0.1 (s, 6H), 0.04 (s, 3H), 0.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 130.9, 129.1 (2C), 113.6 (2C), 77.3, 76.9, 75.9, 72.9, 71.5, 59.5, 55.2, 42.7, 37.8, 37.7, 36.1, 25.86 (3C), 25.80 (3C), 18.2, 17.9, 17.6, 12.8, 12.7, 11.1, -4.5, -4.9, -5.4, -5.5. HRMS (ESI) m/z [M + H]⁺ calcd for C₃₃H₆₅O₆Si₂ 613.4314, found 613.4315.

(2R,3S,4R,5S)-5,7-Bis(tert-butyldimethylsilyloxy)-2-((4S,5R)-5ethyl-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-4-methylheptan-3-ol (20). To a solution of 19 (2.5 g, 4.08 mmol) in CH_2Cl_2 containing 4 Å MS (3.2 g) was treated with DDQ (1.4 g, 6.12 mmol) at -10 °C. After stirring for 2 h at the same temperature, the reaction was guenched with saturated aqueous NaHCO₃ solution (10 mL) and extracted with EtOAc (2 \times 100 mL). The organic extract was washed with water $(2 \times 10 \text{ mL})$, brine (10 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (SiO₂, 5-6% EtOAc-hexane) to afford 20 (2.2 g, 90%) as a colourless liquid. $R_{\rm f}$ 0.6 (10% EtOAc-hexanes); $[\alpha]_{\rm D}^{25} = +35.5$ (c 0.45 in CHCl₃); IR (neat): $\nu_{\rm max}$ 3522, 2955, 2930, 2855, 1741, 1517, 1464, 1250, 1086, 834, 775 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.31 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 7.9 Hz, 2H), 5.44 (s, 1H), 4.28 (d, J = 10.8 Hz, 1H), 3.90 (m, 1H), 3.85-3.81 (m, 3H), 3.80 (s, 3H), 3.71-3.59 (m, 2H), 3.56 (brs, OH), 1.97- 1.85 (m, 2H), 1.75 (m, 1H), 1.70–1.64 (m, 2H), 1.57 (m, 1H), 1.39 (m, 1H), 1.04 (t, J = 6.9 Hz, 3H), 0.9 (s, 9H), 0.88 (s, 9H), 0.83 (d, J = 6.9 Hz, 3H), 0.75 (d, J = 6.9 Hz, 3H), 0.05 (s, 6H), 0.03 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 160, 130.8, 127.3 (2C), 113.7 (2C), 102.1, 86.9, 73.8, 72.3, 69.6, 59.5, 55.3, 39.4, 37.4, 37.12, 37.05, 25.99 (3C), 25.96 (3C), 18.3, 18.1, 16.6, 12.0, 11.4, 9.4, -4.4, -4.8, -5.3 (2C). HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₃H₆₂NaO₆Si₂ 633.3977, found 633.3979.

(5*S*)-5-((2*R*,4*R*)-4-((4*R*,5*R*)-5-Ethyl-2-(4-methoxyphenyl)-1,3dioxan-4-yl)pentan-2-yl)-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (21). To a stirred solution of 20 (2 g, 3.28 mmol) in anhydrous THF (15 mL) at -78 °C was added 1 M NaHMDS (32.8 mL, 32.8 mmol) and the reaction mixture was stirred at the same temperature for 30 min. CS₂ (4 mL, 65.6 mmol) was added to that solution and stirred for 30 min at -78 °C. Then MeI (6.2 mL, 98.4 mmol) was added to that reaction mixture and stirred for 15 min at the same temperature. It was quenched by addition of H₂O (5 mL) and extracted with EtOAc (2 × 50 mL). The organic extract was washed with water (10 mL), brine (10 mL), dried over (Na₂SO₄), filtered and concentrated under vacuum to afford the methyl xanthate derivative, which was used immediately in the next step without further purification.

The crude methyl xanthate derivative, Bu₃SnH (5 mL) and a catalytic amount of AIBN (0.4 g, 0.32 mmol) were taken in a round bottomed flask and the mixture was heated at 120 °C for 1 h. It was then quenched with H₂O (5 mL). The reaction mixture was extracted with EtOAc (2×30 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO₂ 3% EtOAc-hexane) to afford 21 (1.7 g, 90% over two steps) as a colorless liquid. $R_{\rm f}$ 0.5 (5% EtOAc in hexanes); $[\alpha]_{\rm D}^{25} = +26.3$ (c 1.1 in CHCl₃); IR (neat): v_{max} 2956, 2933, 2856, 1516, 1464, 1250, 1093, 833, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ = 7.39 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.43 (s, 1H), 4.28 (m, 1H), 3.88 (m, 1H), 3.80 (s, 3H), 3.73-3.57 (m, 3H), 3.41 (m, 1H), 1.75-1.44 (m, 3H), 1.38-1.15 (m, 6H), 0.98 (t, J = 7.5 Hz, 3H), 0.94-0.81 (m, 21H), 0.78 (d, J = 6.8 Hz, 3H), 0.03 (s, 12H).

View Article Online

Organic & Biomolecular Chemistry

¹³C NMR (75 MHz, CDCl₃) δ 159.6, 131.8, 127.1 (2C), 113.4 (2C), 101.5, 85.6, 73.7, 69.3, 60.5, 55.2, 37.2, 35.95, 35.89, 35.6, 31.6, 25.95 (3C), 25.91 (3C), 18.3, 18.1, 16.3, 14.1, 14, 12, -4.4, -4.5, -5.25, -5.29. HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₃H₆₂NaO₅Si₂ 617.4028, found 617.4032.

(2R,3R,4R,6R,7S)-7,9-Bis(tert-Butyldimethylsilyloxy)-2-ethyl-3-(4-methoxybenzyloxy)-4,6-dimethylnonan-1-ol (22). To а solution of 21 (1 g, 1.68 mmol) in anhydrous CH₂Cl₂ (10 mL) at -40 °C, DIBAL-H (6.8 mL, 1.0 M in toluene, 6.72 mmol) was added dropwise and stirred at that temperature for 2 h. The reaction was then quenched by slow addition of anhydrous MeOH (0.5 mL), followed by saturated sodium potassium tartrate solution. The reaction mixture was stirred (~2 h) until two clear layers separated. The organic layer was separated out and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic extracts were washed sequentially with water (10 mL), brine (10 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO₂ 12% EtOAc-hexane) to afford 22 (0.9 g, 90%) as a colorless liquid. Rf 0.3 (15% EtOAc in hexanes); $\left[\alpha\right]_{D}^{25} = -4.35$ (c 0.85 in CHCl₃); IR (neat): ν_{max} 3442, 2928, 2857, 1514, 1464, 1384, 1250, 1090, 1040, 943, 835, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ = 7.25 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.52 (ABq, J = 10.7 Hz, 2H), 3.80 (s, 3H), 3.74–3.58 (m, 5H), 3.37 (dd, J = 6.4, 3.5 Hz, 1H), 2.02 (brs, 1H), 1.85 (m, 1H), 1.75-1.47 (m, 5H), 1.37-1.19 (m, 3H), 0.97-0.81 (m, 27H), 0.04 (brs, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 130.8, 129.3 (2C), 113.7 (2C), 85.8, 73.8, 73.5, 63.6, 60.3, 55.2, 44.0, 36.0, 35.4, 35.3, 32.7, 25.94 (3C), 25.89 (3C), 18.8, 18.3, 18.1, 16.7, 13.7, 12.5, -4.4, -4.5, -5.3, -5.4. HRMS (ESI) $m/z [M + Na]^+$ calcd for $C_{33}H_{64}NaO_5Si_2$ 619.4184, found 619.4186.

(*S*)-5-((2*R*,4*R*,5*R*,6*R*)-6-Ethyl-5-(4-Methoxybenzyloxy)-4-methyloct-7-en-2-yl)-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (23). To a stirred solution of the alcohol 22 (0.7 g, 1.17 mmol) in anhydrous CH_2Cl_2 (5 mL) at 0 °C, anhydrous DMSO (4 mL), Et₃N (0.9 mL, 5.85 mmol) and SO₃-py complex (0.93 g, 5.85 mmol) were added sequentially under N₂ atmosphere and was stirred for 1 h. Saturated aqueous NH₄Cl (5 mL) was added and extracted with EtOAc (2 × 30 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL), and dried over anhydrous Na₂SO₄. Evaporation of the solvent furnished the crude aldehyde, which was passed through a short pad of silica gel and used as such for the next reaction.

To the stirred solution of sulfone (0.78 g, 3.51 mmol) in THF (12 mL) at -78 °C was added NaHMDS (2.3 mL, 1 M in THF, 2.34 mmol) under an argon atmosphere. After 30 minutes the crude aldehyde in THF (6 mL) was added at -78 °C to the reaction mixture. The reaction mixture was gradually warmed to room temperature and stirred for 18 h. Then the reaction was quenched with water (5 mL) and extracted with EtOAc (2 × 50 mL). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 3% EtOAc–hexanes) to afford

23 (0.54 g, 78% over two steps) as yellow oil. $R_{\rm f}$ 0.3 (5% EtOAc in hexanes); $[\alpha]_{D}^{22} = -12.64$ (*c* 1.15, CHCl₃). IR (neat): ν_{max} 2960, 2921, 2823, 1564, 1411, 1248 and 1034 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 7.27 \text{ (d}, J = 7.8 \text{ Hz}, 2\text{H}), 6.86 \text{ (d}, J = 8 \text{ Hz}, 100 \text{ Hz})$ 2H), 5.54 (dt, J = 17.0, 10.1 Hz, 1H), 5.04 (dd, J = 10.0, 2.0 Hz, 1H), 4.99 (dd, *J* = 17.0, 2.0 Hz, 1H), 4.51 (ABg, *J* = 11.0 Hz, 2H), 3.80 (s, 3H), 3.68 (m, 1H), 3.65–3.58 (m, 2H), 3.09 (dd, J = 7.0, 4.0 Hz, 1H), 2.17 (m, 1H), 1.82-1.74 (m, 2H), 1.64-1.54 (m, 2H), 1.31-1.18 (m, 3H), 1.12 (m, 1H), 0.94 (d, J = 7 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.83 (t, J = 8 Hz, 3H), 0.78 (d, J = 7 Hz, 3H), 0.04 (s, 6H), 0.03 (s, 3H), 0.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) & 158.9, 140.2, 131.3, 129.0 (2C), 115.9, 113.6 (2C), 87.7, 74.9, 73.7, 60.6, 55.2, 49.6, 36.0, 35.2, 33.3, 33.2, 25.96 (3C), 25.9(3C), 22.9, 18.3, 18.1, 17.3, 13.5, 11.8, -4.4, -4.6, -5.3(2C). HRMS(ESIMS) m/z [M + Na]⁺: calcd for C₃₄H₆₄O₄NaSi₂ 615.4240, found: 615.4238.

(3S,4R,6R,7R,8R)-3-(tert-Butyldimethylsilyloxy)-8-ethyl-7-(4methoxybenzyloxy)-4,6-dimethyldec-9-en-1-ol (13). To the solution of 23 (0.3 g, 0.50 mmol) in anhydrous THF (3.5 mL) in a polypropylene vial, was added HF-py complex (40%, 0.06 mL) at 0 °C. The reaction mixture was slowly warmed to rt and stirred for 20 h. Then it was cautiously poured into saturated NaHCO₃ solution and stirred for 30 min. Then both the layers were separated and the aqueous layer was further extracted with EtOAc (2 \times 20 mL). The combined organic layers were washed with saturated CuSO₄ (20 mL), water (10 mL), brine (10 mL) and dried over Na₂SO₄. The solvent was evaporated under vacuum. The residue was purified by column chromatography (SiO₂, 18% EtOAc-hexanes) to afford 13 (220 mg, 93% yield) as a colourless viscous liquid. Rf 0.2 (10% EtOAc in hexanes); $[\alpha]_{D}^{22} = +6.21$ (c 1.00, CHCl₃). IR (neat): ν_{max} 3542 (br), 2938, 2867, 1524, 1474, 1364, 1270, 1090, 953, 845, 775 cm⁻¹ ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.54 (dt, J = 17.0, 10.0 Hz, 1H), 5.06 (dd, J = 10.0, 1.7 Hz, 1H), 5.0 (dd, J = 17.2, 1.7 Hz, 1H), 4.51 (ABq, J = 11.0 Hz, 2H), 3.80 (s, 3H), 3.75–3.65 (m, 3H), 3.10 (dd, J = 7.7, 3.4 Hz, 1H), 2.17 (m, 1H), 1.85-1.73 (m, 2H), 1.71-1.57 (m, 3H), 1.29–1.18 (m, 2H), 1.12 (m, 1H), 0.95 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.84 (t, J = 7.7 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 159.0, 140.0, 131.1, 129.1 (2C), 116.0, 113.6 (2C), 87.6, 76.3, 75.1, 61.0, 55.2, 49.7, 35.9, 33.6, 33.4, 33.2, 25.8 (3C), 22.8, 17.9, 17.4, 12.8, 11.7, -4.3, -4.7. HRMS (ESI) m/z $[M + Na]^+$ calcd for C₂₈H₅₀O₄NaSi 501.3376, found: 501.3373.

(*E*)-Ethyl 3-(3-(*tert*-butyldimethylsilyloxy)-2-chlorophenyl)acrylate (27). To a stirred solution of commercially available 26 (2 g, 12.7 mmol) in anhydrous THF (80 mL) at 0 °C were added imidazole (2 g, 29.2 mmol) and TBSCl (2.5 g, 16.99 mmol) sequentially under N₂ atmosphere. After 2 h of stirring at rt, the reaction mixture was quenched with saturated NH₄Cl (15 mL) and extracted with EtOAc (2 × 100 mL). The combined organic extract was washed with brine (15 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was used immediately in the next reaction without further purification.

To a stirred solution of NaH (0.76 g, 19.5 mmol) in THF (60 mL) was added ethyl 2-(diethoxyphosphoryl)acetate (4.3 g, 19.5 mmol) at 0 °C under N2 atmosphere and stirred for 45 min. Then the reaction mixture was cooled to -78 °C and to that was added the above crude 3-(tert-butyldimethylsilyloxy)-2-chlorobenzaldehyde in THF (20 mL) via cannula. After 30 min, the reaction mixture was quenched with saturated NH₄Cl (10 mL) solution and allowed to attain room temperature. The reaction mixture was extracted with EtOAc (2 \times 100 mL). The combined organic extract was washed with brine (15 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 4% EtOAc-hexanes) to afford 27 (3.8 g, 89% yield) as a yellow viscous liquid. $R_{\rm f}$ 0.5 (10% EtOAc in hexanes); IR (neat): $\nu_{\rm max}$ 2955, 2859, 1737, 1695, 1573, 1464, 1291, 1237, 1045, 990, 831, 780 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 8.11 (d, J = 16 Hz, 1H), 7.23 (dd, J = 7.7, 1.0 Hz, 1H), 7.12 (t, J = 8.0 Hz, 1H), 6.91 (dd, J = 7.7, 1.0 Hz, 1H), 6.40 (d, J = 16 Hz, 1H), 4.28 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H), 1.04 (s, 9H), 0.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 152.1, 141, 134.3, 126.9, 121.5, 120.8, 120, 126.6, 60.6, 25.6 (3C), 19.3, 14.3, -4.4 (2C). HRMS (ESI) $m/z [M + H]^+$ calcd for $C_{17}H_{26}O_3ClSi$ 341.1334, found 341.1313.

(E)-3-(3-(tert-Butyldimethylsilyloxy)-2-chlorophenyl)prop-2en-1-ol (28). To a solution of 27 (1.5 g, 4.41 mmol) in anhydrous CH₂Cl₂ (35 mL) at -78 °C was added DIBAL-H (1.0 M in toluene, 11 mL, 11.0 mmol) and the mixture was stirred at that temperature for 15 min. Then the reaction mixture was slowly warmed to 0 °C and stirred for 1 h. The reaction was then quenched by slow addition of a few drops MeOH followed by saturated aqueous sodium potassium tartrate solution. The reaction mixture was stirred (~2 h) until two clear layers separated and was then extracted with EtOAc (2×50 mL). The combined organic extract was washed with water (5 mL), brine (5 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 10% EtOAc-hexanes) to afford 28 (1.17 g, 93% yield) as a colorless liquid. $R_{\rm f}$ 0.2 (10% EtOAc in hexanes); IR (neat): $\nu_{\rm max}$ 3338, 2930, 2858, 1570, 1466, 1288, 1254, 1020, 841, 782, 680 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.13 (dd, J = 7.7, 1.0 Hz, 1H), 7.05 (t, J = 7.9 Hz, 1H), 7.0 (td, J = 16.2, 1.0 Hz, 1H), 6.79 (dd, J = 7.9, 1.3 Hz, 1H), 6.3 (td, J = 15.8, 5.6 Hz, 1H), 4.33 (dd, J = 5.6, 1.5 Hz, 2H), 1.04 (s, 9H), 0.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 151.7, 136.5, 131.4, 127.5, 126.6, 124.8, 119.4, 119.2, 63.4, 25.6 (3C), 18.3, -4.4 (2C). HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₅H₂₃O₂ClNaSi 321.1048, found 321.1044.

(*E*)-(3-(But-1-en-3-ynyl)-2-chlorophenoxy)(*tert*-butyl)dimethylsilane (12a). To a solution of the alcohol 28 (0.7 g, 2.35 mmol) in anhydrous CH_2Cl_2 (10 mL) at 0 °C was added Dess-Martin periodinane (1.5 g, 3.45 mmol) under N₂ atmosphere and the mixture was stirred for 45 min at rt. Saturated NaHCO₃ (10 mL) and saturated Na₂S₂O₃ (10 mL) were added to the reaction mixture and extracted with EtOAc (2 × 50 mL). The combined organic extracts were washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and purification of the residue on a silica gel column gave an aldehyde which was used directly for the next reaction.

To a solution of diisopropylamine (0.4 mL, 2.82 mmol) in anhydrous THF (8 mL) was added n-butyllithium (1.6 M in hexane, 1.8 mL 2.82 mmol) at -78 °C and the mixture was stirred for 30 min. TMSCHN₂ (2 M in hexanes, 1.4 mL, 2.82 mmol) was added to the reaction mixture and stirred for another 30 min. A solution of crude aldehyde prepared above in THF (15 mL) was then added to the reaction mixture and stirred for 1 h at -78° C and 3 h at reflux temperature. Cold water (10 mL) was added and extracted with ether (2×50 mL). The combined organic extracts were washed with water (10 mL), brine (10 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 1% EtOAc-hexanes) to afford 12a (0.514 g, 75% yield over two steps) as a clear yellow oil. Rf 0.5 (5% EtOAc in hexanes); IR (neat): v_{max} 2930, 2857, 1570, 1466, 1288, 1253, 998, 838, 781, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.47 (d, J = 16.1 Hz, 1H), 7.14 (dd, J = 7.9, 1.5 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 6.84 (dd, J = 7.9, 1.5 Hz, 1H), 6.1 (dd, J = 16.3, 2.3 Hz, 1H), 3.1 (d, J = 2.3 Hz, 1H), 1.04 (s, 9H), 0.23 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 152, 139.6, 135.6, 126.8, 125.1, 120.4, 118.7, 109.5, 82.6, 79.8, 25.6 (3C), 18.3, -4.4 (2C); MS (EI) m/z 292 (M⁺). Anal. Calcd for C₁₆H₂₁ClOSi: C, 65.62; H, 7.23; found: C, 64.97; H, 7.39.

(1*E*,3*E*,7*S*,8*R*,10*R*,11*R*,12*R*)-7-(*tert*-Butyldimethylsilyloxy)-1-(3-(*tert*-butyldimethylsilyloxy)-2-chlorophenyl)-12-ethyl-11-hydroxy-8,10-dimethyltetradeca-1,3,13-trien-5-one (30). To a stirred solution of the alcohol 13 (0.170 g, 0.35 mmol) in anhydrous CH₂Cl₂ (5 mL) at 0 °C, anhydrous DMSO (4 mL), Et₃N (0.25 mL, 1.78 mmol) and SO₃-Py complex (0.283 g, 1.78 mmol) were added sequentially under N₂ atmosphere and the mixture was stirred for 45 min. Saturated aqueous NH₄Cl (5 mL) was added and extracted with EtOAc (2 × 30 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL), and dried over anhydrous Na₂SO₄. Evaporation of the solvent furnished the crude aldehyde, which was passed through a short pad of silica gel and used as such for the next reaction.

A solution of **12a** (91.0 mg, 0.71 mmol) in anhydrous THF (3 mL) at -78 °C was treated with *n*-BuLi (1.6 M in hexane, 0.44 mL, 0.71 mmol) and stirred for 40 min. A solution of the aldehyde prepared above in anhydrous THF (3 mL) was added to the reaction mixture and stirred for 1 h. The reaction mixture was then quenched with saturated aqueous NH₄Cl (5 mL) solution at 0 °C and extracted with EtOAc (2 × 40 mL). The combined organic extracts were washed with water (5 mL) brine (5 mL) and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and purification of the residue *via* column chromatography (SiO₂, 7% EtOAc-hexanes) afforded a mixture of diastereomeric alcohols (0.23 g, 88% yield), which were used directly for the next reaction.

To a solution of the above diastereomeric mixture of alcohols (0.23 g, 0.308 mmol) in anhydrous THF (5 mL) at 0 $^{\circ}$ C was added Red-Al (3.46 M in toluene, 0.24 mL, 0.83 mmol)

and the mixture was stirred at rt for 1 h. The reaction mixture was then quenched with MeOH (2 mL) and saturated aqueous potassium sodium tartrate solution (5 mL) at 0 °C. The reaction mixture was allowed to stir at rt until two layers separated and it was extracted with EtOAc (2 × 40 mL). The combined organic extracts were washed with water (5 mL), brine (5 mL), dried over Na₂SO₄, and concentrated under vacuum. Purification of the residue by column chromatography (SiO₂, 6% EtOAc-hexanes) afforded the diene compound as a mixture of diastereomers (0.195 g, 85% yield).

To a stirred solution of the mixture of dienes (40.0 mg, 0.066 mmol) in CHCl₃ and pH = 7 phosphate buffer (20:1, 4 mL) at 0 °C, DDQ (30 mg, 0.13 mmol) was added and stirred for 1 h at 0 °C. The reaction was then quenched with saturated aqueous NaHCO₃ (5 mL) solution and extracted with EtOAc $(2 \times 20 \text{ mL})$. The combined organic extracts were washed with water (5 mL), brine (5 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO2, 12% EtOAc-hexanes) to afford 30 (135 mg, 60% yield over four steps) as a clear oil. $R_{\rm f}$ 0.4 (10% EtOAc in hexanes); $\left[\alpha\right]_{D}^{25} = -5.3$ (c 0.8 in CHCl₃); IR (neat): ν_{max} 3412 (br), 2970, 2860, 2361, 1676, 1526, 1463, 1190, 845, 775 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.41 (d, J = 15.3 Hz, 1H), 7.36–7.23 (m, 2H), 7.12 (t, J = 8 Hz, 1H), 6.87–6.80 (m, 2H), 6.30 (d, J = 15.3 Hz, 1H), 5.52 (dt, J = 17.7, 10.5 Hz, 1H), 5.09 (dd, J = 10.2, 1.6 Hz, 1H), 5.02 (dd, J = 17.7, 1.6 Hz, 1H), 4.15 (m, 1H), 3.29 (m, 1H), 2.83 (m, 1H), 2.48 (dd, J = 14.5, 4.0 Hz, 1H), 2.06 (m, 1H), 1.81-1.61 (m, 3H), 1.36-1.08 (m, 3H), 1.04 (s, 9H), 0.92 (d, J = 6.4 Hz, 3H), 0.89–0.84 (m, 15H), 0.24 (s, 6H), 0.05 (s, 3H), 0.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) & 200, 152.1, 142.7, 140.9, 139.2, 137.4, 135.7, 131.6, 129.1, 126.8, 120.5, 119.3, 116.4, 79.0, 74.1, 49.6, 43.6, 36.4, 32.7, 31.3, 25.8(3C), 25.6(3C), 22.6, 18.3, 18.0, 16.9, 13.9, 11.5, -4.4, -4.6, -4.7(2C). HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₆H₆₁O₄ClNaSi₂ 671.3694, found 671.3697.

(3R,4R,5R,7R,8S,11E,13E)-8-(tert-Butyldimethylsilyloxy)-14-(3-(tert-butyldimethylsilyloxy)-2-chlorophenyl)-3-ethyl-5,7-dimethyl-10-oxotetradeca-1,11,13-trien-4-yl acrylate (10a). To a stirred solution of 30 (80 mg, 0.123 mmol) in anhydrous CH₂Cl₂ (3 mL) at 0 °C, Et₃N (0.05 mL, 0.369 mmol) and acryloyl chloride (0.01 mL, 0.246 mmol) were added sequentially under nitrogen atmosphere and the mixture was stirred at the same temperature for 2 h. Then it was quenched with water (2 mL) and extracted with EtOAc (2×30 mL). The organic extract was washed with saturated NaHCO₃ (5 mL), brine (5 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO2, 7% EtOAc-hexanes) provided 10a (73 mg, 85% yield) as a colorless oil. $R_{\rm f}$ 0.6 (10% EtOAc in hexanes); $[\alpha]_{\rm D}^{25} = -11.2$ (c 0.7 in CHCl₃); IR (neat): $\nu_{\rm max}$ 2970, 2890, 2361, 1646, 1516, 1463, 1190, 840, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ = 7.44–7.23 (m, 2H), 7.12 (m, 1H), 6.89–6.80 (m, 2H), 6.41 (dd, J = 17.3, 1.6 Hz, 1H), 6.31 (d, J = 15.8 Hz, 1H), 6.15 (dd, J = 17.3, 10.5 Hz, 1H), 5.83 (dd, J = 9.8, 1.5 Hz, 1H), 5.46 (m, 1H), 5.14–5.0 (m, 2H), 4.91 (dd, J = 9.0, 3.0 Hz, 1H), 4.16–4.07 (m, 2H), 2.83 (dd, J = 15.1, 8.3 Hz, 1H), 2.47 (dd, J = 15.1, 3.7 Hz, 1H), 2.27

(m, 1H), 1.94–1.73 (m, 2H), 1.06–0.98 (m, 13H), 0.91–0.76 (m, 18H), 0.23 (s, 6H), 0.04 (s, 3H), 0.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 199.9, 166.3, 152.2, 142.7, 138.0, 137.5, 135.6, 131.7, 130.7, 129.1, 128.6, 126.8, 125.8, 120.6, 119.3, 117.2, 80.0, 74.0, 48.1, 43.8, 36.4, 32.1, 31.6, 25.9 (3C), 25.6 (3C), 23.0, 18.3, 18.0, 16.7, 13.7, 11.4, -4.3, -4.5, -4.7. HRMS (ESI) *m/z* [M + H]⁺ calcd for C₃₉H₆₄O₅ClSi₂ 703.3975, found 703.3980.

(5R,6R)-6-((2R,4R,5S,8E,10E)-5-(tert-Butyldimethylsilyloxy)-11-(3-(tert-butyldimethylsilyloxy)-2-chlorophenyl)-4-methyl-7oxoundeca-8,10-dien-2-yl)-5-ethyl-5,6-dihydro-2H-pyran-2-one (9a). A solution of 10a (50 mg, 0.071 mmol) in anhydrous CH₂Cl₂ (26 mL) was degassed and Grubbs' first generation catalyst (10 mg, 0.0071 mmol) was added under nitrogen atmosphere. The resulting pale purple solution was heated to reflux (50 °C) for 20 h. The solvent was evaporated under vacuum and the crude residue was purified by column chromatography (SiO₂, 15% EtOAc-hexanes) to give 9a (40 mg, 85% yield) as a clear oil. $R_{\rm f}$ 0.4 (10% EtOAc in hexanes); $[\alpha]_{\rm D}^{25} = -45.4$ (c 0.5 in CHCl₃); IR (neat): $\nu_{\rm max}$ 3100, 2917, 2750, 1186, 1013, and 1094, 835, 775 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.41 (d, J = 16.0 Hz, 1H), 7.35 (dd, J = 16.0, 11.0 Hz, 1H), 7.24 (m, 1H), 7.14-7.04 (m, 2H), 6.88-6.81 (m, 2H), 6.31 (d, J = 15 Hz, 1H), 6.04 (d, J = 10 Hz, 1H), 4.14 (m, 1H), 3.94 (dd, J = 11.0, 3.0 Hz, 1H), 2.86 (dd, J = 15.0, 8.0 Hz, 1H), 2.46 (dd, J = 15.0, 3.0 Hz, 1H), 2.35 (m, 1H), 1.9 (m, 1H), 1.78-1.46 (m, 5H), 1.04 (s, 9H), 0.97 (t, J = 8.0 Hz, 3H), 0.9–0.82 (m, 15H), 0.24 (s, 6H), 0.06 (s, 3H), 0.03 (s, 3H). 13 C NMR (75 MHz, CDCl₃) δ 200, 164.8, 150.9, 142.7, 138.4, 137.4, 131.7, 130.8, 129.1, 128.7, 126.7, 120.9, 120.5, 119.3, 84.7, 73.7, 42.9, 36.7, 36.4, 35.7, 31.5, 25.8(3C), 25.6(3C), 23.7, 18.0, 14.7, 14.0, 13.3, 11.0, -4.3 (2C), -4.7 (2C). HRMS (ESI) $m/z [M + H]^+$ calcd $C_{37}H_{60}O_5ClSi_2$ 674.3589, found 674.3586.

(5R,6R)-6-((2R,4R,5S,8E,10E)-11-(2-Chloro-3-hydroxyphenyl)-5-hydroxy-4-methyl-7-oxoundeca-8,10-dien-2-yl)-5-ethyl-5,6dihydro-2H-pyran-2-one (31). To a solution of 9a (20 mg, 0.0296 mmol) in anhydrous CH₃CN (3 mL) in a polypropylene vial was added HF-Py complex (70%, 2.20 µl) at 0 °C. The reaction was slowly warmed to rt and stirred for 48 h. After completion of the reaction, it was cautiously poured into aqueous NaHCO₃ (5 mL) solution and stirred for 30 min and extracted with EtOAc (2×10 mL). The combined organic extracts were washed with saturated CuSO₄ (5 mL) solution, water (5 mL), brine (5 mL), dried over Na_2SO_4 , filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 24% EtOAc in hexanes) to afford 31 (10.5 mg, 80% yield) as colourless oil. R_f 0.5 (40% EtOAc in hexanes); $[\alpha]_{D}^{25} = -91.3$ (c 0.3 in CHCl₃); IR (neat): ν_{max} 3403 (br), 3300 (br), 2917, 2850, 1246, 1093, 1034, 835, 775 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta = 7.41 \text{ (dd}, J = 15.2, 11.0 \text{ Hz}, 1\text{H}), 7.35 \text{ (d},$ J = 15.2 Hz, 1H), 7.25-7.16 (m, 2H), 7.11-6.96 (m, 2H), 6.88 (dd, J = 15.9, 11.0 Hz, 1H), 6.32 (d, J = 15.9 Hz, 1H), 6.05 (d, J = 9.8 Hz, 1H), 3.98 (dd, J = 9.6, 2.0 Hz, 1H), 3.94 (m, 1H), 2.87-2.67 (m, 2H), 2.40-2.28 (m, 2H), 1.95 (m, 1H), 1.62 (m, 4H), 0.93 (m, 9H). 13 C NMR (75 MHz, CDCl₃) δ 201.4, 165.0, 151.2, 143.0, 138.8, 137.2, 136.0, 130.7, 129.3, 127.7, 127.6, 120.8, 118.6, 116.4, 84.9, 72.1, 42.4, 36.6, 35.4, 35.0, 31.1, 20.1,

14.3, 13.9, 11.0. HRMS (ESI) $m/z [M + H]^+$ calcd for C₂₅H₃₂O₅Cl 447.1938, found 447.1935.

(5R,6R)-6-((2R,4R,5S,7S,8E,10E)-11-(2-Chloro-3-hydroxyphenyl)-5,7-dihydroxy-4-methylundeca-8,10-dien-2-yl)-5-ethyl-5,6-dihydro-2H-pyran-2-one, {(-)-bitungolide B} (7). To a solution of 31 (8 mg, 0.018 mmol) in anhydrous CH_3CN (1.5 mL) at -30 °C were added Me₄NBH(OAc)₃ (19.7 mg, 0.075 mmol) and glacial AcOH (1.5 mL) sequentially. The temperature of the reaction was slowly raised to -20 °C, and stirring was continued at this temperature for 3 h. Then the reaction mixture was guenched with saturated potassium sodium tartrate (2 mL) at 0 °C and stirred at rt for 1 h. The reaction mixture was extracted with EtOAc $(3 \times 5 \text{ mL})$. The combined organic extracts were washed with saturated aqueous NaHCO₃ (2 mL), water (2 mL), brine (2 mL), dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 40% EtOAc-hexanes) to afford 7 (6 mg, 78% yield) as a white amorphous solid. $R_{\rm f}$ 0.5 (60% EtOAc in hexanes); $\left[\alpha\right]_{\rm D}^{25}$ = - 44.3 (c 0.3 in CHCl₃); IR (neat): ν_{max} 3403 (br), 3380 (br), 2917, 2850, 1701, 1246, 1093, 1034, 830 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 7.16 \text{ (m, 1H)}, 7.14 \text{ (m, 1H)}, 7.07 \text{ (dd, } J =$ 9.8, 6.7 Hz, 1H), 6.90 (m, 1H), 6.88 (d, J = 15.3 Hz, 1H), 6.78 (dd, J = 14.8, 9.8 Hz, 1H), 6.52 (ddd, J = 15.8, 9.9, 1.9 Hz, 1H), 6.05 (d, J = 9.8 Hz, 1H), 5.96 (dd, J = 15.3, 5.9 Hz, 1H), 5.66 (brs, OH), 4.61 (m, 1H), 3.97 (dd, J = 10.8, 2.9 Hz, 1H), 3.79 (m, 1H), 2.68 (brs, OH), 2.43 (brs, OH), 2.36 (m, 1H), 1.95 (m, 1H), 1.84–1.66 (m, 5H), 1.5 (m, 1H), 1.20 (ddd, J = 12.8, 10.8, 1.9 Hz, 1H), 0.96 (t, J = 7.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 151.6, 151.1, 137.8, 135.8, 131.3, 129.9, 128.0, 127.5, 120.9, 119.1, 118.1, 114.7, 85.0, 73.4, 70.3, 38.8, 36.7, 36.1, 35.2, 31.0, 20.1, 14.7, 14.6, 11.0. HRMS (ESI) m/z [M + Na]⁺: calcd for C₂₅H₃₃O₅ClNa 471.1908, found 471.1912.

(1E,3E,7S,8R,10R,11R,12R)-7-(tert-Butyldimethylsilyloxy)-12ethyl-11-hydroxy-8,10-dimethyl-1-phenyltetradeca-1,3,13-trien-5-one (32). Compound 32 (50 mg, 45% over four steps) was synthesized as a clear oil from 12b (91.0 mg, 0.71 mmol) and aldehyde 24 (150 mg, 0.30 mmol) by following the same procedure as described for the synthesis of compound 30. Rf 0.27 (SiO₂, 10% EtOAc-hexanes); $[\alpha]_{D}^{25} = +42.61$ (c 0.21, CHCl₃); IR (neat): $\nu_{\rm max}$ 3400 (br), 2925, 2855, 1515, 1587, 1461, 1252, and 1066 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ = 7.25–7.43 (m, 2H), 7.41–7.27 (m, 4H), 7.01–6.82 (m, 2H), 6.30 (d, J = 15.5 Hz, 1H), 5.51 (ddd, *J* = 17.1, 10.4, 9.2 Hz, 1H), 5.09 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.03 (dd, J = 10.4, 2.0 Hz, 1H) 4.14 (dt, J = 8.3, 3.7 Hz, 1H), 3.28 (dd, J = 7.9, 3.7 Hz, 1H), 2.81 (dd, J = 14.5, 8.3 Hz, 1H), 2.46 (dd, *J* = 14.5, 3.7 Hz, 1H), 2.06 (m, 1H), 1.85–1.58 (m, 6H), 0.91 (d, J = 6.8 Hz, 3H), 0.89–0.84 (m, 15H), 0.04 (s, 3H), -0.04 (s, 3H); 13 C NMR (CDCl₃, 75 MHz) δ 200.0, 142.9, 141.3, 139.2, 136.0, 130.8, 129.1, 128.8, 127.2, 126.7, 116.4, 79.0, 74.1, 49.7, 43.8, 36.4, 32.7, 31.3, 25.8, 22.6, 18.0, 17.0, 13.8, 11.6, -4.6, -4.7; HRMS (ESI) m/z calcd for $C_{30}H_{48}O_3NaSi$ [M + Na]+: 507.3270, found: 507.3272.

(3*R*,4*R*,5*R*,7*R*,8*S*,11*E*,13*E*)-8-(*tert*-Butyldimethylsilyloxy)-3ethyl-5,7-dimethyl-10-oxo-14-phenyltetradeca-1,11,13-trien-4-yl acrylate (10b). Compound 10b (34 mg, 79% yield) was synthesized as a clear oil from 32 (40 mg, 0.082 mmol) via the same procedure as described for the synthesis of **10a**. $R_{\rm f} = 0.50$ (SiO₂, 8% EtOAc-hexanes); $[\alpha]_{D}^{25} = +93.84$ (c 0.18, CHCl₃); IR (neat): $\nu_{\rm max}$ 2928, 2855, 1720, 1648, 1616, 1580, 1460, 1260, 1192, and 1066 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ = 7.53–7.44 (m, 2H), 7.43–7.30 (m, 4H), 7.04–6.78 (m, 2H), 6.44 (dd, J = 17.2, 1.6 Hz, 1H), 6.30 (d, J = 15.6 Hz, 1H), 6.14 (dd, J = 17.2, 9.9 Hz, 1H), 5.84 (dd, J = 9.9, 1.6 Hz, 2H), 5.46 (ddd, J = 17.2, 9.8, 9.0 Hz, 1H), 5.11 (dd, J = 10.7, 2.5 Hz, 1H), 4.96 (m, 1H), 4.12 (m, 1H), 2.82 (dd, J = 14.8, 8.2 Hz, 1H), 2.46 (dd, J = 14.8, 4.1 Hz, 1H), 2.25 (m, 1H), 1.80 (m, 1H), 1.66-1.35 (m, 5H), 0.91-0.75 (m, 18H), 0.04 (s, 3H), -0.04 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 200.0, 166.3, 142.9, 141.4, 137.9, 136.0, 130.8, 130.7, 129.1, 128.8, 128.5, 127.2, 126.7, 117.2, 80.0, 74.0, 48.0, 43.9, 36.3, 32.0, 31.6, 25.8, 23.0, 18.0, 16.6, 13.6, 11.4, -4.7, -4.6; HRMS (ESI) m/z calcd for $C_{33}H_{50}O_4NaSi [M + Na]^+$: 561.3376, found: 561.3369.

(5R,6R)-6-((2R,4R,5S,8E,10E)-5-(tert-Butyldimethylsilyloxy)-4methyl-7-oxo-11-phenylundeca-8,10-dien-2-yl)-5-ethyl-5,6dihydro-2H-pyran-2-one (9b). Compound 9b (18 mg, 80% yield) was synthesized as a clear oil from 10b (25 mg, 0.046 mmol) via the same procedure as described for the synthesis of compound **9a**. $R_f = 0.43$ (SiO₂, 15% EtOAc-hexanes); $[\alpha]_{D}^{25} = -112.20 \ (c \ 0.14, \ CHCl_3); \ IR \ (neat): \nu_{max} \ 2926, \ 2855, \ 1722,$ 1616, 1589, 1461, 1382, 1250, and 1062 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.53-7.42 (m, 2H), 7.42-7.27 (m, 4H), 7.08 (dd, J = 9.8, 6.0 Hz, 1H), 7.02–6.82 (m, 2H), 6.29 (d, J = 15.1 Hz, 1H), 6.05 (d, J = 9.8 Hz, 1H), 4.14 (m, 1H), 3.94 (dd, J = 9.8, 3.0 Hz, 1H), 2.85 (dd, J = 14.3, 8.3 Hz, 1H), 2.44 (dd, J = 14.3, 3.0 Hz, 1H), 2.34 (m, 1H), 1.97–1.43 (m, 6H), 0.97 (t, J = 7.3 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H), 0.84 (s, 9H),0.05 (s, 3H), -0.04 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 200.0, 164.8, 150.9, 142.9, 141.2, 136.1, 130.9, 129.0, 128.7, 127.2, 126.8, 120.9, 84.7, 73.7, 42.9, 36.7, 36.4, 35.7, 31.4, 25.8, 22.6, 17.9, 14.6, 13.3, 10.9, -4.7; HRMS (ESI) m/z calcd for C₃₁H₄₆O₄NaSi [M + Na]⁺: 533.3630, found: 533.3638.

(5R,6R)-5-Ethyl-6-((2R,4R,5S,8E,10E)-5-hydroxy-4-methyl-7oxo-11-phenylundeca-8,10-dien-2-yl)-5,6-dihydro-2H-pyran-2one (33). Compound 33 (9.5 mg, 88% yield) was synthesized as a clear oil from 9b (14 mg, 0.027 mmol) by following the same procedure as described for compound 31. $R_{\rm f} = 0.32$ (SiO₂, 20% EtOAc-hexanes); $[\alpha]_{D}^{25} = -180$ (c 0.14, CHCl₃); IR (neat): $\nu_{\rm max}$ 3474(br), 2924, 2868, 1715, 1615, 1585, 1458, 1382, 1252 and 1060 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.51–7.43 (m, 2H), 7.42-7.28 (m, 4H), 7.05 (dd, J = 9.8, 6.8 Hz, 1H), 7.01 (d, J = 15.7 Hz, 1H), 6.87 (dd, J = 14.7, 10.8 Hz, 1H), 6.27 (d, J = 15.7 Hz, 1H), 6.04 (d, J = 9.8 Hz, 1H), 3.96 (dd, J = 10.8, 2.9 Hz, 1H), 3.92 (m, 1H), 2.82 (dd, J = 16.7, 2.0 Hz, 1H), 2.66 (dd, J = 16.7, 9.8 Hz, 1H), 2.34 (m, 1H), 1.95 (m, 1H), 1.84-1.66 (m, 3H), 1.65–1.47 (m, 2H), 1.00 (t, J = 7.8 Hz, 3H), 0.95 (d, J =5.9 Hz, 0.95 (d, J = 5.9 Hz, 3H), 0.91 (d, J = 5.9 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 201.7, 165.1, 151.3, 143.8, 142.3, 135.8, 129.6, 129.4, 128.9, 127.4, 126.4, 121.0, 85.0, 72.3, 42.3, 36.7, 35.0, 31.2, 20.2, 14.5, 14.1, 13.7, 10.8; HRMS (ESI) m/z calcd for $C_{25}H_{32}O_4Na [M + Na]^+$: 419.2198, found: 419.2197.

(5R,6R)-6-((2R,4R,5S,7S,8E,10E)-5,7-Dihydroxy-4-methyl-11phenylundeca-8,10-dien-2-yl)-5-ethyl-5,6-dihydro-2H-pyran-2one, {(-)-bitungolide E} (8). Compound 8 (5 mg, 84% yield) was synthesized as a clear oil from 33 (7 mg, 0.0176) via the same procedure as described for the synthesis of 7. $R_{\rm f} = 0.46$ (SiO₂, 40% EtOAc-hexanes); $[\alpha]_D^{25} = -104.82$ (*c* 0.2, CHCl₃); IR (neat): v_{max} 3404 (br), 2960, 2924, 2855, 1713, 1459, 1384, 1258, and 1059 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 7.39 (br d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.22 (br t, J = 7.3 Hz, 1H), 7.08 (dd, J = 9.5, 6.6 Hz, 1H), 6.78 (dd, J = 15.4, 10.3 Hz, 1H), 6.56 (br d, J = 15.4 Hz, 1H), 6.46 (dd, J = 15.4, 10.3 Hz, 1H), 6.04 (d, J = 9.6 Hz, 1H), 5.90 (dd, J = 15.4, 5.9 Hz, 1H), 4.61 (m, 1H), 3.97 (dd, J = 10.3, 2.9 Hz, 1H), 3.80 (m, 1H), 2.36 (m, 1H), 1.95 (m, 1H), 1.84-1.76 (m, 2H), 1.72-1.68 (m, 3H), 1.49 (m, 1H), 1.20 (m, 1H), 0.96 (t, J = 7.4 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 164.9, 151.2, 137.2, 136.1, 132.6, 130.3, 128.6, 128.2, 127.5, 126.3, 120.9, 85.0, 73.3, 70.4, 38.8, 36.7, 36.1, 35.2, 31.0, 20.1, 14.7, 14.6, 11.0; HRMS (ESI) m/z calcd for $C_{25}H_{34}O_4Na [M + Na]^+: 421.2354$, found: 421.2349.

Acknowledgements

K. M. R. thanks CSIR, New Delhi for a research fellowship. S. G. is thankful to the Council of Scientific and Industrial Research for funding under the ORIGIN programme of the 12th five year plan.

Notes and references

- 1 S. Sirirath, J. Tanaka, I. Ohtani, T. Ichiba, R. Rachmat, K. Ueda, U. Takeo, H. Osada and T. Higa, *J. Nat. Prod.*, 2002, **65**, 1820.
- 2 (a) S. Ghosh, S. U. Kumar and J. Shashidhar, *J. Org. Chem.*, 2008, 73, 1582; (b) J. Shashidhar, K. M. Reddy and S. Ghosh, *Tetrahedron Lett.*, 2011, 52, 3106.
- 3 (a) Y. Su, Y. Xu, J. Han, J. Zheng, J. Qi, T. Jiang, X. Pan and X. She, *J. Org. Chem.*, 2009, 74, 2743; (b) A. ElMarrouni, S. R. Joolakanti, A. Colon, M. Heras, S. Arseniyadis and J. Cossy, *Org. Lett.*, 2010, 12, 4074.
- 4 H. Zhang, M. M. Conte and R. J. Capon, *Angew. Chem., Int. Ed.*, 2010, **49**, 9904.
- 5 A. K. Ghosh and J. H. Kim, *Tetrahedron Lett.*, 2003, 44, 7659.
- 6 A. Furstner, O. R. Thiel and G. Blanda, Org. Lett., 2000, 2, 3731.
- 7 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.

- 8 (a) C. J. Cowden and I. Paterson, Org. React., 1997, 51, 1;
 (b) I. Paterson, K. Ashton, R. Britton and H. Knust, Org. Lett., 2003, 5, 963.
- 9 J. D. White, J. Hong and L. A. Robarge, *J. Org. Chem.*, 1999, 64, 6206.
- 10 K. Chen, G. E. Hardtmann, K. Prasad, O. Repic and M. J. Shapiro, *Tetrahedron Lett.*, 1987, 28, 155.
- 11 F. Arikan, J. Li and D. Menche, Org. Lett., 2008, 10, 3521.
- 12 (a) D. A. Evans and A. H. Hoveyda, J. Org. Chem., 1990, 55, 5190; (b) I. Paterson, C. Watson, K. S. Yeung, P. A. Wallace and R. A. Ward, J. Org. Chem., 1997, 62, 452.
- 13 (*a*) D. J. Skalitzky and S. D. Rychnovsky, *Tetrahedron Lett.*, 1990, **31**, 945; (*b*) In the ¹³C NMR spectra of **19a** the two methyls of the acetonide groups appeared at δ 19.8 and 30.0. The ketal carbon appeared at δ 97.2. Hence they have a *syn* relationship.

- 14 Y. Oikawa, T. Yoshioka and O. Yonemitsu, *Tetrahedron Lett.*, 1982, 23, 889.
- 15 (a) D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574; (b) D. H. R. Barton, J. Dorchak and Cs. J. Jaszberenyi, *Tetrahedron*, 1992, 48, 7435.
- 16 S. Takano, M. Akiyama, S. Sato and K. Ogasawara, *Chem. Lett.*, 1983, 1593.
- 17 K. Zhu and J. S. Panek, Org. Lett., 2011, 13, 4652.
- 18 J. R. Parikh and W. V. E. Doering, J. Am. Chem. Soc., 1967, 89, 5505.
- 19 W. S. Wadsworth and W. D. Emmons, J. Org. Chem., 1961, 83, 1733.
- 20 E. J. Corey and P. L. Fuchs, *Tetrahedron Lett.*, 1972, 13, 3769.
- 21 S. Ohira, Synth. Commun., 1989, 19, 561.
- 22 (a) E. W. Colvin and B. J. Hamill, J. Chem. Soc., Chem. Commun., 1973, 151–152; (b) E. W. Colvin and B. J. Hamill, J. Chem. Soc., Perkin Trans. 1, 1977, 869–874.
- 23 (a) K. K. Chan, N. Cohen, J. P. De Noble, A. C. Specian Jr. and G. Saucy, *J. Org. Chem.*, 1976, 41, 3497; (b) B. M. Trost and M. Lautens, *J. Am. Chem. Soc.*, 1987, 109, 1469.
- 24 I. Paterson, C. J. Cowden, V. S. Rahn and M. D. Woodrow, *Synlett*, 1998, 915.
- 25 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
- 26 (a) D. A. Evans and K. T. Chapman, *Tetrahedron Lett.*, 1986,
 27, 5939; (b) D. A. Evans, K. T. Chapman and E. M. Carriera, *J. Am. Chem. Soc.*, 1988, **110**, 3560.