

PII: S0960-894X(96)00297-1

DESIGN AND SYNTHESIS OF PHOSPHINIC ACIDS THAT TRIPLY INHIBIT ENDOTHELIN CONVERTING ENZYME, ANGIOTENSIN CONVERTING ENZYME AND NEUTRAL ENDOPEPTIDASE 24.11

Brian A. McKittrick,* Andrew W. Stamford, Xiaoyu Weng, Ke Ma, Samuel Chackalamannil, Michael Czarniecki, Reneé M. Cleven, and Ahmad B. Fawzi

> Schering-Plough Research Institute 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033, USA.

Abstract. We have synthesized a series of phosphinic acids as inhibitors of a metalloprotease endothelin converting enzyme (ECE). Potent ECE inhibitors 4g and 40 were identified. These compounds are members of a novel class of ECE inhibitors that are also potent inhibitors of angiotensin converting enzyme and neutral endopeptidase. Copyright © 1996 Elsevier Science Ltd

In 1988 the isolation of endothelin-1 (ET-1), a potent vasoconstrictive 21 amino acid peptide hormone from cultured endothelial cells, was described.¹ ET-1 is produced by proteolysis at Trp²¹-Val²² of a less active 38 amino acid precursor big endothelin-1 (BET-1) by an endothelin converting enzyme (ECE).¹ We initiated a program to develop inhibitors of ECE as potential therapeutic agents since ET-1 has been implicated in the pathophysiology of hypertension, atherosclerosis, renal failure, and cerebral vasospasm.²

The identity of the enzyme responsible for conversion of BET-1 to ET in vivo has not been established with certainty. Neutral metalloprotease, aspartyl protease, and cysteine protease activities for the processing of BET-1 to ET-1 have been reported.³ However, the metalloprotease inhibitor phosphoramidon 1 abolishes the pressor response induced by the infusion of BET-1 in rats⁴ and inhibits the production of ET-1 by cultured endothelial cells,⁵ suggesting that the physiologically relevant ECE activity resides with a membrane-bound neutral metalloprotease.⁶ Phosphoramidon 1 also inhibits hypoxia-induced release of ET-1 in isolated perfused guinea pig lungs.⁷

Herein we report studies toward the design and synthesis of phosphinic acids as inhibitors of a phosphoramidon-sensitive membrane-bound zinc metalloprotease ECE from partially purified guinea pig lungs.⁸ These efforts resulted not only in the synthesis of potent ECE inhibitors, but also in the discovery of novel phosphinic acids that triply inhibit ECE, angiotensin converting enzyme (ACE), and neutral endopeptidase 24.11 (NEP).⁹

Our initial studies showed that phosphoramidon inhibits ECE with an IC_{50} of 500 nM. The desrhamnosyl derivative 2^{10} is also an ECE inhibitor demonstrating that the rhamnose residue of phosphoramidon is not necessary for inhibition. Furthermore, we have found that the Pfizer glutaramide 3,¹¹ a dual ACE-NEP inhibitor, is an ECE inhibitor that is slightly less potent than phosphoramidon.

Our strategy for developing more potent ECE inhibitors was to build in appropriate residues at the P1 and P2 positions of a phosphoramidon-related structure. The fact that Trp^{21} occurs at the N-terminal side of the BET-1 cleavage site suggested incorporation of a hydrophobic P1 side chain to mimic the Trp^{21} (3-indoly)-

methyl group of BET-1. For our initial investigation we chose a phenylmethyl substituent for this purpose. We were also influenced by the significant ECE inhibitory potency of the glutaramide 3¹¹ which suggested that a cyclopentyl moiety could replace the P1' isobutyl group of phosphoramidon. This would provide a synthetic advantage in that it precludes generation of stereoisomers at this position.

A series of phosphinic acids 4n-o that embodies these features was synthesized as outlined in the Scheme. This synthetic route allowed us to introduce a P1 phenylmethyl group of defined stereochemistry dependent on the absolute stereochemistry of the starting phosphinic acids 5b and 5c.

The N-Cbz protected α -amino phosphinic acids 5a-c were prepared by known methods^{12.13} and the stereochemistry of 5b and 5c was established by correlation to the corresponding known phosphonic acids.^{13,14} Triflate 6, prepared from the alcohol 7,¹⁵ was reacted with the anion derived from the protected phosphinate ester 8 to afford the desired P-alkylated product 9. Cleavage of the <u>t</u>-butyl ester of 9 with HCl/1,4-dioxane also resulted in loss of the phosphinate methyl ester, presumably via neighboring group participation of the liberated carboxylic acid,¹⁶ to give the diacid 10¹⁷ in good yield. This key synthon was elaborated at the C-terminal by coupling to the appropriate amino acid ester under 1,1'-carbonyldiimidazole/DMF activation to give 11. Deprotection of 11 afforded the diacids 4a-e.

The amino diester 12a, obtained by treatment of 11 ($R^1 = (R)CH_2Ph$, AA = Trp) with diazomethane followed by hydrogenolysis, was used as a common precursor for exploring SAR development at the Nterminus. Coupling of 12a to N^{ϵ}-Cbz-N^{α}-MsLysOH then sequential acid cleavage of the phosphinate ester and base hydrolysis of the carboxylate ester furnished the tetrapeptide analog 4f. Hydrogenolysis of 4f gave the amino diacid 4g with R absolute stereochemistry at the P1 stereocenter bearing the phenylmethyl substituent. The diastereomers of 4f and 4g of S stereochemistry at P1, 4h and 4i, were prepared in similar fashion from 12b. Compounds 4j-o were prepared by coupling 12a to the appropriate acid chloride followed by deprotection.

Evaluation of the phosphinic acids 4a-o for ECE inhibitory activity in vitro^{8a} demonstrated a clear preference for the R (natural) stereochemistry at P1 (Table 1). The presence of the P1 R-phenylmethyl side chain improved potency by about two-fold as shown by comparison of 4a and 4b. Introduction of the P2 N α -MsLysOH residue, 4f and 4g, afforded a further increase in potency. On the other hand, replacement of the P2' tryptophan residue with asparagine, 4e, which corresponds to the P2' residue of BET-1, resulted in a substantial Scheme

Reagents: (a) 1.5 equiv. Tf_2O , 7 eq. pyridine, CH_2CI_2 , -78°-0°C; (b) DEC, DMAP, McOH; (c) CH_2N_2 , EtOAc, MeOH; (d) NaH, THF, 6, 0°C-rt; (e) LDA, THF, -78°C then 6 -78°C to rt; (f) HCl, 1,4-dioxane; (g) L-AAOMe.HCl, 1,1'-carbonyldiimidazole, NMM, DMF; (h) aq. LiOH, MeOH; (i) TFA, CH_2CI_2 ; (j) CH_2N_2 , EtOAc; (k) H_2 , 10% Pd/C, MeOH; (l) DEC, NMM, HOBT, N^eCbz-N^{id}Ms-L-Lys, CH_2CI_2 ; (m) H_2 , 10% Pd/C, MeOH, 2 equiv. LiOH, H_2O ; (n) R^2COCl , py, CH_2CI_2 ; (o) 4-(BocNHCH₂)C₆H₄COOH, DEC, HOBT, CH_2CI_2 .

loss in potency. Tyrosine at the P2' position, 4d, proved to be equivalent to tryptophan. Replacement of the Cbz group of 4b with various acyl groups, 4j-o, revealed a modest sensitivity to the nature of the acyl group with regard to ECE potency, wherein aroyl groups are preferred over an acetyl or a pivaloyl group. Notably, we have since examined the utility of the potent 4-aminomethylbenzoyl derivative 4j as an affinity ligand for purification of ECE by affinity chromatography.¹⁸

$R^{2}NH$ P $N-AAOH$									
<u> </u>		P1 stereo-	R ⁱ		³¹ P nmr chemical shift ^a	ECE			
compound	R1	chem.*	R ²	AA	or formula ^b	IC ₅₀ nM ^c			
4 a	Н	-	Cbz	Trp	δ 32.17	420			
4b	CH_2Ph	R	Cbz	Trp	C34H38N3O7P.H2O	190			
4c	CH_2Ph	S	Cbz	Trp	δ 33.64	>10,000			
4d	CH_2Ph	R	Cbz	Tyr	C32H34N2O6PLi3.3H2Od	120			
4e	CH_2Ph	R	Cbz	Asn	C27H34N3O8P12H2O	>1,000			
4f	CH_2Ph	R		Trp	C41H52N5O10PS.1.1H2O	60			
4g	CH_2Ph	R	$\begin{array}{c} \text{Column} \\ \text{MeSO}_2\text{HN} \\ \text{H}_2\text{N} \\ \end{array} \\ \begin{array}{c} \text{MeSO}_2\text{HN} \\ \\ \text{E} \\ \text{CO} \\ \end{array} \\ \end{array}$	Trp	C33H44N5O8PSLi2.2.5H2Oe	70 (55 ^h)			
4h	CH_2Ph	S		Trp	δ 32.70	>10,000			
4i	CH_2Ph	S		Trp	δ 32.67	>10,000			
4j	CH_2Ph	R	4-(NH ₂ CH ₂)C ₆ H ₄ CO	Trp	C34H37N4O6PLi2.2.5H2O ^{e,f}	90 (80 ^h)			
4 k	CH ₂ Ph	R	CH ₃ CO	Trp	δ 33.18	600			
41	CH_2Ph	R	tBuCO	Trp	C31H34N3O6P.1.5H2Og	550			
4m	CH_2Ph	R	C ₆ H ₅ CO	Trp	C33H36N3O6P.H2O	250			
4n	CH_2Ph	R	4-MeOC ₆ H ₄ CO	Trp	δ 33.44	160			
40	CH ₂ Ph	R	4-NO ₂ C ₆ H ₄ CO	Trp	C33H35N4O8P2H2Og	50			

Table 1. ECE inhibitory activity of phosphinic acids 4a-o \parallel / \square H

a ³¹P NMR spectra were recorded on the dilithium salts in D₂O relative to trimethyl phosphate at 0.0 ppm. ^b Satisfactory microanalyses were obtained for C, H, N, P (\pm 0.4%) unless otherwise indicated. ^c IC₅₀ determined as described in ref. 8a. ^d Trilithium salt. ^c Dilithium salt. ^f Calcd C, 59.39; Found C, 58.08. ^g C, H, N analysis. ^h IC₅₀ versus purified enzyme (ref. 8b).

The potent ECE inhibitors 4g and 4o were screened against ACE^{19} and NEP^{20} and were also found to strongly inhibit these enzymes (Table 2). Compounds 4g and 4o are thus unique in that they are the first examples of protease inhibitors that effectively inhibit ECE, ACE, and NEP.

	RNH _		н				
		n	IC50 nM				
compound	R	ECE	ACE	NEP			
4g		70	2.5	90			
40	4-NO ₂ C ₆ H ₄ CO	50	1.5	55			

0 6

Table 2. ECE, ACE, and NEP inhibitory activity of phosphinic acids 4g and 4o

In summary, we have developed a series of potent phosphinic acid inhibitors of a metalloprotease ECE by incorporating structural features of phophoramidon 1 and the Pfizer dual ACE-NEP inhibitor 3. The stereochemistry of the P1 side chain and the nature of the acyl group on the P1 nitrogen were shown to be important determinants of inhibitor potency. The enhanced potency of 4f and 4g relative to 4b demonstrated that a P2 residue is well tolerated. Compounds 4g and 40 were found to not only inhibit ECE, but also ACE and NEP with IC_{50} values <100 nM for all three enzymes.

Given the potential role of ET in vascular disease, inhibition of ECE with concomitant inhibition of ACE and/or NEP may constitute an effective new therapeutic strategy for the treatment of hypertension and other cardiovascular disorders.²¹ Consequently, novel protease inhibitors such as 4g and 40 may prove to be important pharmacological tools and could ultimately lead to therapeutic agents that act by inhibition of all three enzymes. Although determination of the physiological consequences of ECE inhibition with compounds such as 4g and 40 will be challenging given their lack of selectivity, this should not preclude interest in these as potential therapeutic agents.²²

Acknowledgments: The authors would like to thank Dr. C. Foster and Ms. L. Arik for the ACE and NEP determinations, Dr. M. Nafissi for assistance in the resolution of 5b and Dr J. T. Witkowski for helpful discussions.

References and Notes:

1. Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. Nature 1988, 332, 411.

2. Reviews: Rubanyi, G. M.; Polokoff, M. A. *Pharmacol. Rev.* **1994**, *46*, 325. Doherty, A. M. J. Med. Chem., **1992**, *35*, 1493. Rubanyi, G. M. *Drugs Fut.* **1992**, *17*, 915.

3. Review: Opgenorth, T. J.; Wu-Wong, J. R.; Shiosaki, K. FASEB 1992, 6, 2653.

4. Matsamura, Y.; Hisaki, K.; Takaoka, M.; Morimoto, S. Euro. J. Pharmacol. 1990, 185, 103.

5. Ikegawa, R.; Matsumura, Y.; Tsukahara, Y.; Takaoka, M.; Morimoto, S. Biochem. Biophys. Res. Commun. 1990, 171, 669.

6. Xu. D.; Emoto, N.; Giaid, A.; Slaughter, C.; Kaw, S.; deWit, D.; Yanagisawa, M. Cell 1994, 78, 473.

7. Vemulapalli, S.; Rivelli, M.; Chiu, P. J. S.; del Prado, M.; Hey, J. A. J. Pharmacol. Exp. Ther. 1992, 262, 1062.

8. (a) Fawzi, A. B.; Cleven, R. M.; Wright, D. L. Anal. Biochem. 1994, 222, 342; (b) Purified guinea pig lung ECE: Fawzi, A. B.; Wright, D. L.; Cleven, R. M.; Zhang, H. FASEB, 1994, 8, A1372.

9. While this work was in progress, studies reporting inhibition of metalloprotease ECE activity appeared: Bertenshaw, S. R.; Rogers, R. S.; Stern, M. K.; Norman, B. H.; Moore, W. M.; Jerome, G. M.; Branson, L. M.; McDonald, J. F.; McMahon, E. G.; Palomo, M. A. J. Med. Chem. 1993, 36, 173. Bertenshaw, S. R.; Talley, J. R.; Rogers, R. S.; Carter, J. S.; Moore, W. M.; Branson, L. M.; Koboldt, C. M. Bioorg. Med. Chem. Lett. 1993, 3, 1953. Fukami, T.; Hayama, T.; Amano, Y.; Nakamura, Y.; Arai, Y; Matsuyama, K.; Yano, M.; Ishikawa, K. Bioorg. Med. Chem. Lett. 1994, 4, 1257. Bihovsky, R.; Levinson, B. L.; Loewi, R. C.; Erhardt, P. W.; Polokoff, M. A. J. Med. Chem. 1995, 38, 2119.

10. Kam, C.-M.; Nishino, N.; Powers, J. C. *Biochemistry* 1979, 18, 3032. Compound 2 was prepared as the trilithium salt.

11. Danilewicz, J. C.; James, K.; Kobylecki, R. J. European Patent Application 358,398A1, 1989.

12. Dingwall, J. G.; Ehrenfreund, J.; Hall, R. G. Tetrahedron 1989, 45, 3787.

13. Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc. Perkin Trans. 1 1984, 2845. The absolute stereochemistry of phosphinic acids 5b and 5c was confirmed by conversion to the corresponding known¹⁴ phosphonic acids I and II and correlation of the rotations. (For 5b and 5c c 1.0, EtOH; for I and II c 1.0, 1.0 M NaOH):

14. Hanessian, S.; Bennani, Y. L. Tetrahedron Lett. 1990, 31, 6465.

15. Neustadt, B. R.; Smith, E. M.; Nechuta, T. L.; Bronnenkant, A. A.; Haslanger, M. F.; Watkins, R. W.; Foster, C. J.; Sybertz, E. J. J. Med. Chem. 1994, 37, 2461.

16. Morgan, P. B.; Scholtz, J. M.; Ballinger, M. D.; Zipkin, I. D.; Bartlett, P. A. J. Am. Chem. Soc. 1991, 113, 297.

17. Physical data for 10 (R¹ = (R)CH₂Ph): mp 144-145°C; $[\alpha]_D$ -52.0 ° (c 0.61 DMF); FAB MS m/z 446

(M+H)⁺; ¹H NMR (DMSO-d6) δ 7.63 (1H, d, J 9.7 Hz), 7.29-7.15 (10 H, m), 4.94 (2H, m), 3.82 (1H, m), 3.08 (1H, d, J 13.7 Hz), 2.70 (1H, ddd, J 13.7, 5.7 Hz), 2.09-2.02 (4H, m), 1.69-1.60 (6H, m); ¹³C NMR (DMSO-d6) δ 177.61, 156.03, 138.67, 137.37, 128.98, 128.26, 128.14, 127.51, 126.94, 126.14, 53.28 (d, J_{C-P} 103 Hz), 64.98, 49.8 (d, J_{C-P} 4.7 Hz), 36.99 (d J_{C-P} 7.9 Hz), 34.17 (d J_{C-P} 87.9 Hz), 32.71, 24.36; ³¹P NMR (DMSO-d6) δ 45.03. Anal. calcd for C₂₃H₂₈NO₆P: C, 62.02; H, 6.34; N, 3.14; P, 6.95. Found: C, 62.24; H, 6.09; N, 3.25; P, 6.97.

18. Fawzi, A. B.; McKittrick, B. A.; Stamford, A. W.; Wright, D. L. unpublished results.

19. Cushman, D. W.; Cheung, H. S.; Biochem. Pharmacol. 1971, 20, 1637.

20. Sybertz, E. J.; Chui, P. J. S.; Vemulapalli, S.; Pitts, B; Foster, C. J.; Watkins, R. W.; Barnett, A.; Haslanger, M. F. J. Pharmacol. Exp. Ther. 1989, 250, 624.

21. Several groups have reported the development of dual inhibitors of ACE and NEP for the treatment of

hypertension and congestive heart failure. For example, see Fink, C. A.; Qiao, Y.; Berry, C. J.; Sakane, Y.; Ghai, R. D.; Trapani, A. J. J. Med. Chem. 1995, 38, 5023 and references therein.

22. In vivo activity of 4g will be reported separately.

(Received in USA 15 April 1996; accepted 14 June 1996)