A New Synthetic Route to N-Amino Maleimides

Claudie Florac, Michèle Baudy-Floc'h, and Albert Robert*

Groupe de Recherches de Chimie Structurale, Unité associée au C.N.R.S., U.A. 704, Université de Rennes, F-35042 Rennes, France

N-Amino maleimides have been obtained in good yield through the reaction of α -halohydrazides with *N*-aminopyridine.

Many α -halohydrazides (1), easily prepared from gem dicyano epoxides, react rapidly in a basic medium with nucleophiles leading to α -substituted hydrazides (2) through an aziridinone intermediate (Scheme 1). A different reaction is observed when the nucleophile is 2-aminopyridine. In this case, the reaction affords N-amino maleimides (3). To the best of our knowledge, the N-amino maleimides described previously

have only been prepared from the reaction of hydrazines and maleic anhydrides.^{3—7} As a consequence, their synthesis was limited by the accessibility of substituted maleic anhydrides. The *N*-amino maleimides are useful in the synthesis of pyridazine-3,6-diones, which show antibacterial and antifungal activities. They are also possible starting materials for the synthesis of substituted maleic anhydrides.

Table 1. Relevant spectroscopic data for *N*-amino maleimides (3).

Ar	\mathbb{R}^1	Yield (%)	M.p./°C	${}^{1}HN.m.r.$ $\delta(CDCl_{3})$	I.r. (CCl ₄), v/cm ⁻¹
$p-NO_2C_6H_4$	CO ₂ Me	54	255	7.92 (m, 8H)	3430s, 1790s
2 0 1	~			$3.87 (s, 3H)^a$	1760m, 1740vs
p-ClC ₆ H ₄	CO ₂ Me	60	154	7.38 (m, 8H)	3435s, 1791vs
				7.19 (s, 1H)	1758m, 1735vs
				3.81 (s, 3H)	
p-MeC ₆ H ₄	CO_2Me	60	181	7.57(s, 1H)	3430s, 1790s
				7.25 (m, 8H)	1758m, 1732vs
				3.79(s, 3H)	
				2.35(s, 3H)	
Ph	CO ₂ Me	41	213	7.40 (m, 10H)	3435s, 1795s
				$3,86 (s, 3H)^a$	1757m, 1732vs
p -ClC $_6$ H $_4$	COPh	59	144	8.35 (s, 1H)	3440s, 1787s
				7.35 (m, 13H)	1735vs, 1710m
Ph	COPh	35	238	7.40 (m, 15H)a	3440s, 1790s
					1732vs, 1710m

^a ¹H N.m.r. in CDCl₃-CF₃CO₂H.

Ar
$$CH$$
 CH
 C

Scheme 1

N-Amino maleimides (3) are readily obtained according to the reaction of Scheme 1. The α -halohydrazides (1) were reacted with three equivalents of 2-aminopyridine in boiling acetonitrile for 4 h. After cooling, the solvent was partially removed under reduced pressure, diluted, acidified, and extracted with dichloromethane (Table 1).

Structural assignments of compounds (3) were based on ¹H and ¹³C n.m.r. and i.r. spectra (Table 1) as well as on satisfactory high resolution mass spectra and elementary analysis.

As N-aminomaleimides are readily hydrolysed (1 M NaOH, 1 h) the reaction also opens a new route to substituted maleic anhydrides (4).8,9

Received, 27th June 1988; Com. 8/025331

References

- 1 P. Legrel, M. Baudy-Floc'h, and A. Robert, Synthesis, 1987, 306.
- 2 P. Legrel, M. Baudy-Floc'h, and A. Robert, Tetrahedron, 1988, 44, 4805.
- 3 K. Mori, Yakugaku Zasshi, 1962, 82, 1161.
- 4 A. Manfred and P. Reinemann, Z. Chem., 1973, 13, 214.
- 5 S. Baloniak and A. Mroczkriewicz, Rocz. Chem., 1974, 48, 399.
- 6 S. Baloniak, U. Thiel, and M. Pacholczyk, Acta Pol. Pharm., 1976, 33, 73.
- H. F. Kung, S. Cederbaum, L. Tsai, and T. C. Stadtman, *Proc. Natl. Acad. Sci. U.S.A.*, 1970, 65, 978.
- 8 M. S. Newman and W. M. Stalick, J. Org. Chem., 1973, 38, 3386.
- E. K. Fields, M. L. Winzenburg, and S. J. Behrend (Amoco Corp.)
 U.S. Patent US 4 596 867, 24 June 1986, Appl. 630 361, 12 July 1984; Chem. Abstr., 1986, 105, 173 209.