Selective Hydrosilylation of 1-Alkynes Using Iridium Catalyst with Biphosphinine Ligand

Yoshihiro Miyake, Eigo Isomura, and Masahiko Iyoda*

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397

(Received April 28, 2006; CL-060506; E-mail: iyoda-masahiko@c.metro-u.ac.jp)

The iridium-catalyzed hydrosilylation of alkynes in the presence of 4,4',5,5'-tetramethylbiphosphinine (tmbp) has been explored. The hydrosilylation of alkynes in the presence of tmbp proceeds effectively to give β -(*E*)-vinylsilanes highly selectively in moderate to high yields, whereas a similar hydrosilylation in the absence of tmbp produces β -(*Z*)-vinylsilanes selectively. The stereoselectivity of these reactions suggests the importance of the electron-withdrawing properties of tmbp coordinated to iridium.

The hydrosilylation of alkynes with transition-metal catalysts is a simple and valuable method for the synthesis of alkenyl silanes, which are widely used for organic synthesis.¹ Thus, regio- and stereoselective reactions are indispensable for the synthetic use of alkenyl silanes. For the hydrosilylation of the terminal alkyne **1** with the silane **2**, three possible alkenylsilanes can be obtained, i.e., the β -(*E*)-adduct **4** (syn-addition), the β -(*Z*)-adduct **5** (anti-addition), and the α -adduct **6** (Scheme 1). As has been reported,² the anti-addition product **5** is formed by the insertion of the alkyne into an M–Si bond, followed by the isomerization of a vinyl complex^{2a} to give **5** via a less sterically hindered intermediate. In addition to the steric effect, electron density at metal centers strongly affects the regioselectivity of the hydrosilylation of alkynes.^{2b,3,4}

Ligands containing sp²-hybridized phosphorus atom have a strong π -acceptor property because of their remarkable tendency to engage in metal-to-phosphorus π back donation, comparable to that of the carbonyl ligand.⁵ Thus, these compounds are expected to decrease the electron density at metal centers. Recently, the characteristic catalytic activities of transition-metal complexes with diphosphinidene–cyclobutene ligands have been reported.⁶ Although phosphinines, which are phosphorus analogues of pyridines, function as π -acceptor ligands, catalytic transformations using transition-metal complexes bearing phoshinine ligands have been limited until now.^{5a,5e,7} We report herein the iridium-catalyzed hydrosilylation of **1** with a high stereoserectivity using 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp, **3**).^{8,9}

First, the hydrosilylation of 1-octyne (1a) was attempted and

Scheme 1. Iridium-catalyzed hydrosilylation.

typical results are shown in Table 1. After some preliminary experiments, we found that $[Ir(COD)_2][BF_4]$ and $[Ir(\eta^5-C_9H_7)]$ (COD)] (η^5 -C₉H₇ = η^5 -indenyl) are ideal catalysts for the hydrosilylation of alkynes. Thus, the treatment of 1 equiv. of 1a with 0.5 equiv. of PhMe₂SiH (7) in THF at 40 °C for 24 h in the presence of [Ir(COD)₂][BF₄] (0.005 equiv.) produced corresponding vinylsilanes (4a, 5a, and 6a) in 94% total yield with β -(Z)-5a as the major product (Table 1, Entry 1). However, 3 retarded the iridium-catalyzed hydrosilylation of 1a, and the reaction of 1a with 7 under similar conditions led to the recovery of 1a (95%) (Entry 2). In contrast, the hydrosilylation of 1a with 7 in the presence of $[Ir(n^5-C_0H_7)(COD)]$ gave different results. Although the reaction of **1a** with **7** in the presence of $[Ir(\eta^5 C_9H_7$ (COD)] (0.005 equiv.) in toluene at 80 °C for 24 h formed the vinyl silanes 4a-6a in 34% total yield with Z-selectivity (Entry 3), a similar reaction in the presence of 0.006 equiv. of tmbp 3 produced the vinyl silanes in 96% total yield with 4a as the major product (Entry 4). The reactions of 1a with 7 (1-2 equiv.) in the presence of $[Ir(\eta^5-C_9H_7)(COD)]$ (0.005) equiv.) and 3 (0.006 equiv.) also produced the vinyl silanes in 96-97% with a high selectivity of 4a (89-93%) (Entries 5 and 6). The results in Table 1 show that the combination of $[Ir(\eta^5 C_9H_7$ (COD)] with **3** in toluene at 80 °C produces vinylsilanes in high yield with high E-selectivity, whereas the iridiumcatalyzed hydrosilylation of 1a with 7 in the absence of 3 forms vinylsilanes in moderate to high yield with Z-selectivity.

On the basis of the optimized conditions (Table 1, Entry 5), the hydrosilylation of various alkynes was examined (Table 2).¹⁰ Similarly to that of **1a**, the reaction of phenylacetylene (**1b**) and its derivatives **1c** and **1d** with **7** in the presence of $[Ir(\eta^5 -$

Table 1. Iridium-catalyzed hydrosilylation of 1-octyne^a

			[lr] cat.	_	β -(E) β -(Z) α			
<i>n</i> -0 ₆ i	1a 7	e ₂ 3in — 7	(tmbp 3)		4a +	5a	+ 6a	
Entry	Ir catalyst	Solvent	Temp. /°C	Sila	ane rati	Yield ^c		
				4a	5a	6a	/%	
1 ^d	[Ir(COD) ₂][BF ₄]	CH ₂ Cl ₂	40	1	98	1	94	
2	[Ir(COD) ₂][BF ₄]-3	CH_2CI_2	40	_		_	0	
3 ^d	$Ir(\eta^5-Ind)(COD)$	Toluene	80	21	67	12	34	
4	$\text{Ir}(\eta^5\text{-Ind})(\text{COD})\text{-}\boldsymbol{3}$	Toluene	80	94	4	2	96	
5 ^e	$\text{Ir}(\eta^5\text{-Ind})(\text{COD})\text{-}\boldsymbol{3}$	Toluene	80	93	4	3	96	
6 ^f	$\text{Ir}(\eta^5\text{-Ind})(\text{COD})\text{-}\textbf{3}$	Toluene	80	89	7	4	97	

^aReaction conditions: **1a** (1.0 mmol), **7** (0.5 mmol), and Ir complex (0.005 mmol) in the presence or absence of **3** (0.006 mmol) for 24 h. ^bRatio was determined on the basis of ¹H NMR data. ^cGLC yield based on **7**. ^dWithout **3**. ^e**7** (1.0 mmol) was used. ^f**7** (2.0 mmol) was used.

Table 2. Iridium-catalyzed hydrosilylation of 1-alkynes

в 🚍	H + PhMe-SiH	Ir(η ⁵ -C ₉ H ₇)(COD) / 3 (0.5 mol %) (0.6 mol %)							
1	7	Toluene, 80 °C							
(1 mmol) (1 mmol)			H H				SiMe ₂ Ph		
	R	\triangleleft	SIMe ₂ PI	ⁿ + R	► ^H	+ F	ł → H		
		Ĥ		SiMe ₂ Ph			Ĥ		
		4 (β-E)			5 (β-Ζ	6 (α)			
Entry	Alkyne	Timo/h		Ratio/%			Vield ^a /%		
Enuy			nne/n	4	5	6	field / %		
	x-⁄/>==	46			10	0	00		
I	(X = H)	D	14	84	16	0	88		
2	X = CI	1c	24	85	13	2	84		
3	X = OMe	1d	20	91	7	2	86		
4	t-Bu-===	1e	20	100	0	0	59		
5	TMS-=	1f	17	100	0	0	59		
6	ОН	1g	33	93	1	6	44		
7	<i>П</i>	1h	60	97	0	3	91		
8	<i>∕</i> ∩⊢	1i	32	95	1	4	92		
9		1j	129	83	17	0	67		

Scheme 2. Possible intermediates 8–10 for the hydrosilylation of 1 to yield β -(*Z*)-5.

elimination. Therefore, the reductive elimination of $\mathbf{8}$ is expected to proceed smoothly to give $\mathbf{4}$ faster than the isomerization of $\mathbf{8}$ to $\mathbf{9}$.

This work was supported by a Grant-in-Aid for Scientific Research from JSPS. We are grateful to Ms. Sayaka Watanabe and Mr. Takeshi Narita for experimental assistance.

References and Notes

- a) I. Ojima, in *The Chemistry of Organic Silicon Compounds*, ed. by S. Patai, Z. Rappoport, Wiley, New York, **1989**, p. 1479.
 b) T. Hiyama, T. Kusumoto, in *Comprehensive Organic Synthesis*, ed. by B. M. Trost, I. Fleming, Pergamon Press, Oxford, **1991**, Vol. 8, p. 763. c) B. Marciniec, in *Comprehensive Handbook on Hydrosilylation*, Pergamon Press, Oxford, **1992**, p. 130. d) J. A. Reiche, D. H. Bery, *Adv. Organomet. Chem.* **1998**, *43*, 197. e) B. M. Trost, Z. T. Ball, *Synthesis* **2005**, 853.
- a) R. S. Tanke, R. H. Crabtree, J. Am. Chem. Soc. 1990, 112, 7984. b) I. Ojima, N. Clos, R. J. Donovan, P. Ingallina, Organometallics 1990, 9, 3127.
- 3 For recent examples, see: a) A. Mori, E. Takahisa, Y. Yamamura, T. Kato, A. P. Mudalige, H. Kajiro, K. Hirabayashi, Y. Nishihara, T. Hiyama, *Organometallics* 2004, 23, 1755. b) J. W. Faller, D. G. Alliessi, *Organometallics* 2002, 21, 1743, and references cited therein.
- 4 R. Takeuchi, S. Nitta, D. Watanabe, J. Org. Chem. 1995, 60, 3045.
- 5 For reviews, see: a) M. Doux, A. Moores, N. Mézailles, L. Ricard, Y. Jean, P. Le. Floch, J. Organomet. Chem. 2005, 690, 2407. b) P. Le Floch, F. Mathey, Coord. Chem. Rev. 1998, 178–180, 771. c) F. Mathey, Acc. Chem. Res. 1992, 112, 4686. d) M. Yoshifuji, J. Chem. Soc., Dalton Trans. 1998, 3343. e) L. Weber, Angew. Chem., Int. Ed. 2002, 41, 563.
- 6 For representative examples, see: a) T. Minami, H. Okamoto, S. Ikeda, T. Tanaka, F. Ozawa, M. Yoshifuji, *Angew. Chem., Int. Ed.* 2001, 40, 4501. b) F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, M. Yoshifuji, *J. Am. Chem. Soc.* 2002, 124, 10968.
- 7 a) B. Breit, R. Winde, T. Mackewitz, R. Paciello, K. Harms, *Chem. Eur. J.* **2001**, *7*, 3106. b) M. T. Reetz, X. Li, *Angew. Chem., Int. Ed.* **2005**, *44*, 2962.
- 8 P. Rosa, N. Mézailles, F. Mathey, P. Le Floch, J. Org. Chem. 1998, 63, 4826.
- 9 For the preparation of tmbp (**3**), see the Supporting Information.
- 10 For the general procedure of the hydrosilylation shown in Table 2, see the Supporting Information.
- 11 For the hydrosilylation of deuteriophenylacetylene (**1b**- d_1), see the Supporting Information.

^aIsolated yield based on 1-alkyne 1.

C₉H₇)(COD)] (0.5 mol %) and **3** (0.6 mol %) at 80 °C for 14– 24 h produced vinylsilanes in 84–88% yields with *E*-selectivity (84–91%) (Table 2, Entries 1–3). The bulky acetylenes **1e** and **1f** underwent a similar reaction to give the corresponding *E*-adducts **4e** and **4f** in moderate yields (Entries 4 and 5). The reactions of the alkynyl alcohols **1g–1i** with **7** at 80 °C for 32–60 h also produced *E*-adducts **4g–4i** with high selectivity, although **1g** was obtained in low yield presumably owing to the interaction of the iridium catalyst with hydroxy group of **1g**. The enyne **1j** selectively reacted with its acetylenic bond to produce **4j** and **5j** with *E*-selectivity. In spite of the vinylsilane formation from terminal acetylenes, internal acetylenes such as diphenyl acetylenes, 1-phenyl-1-propyne, and 4-octyne were unreactive under these conditions.

To obtain information on the mechanism of the iridiumcatalyzed hydrosilylation of alkynes in the presence of **3**, the reaction of 2-deuteriophenylacetylene (PhCCD, **1b**- d_1) with **7** was carried out under the same conditions shown in Table 2 (Supporting Information).¹¹ The reaction produced **4d**- d_1 and **5d**- d_1 (88:12) in 84% total yield, and deuterium remained only at the β -position of the phenyl group. The deuterium content of **1b**- d_1 was maintained in **4d**- d_1 and **5d**- d_1 . Therefore, such hydrosilylation proceeded without a shift of deuterium in its transition state or intermediate formation.

In the hydrosilylation of terminal acetylenes, the first step is the oxidative addition of $[Ir(\eta^5-C_9H_7)(COD)]$ to 2, yielding η^3 indenyl iridium(III) species. The insertion of 1 into an Ir–Si bond produces the vinyl iridium species 8 (Scheme 2). Since 8 is thermodynamically unstable in the absence of 3, the isomerization of 8 via 9 forms the less hindered intermediate 10, and the reductive elimination of 10 produces the Z-adduct 5. However, 3 has a strong π -acceptor property and can accelerate such reductive