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S-donor ligands such as SMe™. Addition of Mel to 1-Fe, produced
extremely air sensitive, paramagnetic solutions, in contrast to the
monomeric 1-Ni complex, which yielded stable S-alkylated 2-Ni.!
The extent and sites of alkylation, iron, thiolate sulfur, or bridging
sulfur, are under investigation.* In the presence of SPh~, Mel
cleaves the 1-Ni,Fe, dimer resulting in 2-Ni and thiolato iron
complexes, while Mel alone does not add to the complex. We
are pursuing as well the intriguing possibility for heterobimetallic
interactions, Fe«L+Ni, with small molecule donors and 1-Ni,Fe,.
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Interest in the synthesis and chemistry of the cyclopropane
subunit may be attributed to a number of factors including its
occurrence in natural products,’ its biological significance,? its
ability to function as a probe of reaction mechanisms,® and its
utility as an intermediate in the preparation of complex molecules
via vinylcyclopropane and homo-Cope rearrangements.* Given
its important position, it is surprising that few general methods
have been developed for preparing optically active cyclopropanes.’
Although the metal-catalyzed decomposition of diazo carbonyl
compounds in the presence of alkenes to give cyclopropanes is
well-known in carbenoid chemistry,’ few chiral catalysts have been
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designed that achieve high levels of enantioselectivity in these
transformations.”!* Of those, only the chiral salicylaldimine
copper(I1) catalysts described by Aratani’ and the chiral (sem-
icorrinato)copper(Il) catalysts designed by Pfaltz® or their bis-
oxazoline analogues reported by Masamune,® appear to be capable
of attaining high enantiomeric excesses in intermolecular cyclo-
propanations. In the course of several ongoing synthetic inves-
tigations, we required efficient access to optically pure, trisub-
stituted cyclopropanes. In order to address this need, we discovered
a new class of catalysts for effecting enantioselective carbenoid
transformations'® whose suitability in intramolecular cyclo-
propanations of allylic diazoacetates is extraordinary.

The common strategic element found in approaches to designing
catalysts for inducing enantioselective carbenoid transformations
has consisted of attaching chiral ligands to a central metal atom.”"?
To this end, we screened a series of dirhodium(II) amide complexes
that were synthesized by ligand substitution.'”  Thus, di-
rhodium(II) tetrakis[methyl 2-pyrrolidone-5(S)-carboxylate]
[Rhy(55-MEPY), (1)] and dirhodium(Il) tetrakis[methyl 2-
pyrrolidone-5(R)-carboxylate] [Rhy,(5R-MEPY), (2)] were
conveniently prepared by ligand exchange with rhodium(lI)
acetate and the corresponding (5S)- or 5(R)-methyl pyro-
glutamate.'®  Like rhodium(II) acetamide'” and rhodium(IT)
trifluoroacetamide,'® these compounds possess four bridging amide
ligands that are positioned so that each rhodium is sterically and
electronically equivalent, and the two nitrogen donor atoms on
each rhodium are in a cis arrangement.?°
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Table I. Enantioselectivity of Rhy(5S-MEPY),-Catalyzed Intramolecular Cyclopropanation Reactions

3, synthetic temp, yield,®

entry method® °C R! R? % ee, %
a A 25 H H 74 88¢
b B 25 CH, CH, 82 924
[ A 40 H CeH; 45 2948/
d B 25 C¢H, H 59 658
c A 40 H CH,CH, 88 294¢/
f B 25 CH,CH,CH, H 74 75
g A 40 H C(HsCH, 80 294¢/
h A 40 H c-C¢H,,CH, 45 68¢
i A 40 H (CH,),CHCH, 29 72
j A 40 H (n-Bu),;Sn 78 >94¢/

¢ Prepared from the corresponding allylic alcohols either by reaction with glyoxylic acid chloride (p-tolylsulfonyl)hydrazone (method A?') or by
sequential dikctenc condensation, diazo transfer, and deacylation (method B'7). Isolated yield of purified (295% homogeneous) product. [a]p =
+60.2° (c = 1.01, CHCl,) relative to enantiomerically pure 4a, [a]p = +68.7° (¢ = 4.6, CHCI;).22 9[a]p, = +83.0° (¢ = 1.96 CHCI,) relative to
enantiomerically pure 4b, [a]p = +89.9° (¢ = 1.4, CHCl;).2® ¢Determined according to the method of Jones;** control experiments were executed
with racemic mixtures of lactones. /The limit of accuracy of this NMR method based upon known mixtures of enantiomers was established to be
£1%. The limit of detection is generally accepted to be £3%; therefore, % ee is denoted as 294% when only one enantiomer was detected.?*
#Determined by GLC separation of diastereomeric /-menthyl esters on a methylsilicone capillary column; a control experiment using racemic 4d
verified the absence of kinetic diastereoselection in ester formation. *Determined by GLC separation of diastereomeric (S)-(-)-1-phenylbut-1-yl
esters on a Carbowax capillary column; a control experiment using racemic 4f verified the absence of kinetic diastereoselection in ester formation.

The remarkable utility of these catalysts for effecting enan-
tioselective intramolecular cyclopropanations was demonstrated
in preliminary experiments with a series of allylic diazoacetates
3a-j (Table I). Thus, slow addition (12-14 h) of 3a—j to a solution
of Rh,(5S-MEPY), catalyst (1.0 mol %) in anhydrous CH,Cl,
delivered the corresponding 3-oxabicyclo[3.1.0]hexan-2-ones 4a—j
with very good to excellent enantioselectivities (65 to 294%). The
absolute configuration of the lactones 4a—j was assigned on the
basis of comparison of the signs of rotation of the known cyclo-
propy! lactones 4a and 4b. Moreover, the structure of the (-)-
menthyl ester of a derivative of lactone 4¢ was established by
single-crystal X-ray analysis.?* The major competing reaction
that accounted for the lower yields was the formation of carbene
dimers. Examination of entries c—f reveals that intramolecular
cyclopropanations of Z olefins proceeded with greater levels of
enantioselectivity than the corresponding reactions of £ isomers.
The generality of this novel method for asymmetric synthesis of
cyclopropanes was further enhanced by the fact that the readily
available, enantiomeric Rhy,(SR-MEPY), catalyst 2 induced the
intramolecular carbene additions of 3¢,e,g-i to give the enantiomers
of d4c,e,g~i with virtually identical efficiencies.

[o] o H
)f\ozum Rhy(55-MEPY), [\):@(m
—————- by
-
N N, CH,Cl, g
3a-j 4a-j

In an attempt to increase the enantioselectivity of these pro-
cesses, we replaced the methyl esters of 1 with isopropyl esters.
However, no improvement for the cyclization of 3b to give 4b (89%
ee, 83% yield) was observed when this catalyst was used. In
preliminary experiments, we have also evaluated other chiral
rhodium(IT) catalysts having oxazolidinone ligands,?¢ but these
were found to be inferior to 1 and 2.

Thus, rhodium(II) catalysts 1 and 2 offer unique advantages
for enantioselective intramolecular cyclopropanations, since both
enantiomers of a cyclopropyl lactone may be efficiently prepared
with high enantioselectivity from a single allylic diazo ester.
Studies are in progress to determine the scope and limitations of
these catalysts to effect enantioselective cyclizations of other
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unsaturated systems as well as catalysis in other carbenoid
transformations.

Acknowledgment. Financial support for this investigation from
the National Science Foundation and the National Institutes of
Health (GM-42160) to M.P.D. and the National Institutes of
Health, the Robert A. Welch Foundation, and Abbott Labora-
tories to S.F.M. is gratefully acknowledged. We thank the Johnson
Matthey Company for their loan of rhodium(III) chloride.

Synthesis and Structural Characterization of
Eight-Coordinate Geometrical Isomers of
(ReH,(mhp),(PPh;),]PFs That Retain Their Structural
Identity in Solution

Malee Leeaphon, Phillip E. Fanwick, and
Richard A. Walton*

Department of Chemistry, Purdue University
West Lafayette, Indiana 47907

Received October 25, 1990

While the stabilization of geometric isomers of eight-coordinate
complexes has been known to be possible in the solid state, the
only examples of structurally characterized isomeric pairs are the
lanthanide complexes cis- and trans-SmI,[O(CH,CH,0Me),],,
and the two dodecahedral isomeric forms of V(S,CCH,;), that
are present in single crystals of this complex.? In neither system
is there evidence that the isomers retain a separate and distinct
identity in solution.’ Indeed, the preparation and characterization
of such isomers in solution has generally been considered to be
“difficult, if not impossible”.* However, it has been recognized
through the elegant studies of Archer and Donahue® on tung-
sten(1V) complexes with four bidentate or two tetradentate donors
that, in some instances, eight-coordinate geometrical isomers can
be separated and that such stereoisomers can be stereochemically
rigid. Unfortunately, in none of these cases was it possible to assign
a specific structure to any isomer although dodecahedral geom-
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