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Oxidative coupling of alkynes mediated by nitroxyl radicals under
Sonogashira conditions and Pd-free catalytic approach to
stable radicals of 3-imidazoline family with triple bonds
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Abstract—In the presence of Pd catalyst, 3-imidazoline nitroxyl radicals promote oxidative coupling (dimerization) of terminal alky-
nes even in the absence of Cu(II) additives. On the other hand, the Pd-free CuI–PPh3–K2CO3–DMF catalytic system leads to the
efficient cross-coupling of 1-hydroxy-4-[2-(p-iodophenyl)vinyl]-2,2,5,5-tetramethyl-3-imidazoline-3-oxide with terminal aryl- and
hetarylacetylenes with the formation of 4-[2-(aryl/hetarylethynyl)phenyl)vinyl]-2,2,5,5-tetramethyl-3-imidazoline-3-oxide-1-oxyls
in 70–75% yields.
� 2007 Elsevier Ltd. All rights reserved.
High stability of 3-imidazoline nitroxyl radicals and sen-
sitivity of their EPR spectra to the environment account
for rapidly emerging applications of these molecules in
analytical chemistry, molecular biology, and biophys-
ics.1,2 In particular, 3-imidazolyl nitroxyls are instru-
mental for studies of exchange interaction in three-spin
systems (cation-radical/anion-radical/stable radical)3

because of the substantial decrease in the interaction
between the nitroxyl radical center and the newly
formed ion-radical in the aromatic part of these mole-
cules. This decrease improves the detection of recombi-
nation of spin-correlated pairs by shifting the timescale
for this effect to a convenient 10–100 ns range.

The alkyne moiety is a particularly suitable rigid struc-
tural scaffold for the assembly of paramagnetic mole-
cules with designed magnetic, electronic, and geometric
parameters. The triple bond is not only capable of trans-
mitting electronic interactions but also assures rigid and
controlled spatial arrangement of the spin-bearing moi-
eties necessary for fundamental studies of intricate
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chemical phenomena and for the construction of mole-
cular devices for practical applications.

Despite the large body of work dedicated to the chemis-
try of 3-imidazoline radicals including several mono-
graphs,1,2 information about paramagnetic acetylenic
derivatives of 3-imidazoline nitroxyls was absent until
recently when we discovered that this previously
unknown class of compounds can be prepared through
the acetylide synthesis.4

However, the requirement of potentially explosive cop-
per acetylides not only remains a significant safety draw-
back but it also presents a potential limitation because
not every terminal alkyne is capable of forming the
copper salt (e.g., 3-(N-morpholino)propyn-1-yne or 2-
methyl-3-butyn-2-ol).

These circumstances motivated us to continue our
search of a more general, practical, and catalytic
approach to acetylenic 3-imidazoline nitroxyl radicals.
Even though originally we envisioned this approach to
be based on the catalytic version of cross-coupling, only
traces of the cross-coupling product were found in the
Pd-catalyzed reaction of 4-[2-(p-bromophenyl)vinyl]-
2,2,5,5-tetramethyl-3-imidazoline-3-oxide-1-oxyl 1 with
phenyl acetylene under the classic Sonogashira condi-
tions.5 Instead, the reaction affords 90% of diphenyl-
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buta-1,3-dyne 4, the product of oxidative alkyne homo-
coupling along with 50% of diamagnetic hydroxylamine
3.

Although the focus of this work is on the development
of an efficient catalytic cross-coupling process, it is
worth pointing out that 1,3-dynes find a number of
interesting applications6 and it has been suggested7 that
Pd-catalyzed processes provide a more ‘mild, efficient
and selective’ approach to such oxidative homocoupling
products relative to the traditional Eglington, Hay and
Glaser couplings.8

However, in most of such processes oxidative homo-
coupling of terminal alkynes in the presence of
Pd(PPh3)2Cl2 only proceeds in the presence of a suitable
external oxidant such as chloroacetone,9a p-chloranil,9b

bromoacetate,9c I2,9d trimethyl amine oxide9e or air.7,9f

All of these scenarios are different from the present case
where no external oxidant was present. To the best of
our knowledge, our work presents a first report of oxida-
tive cross-coupling caused by the substrate itself in the
absence of an external oxidant. Interestingly, recently
reported Pd-catalyzed reactions in the presence of more
delocalized and less oxidizing1 2-imidazoline nitronyl
moiety as part of ether alkyne or aryl halide components
proceed through a normal cross-coupling pathway.10

Although the role of an oxidant is believed to be in the
transformation of Pd(0) to Pd(II) species, several mech-
anistic scenarios are consistent with the zero-order
dependence of reaction rate on alkyne concentration ob-
served by Fairlamb, Marder, and co-workers.7

Although this dependence suggests that reoxidation of
Pd(0) to Pd(II) may be a slow, rate-limiting step, this
reoxidation can either proceed directly through the
interaction of Pd(0) with the oxidant or be mediated
by a copper species through a redox sequence, which
is reminiscent of that in the Wacker process for the aer-
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In order to test the ability of nitroxyl radicals to pro-
mote oxidative coupling of alkynes and investigated
the possible involvement of Cu species, we studied reac-
tivity of phenyl acetylene under copper-free conditions
using two Pd-based catalytic systems under inert atmos-
phere. In order to simplify the interpretation of these
results, we used starting materials without bromine sub-
stitution in the aromatic moiety. These substrates were
chosen to decrease the number of possible products
and identify functional groups responsible for the for-
mation of hydroxylamines and dehydrodimer 4.

Interestingly, we found that homocoupling is efficient
even in the absence of Cu salts.11 However, the presence
of Pd is essential. No changes occurred when nitroxides
5 and 7 were stirred with phenyl acetylene and Et3N
in refluxing benzene under an inert atmosphere for 2–
5 h in the absence of Pd(PPh3)2Cl2. However, once
Pd(PPh3)2Cl2 was added to the reaction mixture,
products 6 and 8 (28–94%) along with dehydrodimer 4
(66–90%) were formed after 5–7 h. Formation of dia-
magnetic hydroxylamine proceeded more efficiently
from the more electron deficient nitro-substituted sub-
strate 7.

Although the mechanism of dimerization is still unclear,
direct H-atom abstraction of alkyne C–H bond with the
nitroxyl radical followed by dimerization of the concom-
itantly formed phenylethynyl radical is unlikely because
of the high bond dissociation energy of sp-hybridized C–
H bonds. The role of Pd salt may be in the formation of
a p-complex12 where the C–H bond is weakened.
Ph Ph
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Since Cu-free Pd catalysis led to the oxidative homocou-
pling, we investigated the viability of Pd-free Cu-cata-
lyzed version of cross-coupling13 in the next step. We
also utilized the ca. 800-fold greater reactivity of aryl iod-
ides relative to the respective bromides in cross-couplings
with alkynes.14,15 Gratifyingly, we found that the target
acetylenic nitroxyl radicals 11a–c are indeed formed in
70–75% yields in the reactions of hydroxylamine 9 with
terminal aryl- and hetarylacetylenes 10a–c mediated by
the catalytic system CuI–PPh3–K2CO3–DMF.16,17
N

N

OH

O

I

H R
K2CO3, CuI

+

10 a-c
Ar N

N

O

O

R

9 11 a-c

N

H2N

CH3
O

CH3

R:
ba c
It is noteworthy that, under these conditions, the dia-
magnetic iodide can be used as a starting material, thus
eliminating the need for the additional step of prepara-
tion of the spin-labeled product. Although the mecha-
nism for the transformation of diamagnetic compound
to the paramagnetic product is so far unknown, it has
been observed that the diamagnetic derivatives are
slowly oxidized to their respective radicals even in the
solid state when stored at room temperature.

In summary, we developed a catalytic Pd-free synthetic
approach to the family of nitroxyls with 3-imidazoline
core and alkyne substituents including aryl and hetaryl
moieties as well as functional groups of both donor
and acceptor character. This approach is likely to be
useful when classic Sonogashira-type cross-coupling
fails due to reoxidation of the catalytic Pd(0) species
by the substrate.
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