DOI: 10.1002/ejic.200501018

Hypercoordinated Organotin(IV) Halides Containing 2-(Me₂NCH₂)C₆H₄ Groups: $\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$ (X = F, Cl, Br, I) and $\{2-(Me_2NCH_2)-C_6H_4\}R_2SnX$ (R = Me, Ph; X = F, Cl, Br, I) and Their Solution Behaviour and Solid-State, Hydrogen-Bonding-Based Supramolecular Architecture

Richard A. Varga,^[a] Adina Rotar,^[a] Markus Schürmann,^[b] Klaus Jurkschat,^[b] and Cristian Silvestru^{*[a]}

Keywords: Halides / Hydrogen bonding / Hypercoordination / Supramolecular chemistry / Tin

The hypercoordinated di- and triorganotin(IV) chlorides [$\{2-(Me_2NCH_2)C_6H_4\}_2SnCl_2$] (1a) and [$\{2-(Me_2NCH_2)C_6H_4\}_R_2SnCl_2$] (R = Me (2a), Ph (3a)] were prepared by treating SnCl₄ or R₂SnCl₂ with [Li{ $2-(Me_2NCH_2)C_6H_4$ }]. Halide-exchange reactions between the organotin(IV) chlorides and the appropriate potassium halides gave [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] [X = F (1b), I (1d)], [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] [X = F (1b), I (1d)], [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] [X = F (2b), Br (2c), I (2d)] and [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] [X = F (3b), I (3d)]. Their solution behaviour was investigated by multinuclear (¹H, ¹³C, ¹⁹F and ¹¹⁹Sn)

Introduction

Several organotin(IV) halides containing the [2- $(Me_2NCH_2)C_6H_4$ group or related organic ligands have been investigated so far both in solution and the solid state. Single crystal X-ray diffraction studies have revealed, in all cases, hypercoordinated structures obtained as a result of strong intramolecular N→Sn interactions.^[1-27] On the basis of NMR spectroscopic data, octahedrally and trigonal bipyramidally configured tin atoms were suggested in solution for the intramolecularly coordinated diorganotin dihalides [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] and triorganotin halides [$\{2-(Me_2NCH_2)C_6H_4\}R_2SnX$] (X = halogen), respectively. Single-crystal X-ray diffraction studies have confirmed the hypercoordinated nature of $[{2-(Me_2NCH_2)C_6H_4} Me_2SnCl$] (2a)^[17] and [{2-(Me_2NCH_2)C_6H_4}Ph_2SnX] [X = Cl (3a'),^[20] Br (3c)^[3], but no crystallographic data are

Fax: +49-231-755-5048

E-mail: klaus.jurkschat@uni-dortmund.de

Supporting information for this article is available on the WWW under http://www.eurjic.org or from the author.

NMR spectroscopy, including variable-temperature studies. Single-crystal X-ray diffraction analyses revealed that the strong intramolecular coordination of the nitrogen atom from the pendant CH₂NMe₂ group to tin induces chirality. The influence of the identity and the number of the halogen atoms and the organic substituents at tin is discussed in relation with the hydrogen-bonding network, which results in different supramolecular architectures in the crystal. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

available for the diorganotin(IV) derivatives [{2-(Me₂- NCH_2)C₆H₄}₂SnX₂], and no studies on the influence of the identity and number of halogen atoms and organic substituents on the association through hydrogen bonds in the solid state have been reported. On the other hand, it has been shown previously that intramolecular coordination of the nitrogen atom to a metal atom in compounds containing a [2-(Me₂NCH₂)C₆H₄]M moiety induces chirality at the metal centre,^[27–31] and therefore the crystals usually contain 1:1 mixtures of (R) and (S) isomers [with the C(1)-C(6)aromatic ring and the N(1) atom as chiral plane and pilot atom, respectively].^[32] While this work was in progress the molecular structures of the fluorides [{2-(Me₂NCH₂)- C_6H_4 R₂SnF] [R = Me (2b'), Ph (3b')], which crystallise in different space groups,^[26] were reported, but no details concerning the planar chirality induced by the intramolecular N→Sn interaction and the hydrogen-bond network in the crystal were mentioned.

Here we report the synthesis and spectroscopic characterisation of some organotin(IV) halides, as well as the crystal and molecular structures of [$\{2-(Me_2NCH_2)-C_6H_4\}_2SnX_2$] [X = Cl (1a), F (1b), I (1d)], [$\{2-(Me_2NCH_2)-C_6H_4\}Me_2SnX$] [X = Cl (2a), F (2b), Br (2c), I (2d)] and [$\{2-(Me_2NCH_2)C_6H_4\}Ph_2SnX$] [X = F (3b), I (3d)]. The discussion of the solid-state structure is focused on the hydrogen-bonding-based network between the isomers, which results in different supramolecular architectures in the crystal.

 [[]a] Facultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai,
 Str. Arany Janos Nr. 11, 400028 Cluj-Napoca, Romania,

Fax: +40-264-590-818 E-mail: cristi@chem.ubbcluj.ro

 [[]b] Lehrstuhl für Anorganische Chemie II der Universität Dortmund, 44227 Dortmund, Germany,

Results and Discussion

The diorganotin(IV) dihalides were prepared according to Scheme 1. The ligand-redistribution reaction between [$\{2-(Me_2NCH_2)C_6H_4\}_4Sn$] and SnCl₄ in the absence of a solvent has proved to be an excellent alternative to the direct synthesis from [Li $\{2-(Me_2NCH_2)C_6H_4\}$] and SnCl₄ for the preparation of **1a** as it allows a better control of the stoichiometry of the reagents. The halide-exchange reactions between the organotin(IV) chlorides and the appropriate potassium halides (Schemes 1 and 2) were performed according to a modified literature procedure^[33] in a two-layer solvent system (H₂O/MeOH/CH₂Cl₂).

Scheme 1. Synthesis of compounds 1a-1d.

 $\begin{array}{c|c} R_{2}SnCl_{2} + [2-(Me_{2}NCH_{2})C_{6}H_{4}]Li & & \\ \hline -LiCl & & \\ \hline R = Me\ (\textbf{2a}), Ph\ (\textbf{3a}) \\ & & \\ KX & & \\ \hline V \\ & & \\ \hline (2-(Me_{2}NCH_{2})C_{6}H_{4}]R_{2}SnX \\ R = Me;\ X = F\ (\textbf{2b}), Br\ (\textbf{2c}), I\ (\textbf{2d}) \\ R = Ph;\ X = F\ (\textbf{3b}), I\ (\textbf{3d}) \end{array}$

Scheme 2. Synthesis of compounds 2a-2d, 3a, 3b and 3d.

All compounds were isolated as air-stable, colourless, crystalline products. They are soluble in common organic solvents, such as chloroform, methylene dichloride or benzene.

Solution Behaviour

All compounds were investigated by multinuclear (¹H, ¹³C, ¹¹⁹Sn) NMR spectroscopy in solution at room temperature. For the organotin fluorides, the ¹⁹F NMR spectra were also recorded.

The assignments of the ¹H and ¹³C resonances according to the numbering scheme above were based on 2D experiments and tin–carbon coupling constants, and were confirmed for several compounds by simulation of the aromatic region of the ¹H NMR spectra using the gNMR program (see Supporting Information).

The low-temperature ¹H NMR spectra of the diorganotin derivatives [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] [X = Cl (1a), F (1b) and I (1d)] are very similar (see Supporting Information) to that reported for the dibromide analogue 1c,^[6] i.e. an AB system and two singlet resonances in the aliphatic region for the diastereotopic CH₂ protons and the CH₃ groups at nitrogen, respectively. This is consistent with a trans arrangement of the organic ligands and a cis arrangement of the two coordinated nitrogen atoms and halogen atoms in solution,^[6] as subsequently proved by singlecrystal X-ray diffraction for compounds 1a, 1b and 1d (see below). When the temperature is raised, the diorganotin dichloride 1a and the diorganotin diiodide 1d exhibit a similar behaviour to the diorganotin dibromide 1c.^[6,22] The two singlets for the methyl protons of the NMe2 group coalesce at 20 °C for 1a (ΔG^{\ddagger} = 13.8 kca1mol⁻¹) and 0 °C for 1d (ΔG^{\ddagger} = 12.6 kcal mol⁻¹) in CDCl₃. This coalescence indicates that the process involving $N \rightarrow Sn$ dissociation/recoordination, with inversion at a three-coordinate nitrogen atom and rotation of the C_{methylene}-N bond, becomes fast on the NMR timescale. The AB pattern for the methylene protons is retained even at 60 °C, thus indicating configurational stability of the tin atom in the $[{2-(Me_2NCH_2)C_6H_4}_2SnX_2]$ derivatives containing heavier halogens. In contrast, coalescence of both the two resonances of the NMe₂ group $(\Delta G^{\ddagger} = 14.2 \text{ kcalmol}^{-1})$ and the AB pattern of the CH₂ group ($\Delta G^{\ddagger} = 14.3 \text{ kcalmol}^{-1}$) is observed at 10 °C for the diorganotin difluoride 1b in CDCl₃. This suggests that exchange of the chloride by fluoride results in a considerable decrease of the configurational stability of the tin atom in 1b compared to 1a. There is no indication for a *cis-trans* equilibrium in solution such as that observed for $[{Me_2N(CH_2)_3}_2SnF_2]\cdot 2H_2O^{[34]}$

The magnitudes of the ¹¹⁹Sn chemical shifts for the diorganotin halides **1a** (s, $\delta = -260.7$ ppm), **1b** (t, $\delta = -386.7$ ppm) and **1d** ($\delta = -346.9$ ppm) at room temperature are typical for six-coordinate diorganotin(IV) species in solution [cf. [{Me₂N(CH₂)₃}₂SnF₂]·2H₂O^[34] ($\delta = -292.0$ ppm in CD₂Cl₂) and [(8-Me₂NC₁₀H₆)₂SnI₂]^[11] ($\delta = -361.9$ ppm in C₆D₅CD₃)]. The equivalence of the fluoride atoms in **1b** is reflected in a singlet ¹⁹F resonance surrounded by tin satellites ($\delta = -181.5$ ppm, ¹J_{F,Sn} = 2567/2683 Hz) and a triplet ¹¹⁹Sn resonance ($\delta = -386.7$ ppm, ¹J_{F,Sn} = 2663 Hz).

The ¹H and ¹³C NMR spectra for the triorganotin halides [$\{2-(Me_2NCH_2)C_6H_4\}Me_2SnX$] [X = Cl (2a), F (2b), Br (2c), I (2d)] and [$\{2-(Me_2NCH_2)C_6H_4\}Ph_2SnX$] [X = F (3b), I (3d)] are very similar to those of benzyldimethylamine, regardless of the nature of the halogen and the other organic groups attached to tin. Two singlet resonances are observed in the aliphatic region for the methylene and the methyl protons, respectively, which is compatible either with a tetrahedral or with a pentacoordinate structure (assuming a fast conformational change of the five-membered SnC₃N nonplanar chelate ring in solution, which gives averaged ¹H NMR signals). The ¹³C NMR spectrum contains two sing-

100001, $000000000000000000000000000000000000$	Table 1. C	Comparison o	of the solution	NMR spectrosco	pic data for tric	organotin(IV) cor	npounds (δ in ppm	J in Hz. ^[a]
--	------------	--------------	-----------------	----------------	-------------------	-------------------	---------------------------	--------------------------

Compound	¹¹⁹ Sn	¹⁹ F
$[{2-(Me_2NCH_2)C_6H_4}_2SnF_2]$ (1b)	-386.7 (t) ^[b]	-181.5 (s)
	$({}^{1}J_{\text{F.Sn}} = 2663)$	$({}^{1}J_{\text{F.Sn}} = 2567/2683)$
$[{2-(Me_2NCH_2)C_6H_4}_2SnCl_2]$ (1a)	$-260.7 \text{ (s)}^{[b]}$	
[Ph ₂ SnCl ₂] ^[35]	-26.7 (s)	
$[{2-(Me_2NCH_2)C_6H_4}_2SnI_2]$ (1d)	-346.9 (s)	
[Ph ₂ SnI ₂] ^[35]	-241.1 (s)	
$[{2-(Me_2NCH_2)C_6H_4}Me_2SnF]$ (2b) ^[c]	-52.7 (d)	-178.4 (s)
	$({}^{1}J_{\rm FSn} = 2039.3)$	$({}^{1}J_{\rm FSn} = 1944.2/2034.6)$
[Me ₂ PhSnF] ^[33]	-52.3 (t)	-137.4 (s)
	$({}^{1}J_{\rm FSn} = 1340)$	$({}^{1}J_{\text{FSn}} = 1255)$
	-53.0 (t, br) ^[d]	-139.0 (s) ^[d]
	$({}^{1}J_{\rm FSn} = 1334)$	$({}^{1}J_{\rm FSn} = 1260)$
	-49.5 (t) ^[e]	
	$({}^{1}J_{\rm FSn} = 1235)$	
$[{2-(Me_2NCH_2)C_6H_4}Me_2SnCl]$ (2a)	-48.7 (s) ^[b]	
[Me ₂ PhSnCll ^[36]	48.3 (s)	
$[{2-(Me_2NCH_2)C_6H_4}Me_2SnBr] (2c)$	-55.5 (s)	
$[{2-(Me_2NCH_2)C_6H_4}Me_2SnI]$ (2d)	-72.8 (s)	
[Me ₂ PhSnI] ^[37]	-17.9 (s)	
$[{2-(Me_2NCH_2)C_6H_4}Ph_2SnF] (3b)^{[f]}$	-197.6 (d)	-182.4 (s)
	$({}^{1}J_{\rm ESp} = 2157)$	$({}^{1}J_{\text{ESp}} = 2058.3/2154.0)$
[Ph ₃ SnF] ^[38]	-211.9 (t) ^[e]	(1,511
	$({}^{1}J_{\rm ESp} = 1530)$	
$[{2-(Me_2NCH_2)C_6H_4}Ph_2SnCl] (3a)^{[20]}$	-176.9 (s)	
[Ph ₃ SnCl] ^[39]	-44.8 (s)	
$[{2-(Me_2NCH_2)C_6H_4}Ph_2SnI] (3d)$	-199.5 (s)	
$[Ph_3SnI]^{[39]}$	-113.4 (s)	

[a] Spectra recorded in CDCl₃ at room temperature. [b] In CH₂Cl₂/[D₆]acetone. [c] Ref.^[26]: $\delta_{119}_{Sn} = -53.8 \text{ ppm} (^{1}J_{F,Sn} = 2023 \text{ Hz}), \delta_{19}_{F} = -178.8 \text{ ppm}.$ [d] In C₆D₅CD₃. [e] ¹¹⁹Sn MAS NMR spectroscopic data. [f] Ref.^[26]: $\delta_{119}_{Sn} = -198.6 \text{ ppm} (^{1}J_{F,Sn} = 2141 \text{ Hz}), \delta_{19}_{F} = -182.3 \text{ ppm}.$

let signals for the methylene and the methyl carbon atoms, respectively, but the tin satellites are well resolved only for the former; the magnitude of the ${}^{2}J_{C,Sn}$ (ca. 28–30 Hz) couplings is consistent with the presence of an intramolecular N \rightarrow Sn coordination, i.e. a trigonal bipyramidal (*C*,*N*)-C₂SnX core. The major difference noted in the ¹H NMR spectra of the two series of compounds is the downfield shift of the resonance for the aromatic H-6 proton, which is a result of the intramolecular interaction of this proton with the halogen atom.

The increase in the H-6 chemical shift follows the order F < Cl < Br < I ($\delta = 7.97$, 8.17, 8.26 and 8.31 ppm for the triaryltin halides **2b**, **2a**, **2c** and **2d**, respectively). In addition to the resonances assigned to the 2-(Me₂NCH₂)C₆H₄ ligand, the ¹H and ¹³C NMR spectra for the [{2-(Me₂NCH₂)-C₆H₄}R₂SnX] derivatives also contain signals corresponding to equivalent methyl and phenyl groups, respectively.

A comparison of the ¹⁹F and ¹¹⁹Sn NMR parameters for the diorganotin dihalides [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] and the triorganotin halides [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] described in this work and the related [Ph₂SnX₂], [Me₂PhSnX] and [Ph₃SnX] derivatives is given in Table 1. The increase of the coordination number at the metal atom in solution to six and five, respectively, is supported by the upfield shift of the ¹¹⁹Sn chemical shift in the 2-(Me₂NCH₂)C₆H₄-containing derivatives (X = Cl, Br, I) with respect to the corresponding monomeric, tetrahedral [Ph₂SnX₂], [Me₂PhSnX] and [Ph₃SnX] compounds.

In conclusion, the NMR spectroscopic data indicate that both $[{2-(Me_2NCH_2)C_6H_4}_2SnX_2]$ and $[{2-(Me_2NCH_2)-}$

 C_6H_4 R₂SnX] compounds exhibit intramolecular N \rightarrow Sn coordination in solution, which results in similar coordination geometries to those found in the solid state (see below).

Solid-State Structures

The crystal and molecular structures of 1a, 1b, 1b·CH₂Cl₂, 1d, 2a, 2a', 2b-2d, 3a, 3b and 3d were determined by single-crystal X-ray diffraction. Crystals suitable for X-ray diffraction analysis were generally grown by solvent diffusion from dichloromethane and n-hexane. Crystals of the dichloromethane solvate of the diorganotin difluoride [{2-(Me₂NCH₂)C₆H₄}₂SnF₂], namely 1b·CH₂Cl₂, were obtained from a CH_2Cl_2/n -hexane (approximately 1:3) mixture, and were measured immediately after removal from solution. The crystal was stable enough for a sufficiently good measurement, but they turned opaque within two days in the air due to loss of the crystallisation solvent, as proved by ¹H NMR spectroscopy. Crystals of [{2- $(Me_2NCH_2)C_6H_4$ ₂SnF₂] (1b), free of crystallisation solvent, were also obtained by slow crystallisation from a CH₂Cl₂/n-hexane (approximately 1:5) mixture. The triorganotin chloride [{2-(Me₂NCH₂)C₆H₄}Me₂SnCl] crystallises in different forms from ethanol (2a; orthorhombic, space group *Pbca*) and *n*-hexane (2a'; orthorhombic, space group $Pna2_1$. This form has also been reported by Rippstein et al.^[17] for crystals grown from CHCl₃). Monoclinic crystals (space group $P2_1/n$) with different unit-cell parameters were obtained for $[{2-(Me_2NCH_2)C_6H_4}]$ -Ph₂SnCl] when the compound was crystallised from toluene^[20] or CH₂Cl₂/*n*-hexane (**3a**); the first form contains one molecule in the unit cell^[20] while the second one contains two independent molecules. The crystals of [{2-(Me₂NCH₂)-C₆H₄}Ph₂SnF] (**3b**; monoclinic, space group $P2_1/n$, which is different from the reported space group $P2_1/c^{[26]}$) also contain two independent molecules in the unit cell.

Selected molecular parameters are given in Tables 2, 3 and 4, and the molecular structures of representative compounds **1b** and **3d**, with the atom numbering schemes, are shown in Figures 1 and 2, respectively. The molecules of all compounds investigated in this work feature a metal atom strongly coordinated by two or one nitrogen atoms of the pendant arms *trans* to an Sn–halogen bond in diorganotin(IV) and triorganotin(IV) halides, respectively [the Sn–N distance exceeds the sum of the covalent radii for the corresponding atoms, $\Sigma_{cov}(Sn,N) = 2.1 \text{ Å}^{[40]}$]. This results in different coordination environments of the metal atom, i.e. octahedral $(C,N)_2SnX_2$ for **1a**, **1b** and **1d**, and trigonal bipyramidal $(C,N)C_2SnX$ configurations for **2a–2d**, **3b** and **3d**.

The $(C,N)_2 \text{Sn}X_2$ core in the [{2-(Me_2NCH_2)-C_6H_4}_2 \text{Sn}X_2] derivatives shows a *trans*-SnC₂ fragment, while the N and X atoms are *cis* (Figure 1). This contrasts with the molecular structure reported for the related [{Me_2N(CH_2)_3}_2 \text{Sn}F_2] \cdot 2H_2 O,^{[34]} which exhibits an all-*trans* octahedral $(C,N)_2 \text{Sn}X_2$ configuration. The difference in the configuration of the octahedral environment of tin is reflected in the lengthening and shortening of the Sn–F and Sn–N bond lengths, respectively, in **2b** [Sn(1)–F(1) = 1.9726(14), Sn(1)–F(2) = 1.9774(13), Sn(1)–N(1) = 2.5083(19) and Sn(1)–N(2) = 2.6064(18) Å] in comparison

Table 2. Selected bond lengths [Å] and angles [°] for [{2-(Me₂NCH₂)C₆H₄}₂SnX₂] compounds.

	$\mathbf{1a}^{[a]}$ (X = Cl)	1b (X = F)	$1b \cdot CH_2 Cl_2 (X = F)$	1d (X = I)	
Sn(1)–C(1)	2.1278(17)	2.119(2)	2.109(6)	2.142(6)	
Sn(1)–C(10)		2.113(2)	2.130(5)	2.128(5)	
Sn(1)-X(1)	2.4394(5)	1.9726(14)	1.988(3)	2.8371(7)	
Sn(1)-X(2)		1.9774(13)	1.988(3)	2.8315(7)	
Sn(1)-N(1)	2.6199(16)	2.5083(19)	2.601(5)	2.572(5)	
Sn(1)-N(2)		2.6064(18)	2.469(5)	2.677(6)	
C(1)-Sn(1)-C(10)	152.22(9)	154.86(8)	154.8(2)	156.3(2)	
X(1)-Sn(1)-N(1)	166.25(4)	166.79(6)	168.00(16)	170.95(14)	
X(2)-Sn(1)-N(2)		167.53(6)	166.83(16)	170.62(12)	
C(1)-Sn(1)-N(1)	73.77(6)	74.99(7)	73.7(2)	74.3(2)	
C(10)-Sn(1)-N(2)		73.54(7)	75.26(19)	73.1(2)	
N(1)-Sn(1)-N(2)	108.54(7)	103.86(6)	105.40(17)	102.39(18)	
X(1)-Sn(1)-X(2)	89.79(3)	89.87(7)	88.30(18)	89.55(2)	

[a] C(10) = C(1a), X(2) = X(1a), N(2) = N(1a); symmetry equivalent positions (-x, y, -z + 1/2) are indicated by an "a".

Table 3. Selected bond lengths [Å] and angles [°] for [{2-(Me₂NCH₂)C₆H₄}Me₂SnX] compounds.

	$2a^{[a]}(X = C)$	$2a'^{[b]}(X = C)$	2h(X = F)	$2\mathbf{c} (\mathbf{X} = \mathbf{Br})$	2d(X = I)
	2u (1 i Ci)	-u (/ i Ci)			a u (11 1)
Sn(1)-C(1)	2.129(3)	2.127(4)	2.123(3)	2.132(3)	2.135(4)
Sn(1)-C(10)	2.124(4)	2.144(5)	2.118(3)	2.110(4)	2.120(4)
Sn(1)–C(11)	2.115(4)	2.121(4)	2.120(3)	2.106(4)	2.133(5)
Sn(1)-X(1)	2.5250(16)	2.5371(9)	2.0187(17)	2.6839(5)	2.9367(5)
Sn(1)-N(1)	2.485(3)	2.488(3)	2.509(2)	2.445(3)	2.442(4)
X(1)-Sn(1)-N(1)	168.11(7)	170.79(8)	167.45(9)	168.62(7)	170.45(9)
C(1)-Sn(1)-N(1)	74.17(11)	75.55(13)	74.08(11)	74.76(12)	75.99(15)
C(1)-Sn(1)-C(10)	123.73(14)	119.92(16)	118.91(13)	124.67(16)	129.5(2)
C(1)-Sn(1)-C(11)	116.94(15)	116.13(18)	123.55(13)	116.02(17)	111.66(18)
C(10)-Sn(1)-C(11)	117.71(16)	122.55(19)	115.75(15)	118.17(19)	117.2(2)

[a] Crystals from ethanol. [b] Crystals from n-hexane.

Table 4. Selected bond lengths [Å] and angles [°] for [{2-(Me₂NCH₂)C₆H₄}Ph₂SnX] compounds.

				-	
	$3a^{[a,b]}$ (X = Cl)		$\mathbf{3b}^{[b]}(X = F)$		3d (X = I)
Sn(1)–C(1)	2.118(4)	2.134(4)	2.105(5)	2.128(5)	2.135(5)
Sn(1)-C(10)	2.130(4)	2.126(4)	2.121(4)	2.132(5)	2.132(5)
Sn(1)–C(16)	2.134(4)	2.132(4)	2.129(4)	2.132(4)	2.135(4)
Sn(1)-X(1)	2.4944(11)	2.4872(12)	2.008(3)	2.006(4)	2.8631(6)
Sn(1)-N(1)	2.538(4)	2.509(3)	2.560(4)	2.521(4)	2.496(4)
X(1)-Sn(1)-N(1)	169.73(10)	168.68(8)	167.53(14)	168.34(14)	171.56(10)
C(1)-Sn(1)-N(1)	75.46(15)	74.86(14)	74.74(17)	74.88(18)	75.36(18)
C(1)-Sn(1)-C(10)	116.85(16)	113.58(15)	117.34(18)	126.98(19)	114.09(19)
C(1)-Sn(1)-C(16)	124.23(15)	126.56(16)	122.80(17)	112.10(17)	122.55(17)
C(10)-Sn(1)-C(16)	116.28(16)	117.42(17)	117.61(18)	118.45(18)	121.29(19)

[a] Crystals from CH₂Cl₂/n-hexane. [b] Two independent molecules are present in the unit cell.

Figure 1. ORTEP representation at 50% probability and atomnumbering scheme for the isomer (R_{N1}, S_{N2}) -1b.

Figure 2. ORTEP representation at 30% probability and atomnumbering scheme for the isomer (*S*)-3d. Hydrogens have been omitted for clarity.

with $[{Me_2N(CH_2)_3}_2SnF_2] \cdot 2H_2O$ [Sn(1)-F(1) = 2.084(6)and Sn(1)-N(1) = 2.366(8)Å].^[34]

The molecular structures of the triorganotin halides [$\{2-(Me_2NCH_2)C_6H_4\}R_2SnX$] (**2a–2d**, **3b** and **3d**) are very similar. One representative is shown in Figure 2. The tin–nitrogen distances are not dramatically affected by the identity of the halogen atom *trans* to the nitrogen atom. The Sn(1) atom is displaced from the equatorial plane defined by C(1), C(10) and C(16) (Figure 2) in the direction of the X(1) atom, which means that the X–Sn–C angles are larger than the N–Sn–C angles.

As a result of the intramolecular coordination of the nitrogen to the tin atom a five-membered SnC_3N ring is formed. This ring is not planar but is folded along the Sn(1)···C_{methylene} axis, with the nitrogen atom lying above the best plane defined by Sn(1), C(1), C(2) and $\text{C}(\text{methy$ $lene})$. This induces planar chirality at the metal atom,^[27–31] and all compounds reported here crystallise as racemates. The crystals of the triorganotin(IV) derivatives (**2a**, **2a**', **2b**– **2d**, **3a**, **3a**', **3b**, **3b**' and **3d**) contain 1:1 mixtures of (*R*) and (*S*) isomers, with the C(1)–C(6) aromatic ring and the N(1) atom as chiral plane and pilot atom, respectively.^[32] The crystals of the diorganotin(IV) derivatives contain either (S_{N1}, R_{N2}) and (R_{N1}, S_{N2}) isomers (for **1b**) or (S_{N1}, S_{N2}) and (R_{N1}, R_{N2}) isomers (for **1a** and **1d**) with respect to the two chelate rings in a molecular unit. The discrete monomeric molecular units are separated by normal van der Waals distances between heavy atoms.

However, a closer check of the crystal structures revealed several intermolecular hydrogen-bonding interactions shorter than the sum of the corresponding van der Waals radii [i.e. $\Sigma_{vdW}(F,H) \approx 2.55$, $\Sigma_{vdW}(Cl,H) \approx 3.0$, $\Sigma_{vdW}(Br,H)$ ≈ 3.15 and $\Sigma_{vdW}(I,H) \approx 3.35$ Å].^[40] This results in different supramolecular architectures that are presented in the subsequent discussion taking into account the increasing degree of association, with the common patterns summarised in Table 5 (further details are available in the Supporting Information). Thus, in the crystal of the fluoride 3b (space group $P2_1/n$ pairs of isomers (S,S or R,R) of the two independent molecules are associated through F(1)...H(34)aryl contacts (2.50 Å). The short interatomic distance (2.56 Å) between the F(2) atom and a methyl hydrogen of a neighbouring dinuclear unit of the same type is at the limit of a van der Waals contact. The crystal of 3b' (space group $P2_1/c^{[26]}$ contains polymeric chains of (S) and (R) isomers, respectively, built through F(1)····H(17Ba)_{methylene} interactions (2.37 Å). Similar polymeric chains of (S) and (R) isomers, respectively, were also found in the crystals of the triorganotin chlorides 3a, 3a'^[20] and the triorganotin iodide 3d. In contrast to the phenyl derivatives, the crystals of the methyl analogues 2a (space group Pbca) and 2b contains chains of alternating (S) and (R) isomers. There are no further halogen-hydrogen contacts between the parallel polymeric chains.

For compound **1b**·CH₂Cl₂, alternating (R_{N1} , S_{N2})- and (S_{N1} , R_{N2})-**1b** isomers are connected through F(2)····H-(7Ab)_{methylene} interactions (2.52 Å) and further bridged by CH₂Cl₂ molecules [F(1)···H(19A)_{solvent} = 2.37, Cl(2a)····H-(8A)_{methyl} = 2.94 Å], resulting in ribbon-like chains (Figure 3), with no further inter-chain halogen–hydrogen contacts.

Polymeric chains of (S) and (R) isomers, respectively, built through I(1)····H(7Ba)_{methylene} interactions (3.16 Å), are also found in the crystal of the triorganotin iodide 2d, but in this case additional I(1)····H(10Ac)_{Sn-methyl} contacts (3.29 Å) between chains of the same isomers result in a 2D supramolecular architecture. The crystal consists of layers alternating in the sequence -R-R-S-S-R-R-S-S-, with no further inter-layer contacts. The triorganotin chloride 2a' (space group $Pna2_1$) and the triorganotin bromide 2c also form polymeric chains, but in this case they are built from alternating (S) and (R) isomers $[Cl(1) \cdots H(8Bb)_{N-methyl} =$ 2.81 Å for 2a'; Br(1)···H(9Bb)_{N-methyl} = 3.02 Å for 2c]. For 2a', weak inter-chain contacts [Cl(1)····H(8Cc)_{N-methyl} = 2.98 Å] result in a 2D network with a honeycomb motif (Figure 4, a) in which each molecule is linked to four neighbouring molecules (two isomers of a different type for the polymeric chain and two isomers of the same type for the parallel chains). For 2c, the weak inter-chain contacts between the halogen and an aromatic hydrogen atom [Br(1)...

Table 5. Structural patterns of the hydrogen-bonding-based supramolecular architectures in the crystals of [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] and [$\{2-(Me_2NCH_2)C_6H_4\}R_2SnX_2$].

	2]			
$\frac{\text{Compound}}{[\text{R} = 2-(\text{Me}_2\text{NCH}_2)\text{C}_6\text{H}_4]}$	Supramolecular architecture patterns	X•••H [Å]		
1D architectures				
$[RPh_2SnF] (\mathbf{3b})$	dinuclear associations between isomers of the same type of two independent molecules; no further intermolecular contacts	intermolecular	F(1)-H(34) _{aryl}	2.50
$[RPh_2SnF] (3b')^{[26]}$	chains of (S) and (R) isomers no inter-chain contacts	intra-chain	F(1)-H(17Ba) _{methylene}	2.37
$[RPh_2SnCl] (3a)$	chains of (<i>S</i>) and (<i>R</i>) isomers (with alternating independent molecules 1 and 2); no inter-chain contacts	intra-chain intra-chain	$\begin{array}{l} Cl(1)-H(34b)_{aryl} \\ Cl(2a)-H(9A)_{methyl} \end{array}$	2.88 2.92
[RPh ₂ SnCl] (3a ') ^[20]	chains of (S) and (R) isomers no inter-chain contacts	intra-chain	Cl(1)-H(20a)aryl	2.89
$[RPh_2SnI]$ (3d)	chains of (S) and (R) isomers no inter-chain contacts	intra-chain	I(1)–H(19a) _{aryl}	3.11
$[RMe_2SnCl] (2a)$	chains of alternating (S) and (R) isomers; no inter-chain contacts	intra-chain	$Cl(1)-H(9Cb)_{N-methyl}$	2.95
$[RMe_2SnF] (2b)$ $[R_2SnF_2] \cdot CH_2Cl_2$	chains of alternating (S) and (R) isomers; no inter-chain contacts ribbon-like chains of alternating (B = S) and $(S = B)$ isomers	intra-chain intra-chain intra-chain intra-chain	$F(1)-H(10Bb)_{Sn-methyl}$ $F(1)-H(9Ab)_{N-methyl}$ $F(2)-H(7Ab)_{methylene}$ $F(1)-H(10A)$	2.47 2.52 2.52 2.37
(10,CH ₂ Cl ₂)	connected through CH_2Cl_2 molecules; no inter-chain contacts	intra-chain	$Cl(2a)-H(8A)_{methyl}$	2.37 2.94
2D Architectures				
[RMe ₂ SnI] (2d)	chains of (<i>S</i>) and (<i>R</i>) isomers contacts between parallel chains, resulting in a layer network;	intra-chain inter-chain	$\begin{array}{l} I(1)-H(7Ba)_{methylene}\\ I(1)-H(10Ac)_{Sn-methyl} \end{array}$	3.16 3.29
$\left[R_2 SnF_2\right](1b)$	to inter-layer contacts chains of (R_{N1}, S_{N2}) and (S_{N1}, R_{N2}) isomers contacts between parallel chains, resulting in a layer network; no inter layer contacts	intra-chain inter-chain	F(2)-H(12a) _{aryl} F(1)-H(7Ad) _{methylene}	2.38 2.47
[RMe ₂ SnCl] (2a ')	chain of alternating (S) and (R) isomers; contacts between parallel chains, resulting in a layer network; no inter-layer contacts	intra-chain inter-chain	$Cl(1)-H(8Bb)_{N-methyl}$ $Cl(1)-H(8Cc)_{N-methyl}$	2.81 2.98
[RMe ₂ SnBr] (2c)	chain of alternating (S) and (R) isomers; contacts between parallel chains, resulting in a layer network; no inter-layer contacts	intra-chain inter-chain	$\begin{array}{l} Br(1) - H(9Bb)_{N-methyl} \\ Br(1) - H(4d)_{aryl} \end{array}$	3.02 3.15
3D architectures				
[R ₂ SnCl ₂] (1a)	alternating layers of (S_{N1}, S_{N2}) and (R_{N1}, R_{N2}) isomers, respectively; inter-layer contacts leading to a 3D supramolecular architecture	intra-layer inter-layer	$\begin{array}{c} Cl(1)-H(4a')_{aryl}\\ Cl(1)-H(6f')_{aryl}\end{array}$	2.81 2.94
$[R_2SnI_2]$ (1d)	chain of alternating (S_{N1}, S_{N2}) and (R_{N1}, R_{N2}) isomers; contacts between parallel chains, resulting in a layer network; inter-layer contacts leading to a 3D supramolecular architecture	intra-chain inter-chain inter-layer	$\begin{array}{l} I(2)-H(9Ca)_{methyl}\\ I(2)-H(8Ac)_{methyl}\\ I(1)-H(14f)_{aryl} \end{array}$	3.15 3.26 3.32

 $H(4d)_{aryl} = 3.15$ Å, at the limit of a van der Waals contact] lead to a different two-dimensional motif, with rings built from two molecules [(*R*)- and (*S*)-2c isomers] and four molecules [(*R*)-(*R*)-(*S*)-(*S*)-2c isomers], respectively (Figure 4, b). In both cases there are no further contacts between the parallel layers.

In contrast to $1b \cdot CH_2Cl_2$, the crystal structure of the diorganotin difluoride 1b consists of layers in which alternating polymeric chains of (R_{N1}, S_{N2}) - and (S_{N1}, R_{N2}) -1b isomers $[F(2)-H(12a)_{aryl} = 2.38 \text{ Å}]$ are connected through $F(1)-H(7Ad)_{methylene}$ (2.47 Å) interactions. The overall layer network resembles that observed in the crystal of the triorganotin iodide **2d**, with both fluorine atoms being involved in weak hydrogen-bonding interactions.

Three-dimensional supramolecular architectures (Table 5) were found for the diorganotin dihalides **1a** and **1d**. Thus, in the crystal of the diorganotin diiodide **1d** there are parallel chains built from alternating (S_{N1}, S_{N2}) and

Figure 3. Polymeric associations in the crystal of compound 1b·CH₂Cl₂ based on halogen-hydrogen contacts (only hydrogens involved in such contacts are shown) [symmetry-equivalent atoms (x, 2 - y, 0.5 + z) and (x, 2 - y, -0.5 + z) are labelled as "a" and "b"].

Figure 4. View of the layer network based on intermolecular hydrogen bonding (only hydrogens involved in intermolecular interactions are shown) in the crystals of (a) 2a' [symmetry-equivalent atoms (1.5 - x, 0.5 + y, 0.5 + z), (1.5 - x, -0.5 + y, -0.5 + z), (1.5 - x, -0.5 + z)x, -0.5 + y, 0.5 + z and (1.5 - x, 0.5 + y, -0.5 + z) are labelled "a", "b", "c" and "d", respectively] and (b) 2c [symmetry-equiva-(0.5 + z) and (0.5 - x, -y, -0.5 + z) are labelled "a", "b", "c" and "d", respectively].

Figure 5. View of supramolecular architectures based on hydrogen bonding (only hydrogen atoms involved in intermolecular interactions are shown): (a) the layer network of (S_{N1}, S_{N2}) and (R_{N1}, R_{N2}) isomers in the crystal of 1d [symmetry equivalent atoms (-0.5 + x,1.5 - y, 0.5 + z), (0.5 + x, 1.5 - y, -0.5 + z), (0.5 - x, -0.5 + y, 1.5 - y, -0.5 + z))z) and (0.5 - x, 0.5 + y, 1.5 - z) are labelled as "a", "b", "c" and "d", respectively]; (b) the layer network of (S_{N1}, S_{N2}) isomers in the crystal of 1a [symmetry equivalent atoms (0.5 + x, 0.5 + y, z), (0.5 + y,+x, -0.5 + y, z), (-0.5 + x, -0.5 + y, z) and (-0.5 + x, 0.5 + y, z)are labelled as "a", "b", "c" and "d", respectively]; (c) 3D supramolecular structure in the crystal of 1a [symmetry equivalent atoms (-x, 1 - y, 1 - z) and (0.5 - x, 0.5 - y, -z) are labelled as "e" and "f", respectively].

C

 $(R_{\rm N1}, R_{\rm N2})$ isomers through I····H_{methyl} contacts [I(2)–H-(9Ca)_{methyl} = 3.15 Å]. Inter-chain contacts [I(2)···H-(8Ac)_{methyl} = 3.26 Å] result in a similar layer network to that observed for **2a**' (Figure 5, a). Additional weak, interlayer contacts between I(1) and an aromatic proton [I(1)··· H(14f)_{aryl} = 3.32 Å] lead to a 3D network. By contrast, in the crystal of the diorganotin dichloride **1a** only aromatic protons are involved in hydrogen bonding. The molecules are associated into layers built of the same type of isomer [Cl(1)···H(4a')_{aryl} = 2.81 Å] (Figure 5, b) and alternating parallel layers of $(S_{\rm N1}, S_{\rm N2})$ or $(R_{\rm N1}, R_{\rm N2})$ isomers are bridged through weak Cl(1)···H(6f')_{aryl} (2.94 Å) interactions (Figure 5, c).

Conclusion

The hypercoordinated di- and triorganotin(IV) halides [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$], [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$], [$\{2-(Me_2NCH_2)C_6H_4\}_2SnX_2$] (X = F, Cl, Br, I) have been prepared and their solutions investigated by multinuclear NMR spectroscopy, including variable-temperature studies. Single-crystal X-ray structure analyses have revealed that the strong intramolecular coordination of the nitrogen atom from the pendant CH₂NMe₂ group to tin induces planar chirality and the compounds crystallise as racemates. The influence of the identity and number of halogen atoms and organic substituents attached to the tin atoms is reflected in different supramolecular architectures based on hydrogen-bonding networks.

Experimental Section

General Remarks: All manipulations were carried out under argon using dried solvents freshly distilled prior to use. The ¹H and ¹³C NMR spectra were recorded with Bruker Avance DRX 400 (including 2D experiments), Bruker Avance 300 and Bruker DPX 200 instruments. The ¹⁹F NMR were recorded with Bruker Avance DRX 400 and Bruker DPX 300, and ¹¹⁹Sn NMR were obtained using Bruker DPX 400 and Varian Unity 300 instruments. Variable-temperature ¹H NMR studies were performed with a Varian Unity 300 (compound 1a) and a Varian Gemini 300S (compound 1b). The chemical shifts are reported in ppm relative to the residual peak of solvent (CHCl₃; $\delta_{^{1}H}$ = 7.26, $\delta_{^{13}C}$ = 77.0 ppm for ¹H and ¹³C, CFCl₃ for ¹⁹F and neat SnMe₄ for ¹¹⁹Sn). Starting materials such as SnCl₄, BuSnCl₃, Ph₂SnCl₂, Me₂SnCl₂ KX (X = F, Br, I), N,N-dimethylbenzylamine and n-butyllithium were commercially available. The [Li{2-(Me₂NCH₂)C₆H₄}],^[41] compounds $[{2-(Me_2NCH_2)}]$ $C_6H_4_4Sn^{[17]}$ and $[\{2-(Me_2NCH_2)C_6H_4\}Ph_2SnCl]$ (3a)^[20] were prepared according to the literature methods.

Synthesis of $[\{2-(Me_2NCH_2)C_6H_4\}_2SnCl_2]$ (1a). Procedure 1: A suspension of $[Li\{2-(Me_2NCH_2)C_6H_4\}]$ [prepared as above from *n*BuLi in *n*-hexane (24.6 mL, 1.6 M, 20% excess) and Me_2NCH_2C_6H_5 (4.43 g, 32.8 mmol) in 200 mL of anhydrous *n*-hexane] in anhydrous toluene (150 mL) was added dropwise, whilst stirring, to a cooled (-78 °C) solution of SnCl₄ (4.27 g, 16.4 mmol) in 300 mL of toluene (300 mL). After all the suspension had been added, the reaction mixture was stirred for 1 h at -78 °C, and then allowed to reach room temperature overnight. The reaction mixture was filtered under inert atmosphere and the solvent of the filtrate

was removed in vacuo. The solid residue was recrystallised from CH_2Cl_2/n -hexane to give 6.1 g (81%) of the title compound as colourless crystals.

Procedure 2: SnCl₄ (0.437 g, 1.68 mmol) was added to [{2- $(Me_2NCH_2)C_6H_4$ (1.1 g, 1.68 mmol) under inert atmosphere and the mixture was slowly heated whilst stirring until a homogeneous melt was obtained. The heating was maintained for 15 min and then the reaction mixture was cooled to room temperature. Recrystallisation from a CH₂Cl₂/n-hexane mixture (approximately 1:4) provided 1.2 g (78%) of 1a as colourless crystals (m.p. 257-259 °C). ¹H NMR (CDCl₃, 300 MHz, 20 °C): *δ* = 2.22 (br. s, 12 H, NCH₃), AB spin system with δ_A = 3.37 and δ_B = 4.07 (²J_{H,H} = 14.1 Hz, 4 H, CH_2N), 7.18 (m, 2 H, 3-H), 7.41 (m, 4 H, 4,5-H), 8.22 (m, ${}^{3}J_{H,Sn}$ = 108 Hz, 2 H, 6-H) ppm. ¹H NMR (CDCl₃, 300 MHz, 60 °C): δ = 2.21 (br. s, 12 H, NCH₃), AB spin system with $\delta_{\rm A}$ = 3.38 and $\delta_{\rm B}$ = 4.04 (br. s, 4 H, CH₂N), 7.17 (d, ${}^{3}J_{\rm H,H}$ = 6.9 Hz, 2 H, 3-H), 7.52 (m, 4 H, 4,5-H), 8.25 (d, ${}^{3}J_{H,H} = 6.3$, ${}^{3}J_{H,Sn}$ = 108 Hz, 2 H, 6-H) ppm. ¹H NMR (300 MHz, CDCl₃, -60 °C): δ = 2.05 (s, ${}^{3}J_{H,Sn}$ = 39 Hz, 6 H, NCH₃), 2.55 (s, ${}^{3}J_{H,Sn}$ = 39 Hz, 6 H, NCH₃), AB spin system with $\delta_A = 3.39$ and $\delta_B = 4.14$ (² $J_{H,H} =$ 14.2, ${}^{3}J_{H,Sn}$ = 39 Hz, 4 H, CH₂N), 7.19 (d, ${}^{3}J_{H,H}$ = 6.6 Hz, 2 H, 3-H), 7.41 (m, 4 H, 4,5-H), 8.19 (d, ${}^{3}J_{H,H} = 6.8$, ${}^{3}J_{H,Sn} = 110$ Hz, 2 H, 6-H) ppm. ¹³C NMR (CDCl₃, 100.6 MHz, 20 °C): δ = 46.78 (br. s, NCH₃), 63.80 (s, ${}^{2}J_{C,Sn}$ = 42.8 Hz, CH₂N), 127.85 (s, ${}^{3}J_{C,Sn}$ = 97.1/99.3 Hz, C-3), 128.18 (s, ${}^{3}J_{C,Sn}$ = 104.8/107.6 Hz, C-5), 130.16 (s, ${}^{4}J_{C,Sn}$ = 19.1 Hz, C-4), 135.47 (s, ${}^{2}J_{C,Sn}$ = 61.3 Hz, C-6), 140.79 (s, ${}^{2}J_{C,Sn}$ = 62.8 Hz, C-2; ${}^{1}J_{C,Sn}$ = 1167.1/1221.3 Hz, C-1) ppm. ¹¹⁹Sn NMR (CH₂Cl₂/[D₆]acetone, 149.2 MHz, 20 °C): $\delta = -$ 260.7 ppm (s). C₁₈H₂₄Cl₂N₂Sn (458.00): calcd. C 47.21, H 5.28, N 6.12; found C 47.34, H 5.43, N 5.84.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}₂SnF₂] (1b): Dichloromethane was added to a suspension of 1a (0.3 g, 0.65 mmol) in MeOH (20 mL) until the solid compound dissolved. An aqueous solution of KF (0.2 g, 3.44 mmol) was then added and the mixture was stirred for 3 h at room temperature. The organic layer was separated and the water solution was washed twice with 5 mL of CH₂Cl₂. The combined organic layers were dried with anhydrous Na₂SO₄. The latter was filtered, the solvent was removed in vacuo and the obtained white solid residue was recrystallised from a CH₂Cl₂/n-hexane mixture to give 1b (0.25 g, 90%; m.p. 213-215 °C). Colourless crystals suitable for single-crystal X-ray diffraction were obtained by slow crystallisation from a CH₂Cl₂/n-hexane (approximately 1:5) mixture. ¹H NMR (CDCl₃, 400 MHz, 20 °C): δ = 2.24 (br. s, 12 H, NCH₃), 3.66 (br. s, 4 H, CH₂N), 7.16 (m, 2 H, 3-H), 7.38 (m, 4 H, 4,5-H), 8.08 (m, ${}^{3}J_{H,Sn} = 92.2$ Hz, 2 H, 6-H) ppm. ¹H NMR (CDCl₃, 300 MHz, 55 °C): δ = 2.24 (s, 12 H, NCH₃), 3.66 (s, 4 H, CH₂N), 7.17 (m, 2 H, 3-H), 7.39 (m, 4 H, 4,5-H), 8.09 (m, ${}^{3}J_{H,Sn} = 91.5$ Hz, 2 H, 6-H) ppm. ¹H NMR (CDCl₃, 300 MHz, -55 °C): $\delta = 2.10$ (s, 6 H, NCH₃), 2.42 (s, 6 H, NCH₃), AB spin system with $\delta_A = 3.53$ and $\delta_B = 3.82$ (² $J_{H,H} = 14.3$ Hz, 4 H, CH₂N), 7.17 (m, 2 H, 3-H), 7.38 (m, 4 H, 4,5-H), 8.05 (m, ³J_{H,Sn} = 93.3 Hz, 2 H, 6-H) ppm. ¹³C NMR (CDCl₃, 100.6 MHz, 20 °C): δ = 46.09 (br. s, NCH₃), 64.10 (s, ² $J_{C,Sn}$ = 48.4 Hz, CH₂N), 127.31 (s, ${}^{3}J_{C,Sn} = 96.7$ Hz, C-3), 127.93 (s, ${}^{3}J_{C,Sn} = 99.3$ Hz, C-5), 129.97 (s, ${}^{4}J_{C,Sn}$ = 17.6 Hz, C-4), 136.30 (s, ${}^{2}J_{C,Sn}$ = 49.5 Hz, C-6), 139.23 (t, ${}^{3}J_{C,F}$ = 22.5 Hz, C-1), 141.04 (s, ${}^{2}J_{C,Sn}$ = 66.7 Hz, C-2) ppm. ${}^{19}F$ NMR (CDCl₃, 282.38 MHz, 20 °C): $\delta = -181.5$ ppm (s, ${}^{1}J_{\text{F,Sn}} =$ 2567/2683 Hz). ¹¹⁹Sn NMR (CH₂Cl₂/[D₆]acetone, 149.2 MHz, 20 °C): δ = -386.7 ppm (t, ¹J_{F,Sn} = 2663 Hz). C₁₈H₂₄F₂N₂Sn (425.09): calcd. C 50.86, H 5.69, N 6.59; found C 50.58, H 5.33, N 6.37.

Synthesis of $[{2-(Me_2NCH_2)C_6H_4}_2SnI_2]$ (1d): A saturated aqueous solution of NH₄I (20 mL) was added to a solution of 1a (0.79 g,

1.73 mmol) in CH₂Cl₂ (20 mL)/EtOH (4 mL) and the reaction mixture was stirred for 10 h at room temperature. The organic layer was separated and the water solution was washed twice with 5 mL of CH₂Cl₂. The organic solution was separated and dried with anhydrous Na₂SO₄. The latter was filtered, the solvent was removed in vacuo and the solid residue was recrystallised from a CH2Cl2/nhexane mixture to give 1d as colourless crystals (0.66 g, 60%; m.p. 238 °C). ¹H NMR (CDCl₃, 300 MHz, 20 °C): δ = 2.23 (br. s, 12 H, NCH₃), AB spin system with $\delta_A = 3.19$ and $\delta_B = 4.22$ (² $J_{H,H} =$ 12.7 Hz, 4 H, CH₂N), 7.13 (d, ${}^{3}J_{H,H}$ = 6.9 Hz, 2 H, 3-H), 7.37 (dd, ${}^{3}J_{H,H} = 7.4 \text{ Hz}, 2 \text{ H}, 4\text{-H}), 7.47 \text{ (dd, } {}^{3}J_{H,H} = 7.5 \text{ Hz}, 2 \text{ H}, 5\text{-H}),$ 8.19 (d, ${}^{3}J_{H,H} = 7.2$, ${}^{3}J_{H,Sn} = 111.9$ Hz, 2 H, 6-H) ppm. ¹H NMR (CDCl₃, 300 MHz, 50 °C): $\delta = 2.21$ (s, ${}^{3}J_{\text{H,Sn}} = 39.1$ Hz, 12 H, NCH₃), AB spin system with $\delta_A = 3.24$ and $\delta_B = 4.16$ (br. s, 4 H, CH₂N), 7.12 (d, ${}^{3}J_{H,H}$ = 7.3 Hz, 2 H, 3-H), 7.37 (dd, ${}^{3}J_{H,H}$ = 7.4 Hz, 2 H, 4-H), 7.47 (dd, ${}^{3}J_{H,H}$ = 7.5 Hz, 2 H, 5-H), 8.21 (d, ${}^{3}J_{\rm H,H}$ = 7.3, ${}^{3}J_{\rm H,Sn}$ = 111.9 Hz, 2 H, 6-H) ppm. ¹H NMR (300 MHz, CDCl₃, -50 °C): δ = 1.96 (s, ³J_{H,Sn} = 39.2 Hz, 6 H, NCH₃), 2.63 (s, ${}^{3}J_{H,Sn}$ = 38.8 Hz, 6 H, NCH₃), AB spin system with $\delta_{\rm A}$ = 3.17 and $\delta_{\rm B}$ = 4.30 (²*J*_{H,H} = 14.2 Hz, 4 H, CH₂N), 7.13 (d, ${}^{3}J_{H,H}$ = 7.2 Hz, 2 H, 3-H), 7.37 (dd, ${}^{3}J_{H,H}$ = 7.4 Hz, 2 H, 4-H), 7.46 (dd, ${}^{3}J_{H,H}$ = 7.4 Hz, 2 H, 5-H), 8.15 (d, ${}^{3}J_{H,H}$ = 7.4, ${}^{3}J_{H,Sn}$ = 115.3 Hz, 2 H, 6-H) ppm. ¹³C NMR (CDCl₃, 100.6 MHz, 20 °C): δ = 46.90 (br. s, NCH₃), 62.80 (s, ²J_{C,Sn} = 35.6 Hz, CH₂N), 128.02 (s, ${}^{3}J_{C,Sn}$ = 104.1 Hz, C-5), 128.22 (s, ${}^{3}J_{C,Sn}$ = 90.8 Hz, C-3), 130.29 (s, ${}^{4}J_{C,Sn}$ = 18.2 Hz, C-4), 135.73 (s, ${}^{2}J_{C,Sn}$ = 67.1 Hz, C-6), 138.17 (s, C-1), 140.51 (s, C-2) ppm. 119Sn NMR (CDCl₃, 111.9 MHz, 20 °C): δ = -346.9 ppm (s). C₁₈H₂₄I₂N₂Sn (640.90): calcd. C 33.73, H 3.77, N 4.37; found C 33.42, H 3.53, N 4.12.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}Me₂SnCl] (2a): A suspension of $[Li{2-(Me_2NCH_2)C_6H_4}]$ [prepared as above from *n*BuLi in *n*-hexane (17.6 mL, 1.6 M, 20% excess) and Me₂NCH₂C₆H₅ (3.18 g, 23.5 mmol) in 50 mL of anhydrous n-hexane] in anhydrous toluene (50 mL) was added dropwise, whilst stirring, to a cooled (-78 °C) solution of Me₂SnCl₂ (5.17 g, 23.5 mmol) in 150 mL of toluene (300 mL). After all the suspension had been added the reaction mixture was stirred for 1 h at -78 °C, and then allowed to reach room temperature overnight. The reaction mixture was filtered under inert atmosphere and the solvent was removed in vacuo. The white solid residue was recrystallised from CH2Cl2/n-hexane to give 2a (5.2 g, 69%) as colourless crystals (m.p. 119–121 °C; ref.^[12] 120– 123 °C). ¹H NMR (CDCl₃, 200 MHz, 20 °C): $\delta = 0.73$ (s, ² $J_{H,Sn} =$ 64.1/67.0 Hz, 6 H, SnCH₃), 2.29 (s, 6 H, NCH₃), 3.62 (s, 2 H, CH₂N), 7.12 (m, 1 H, 3-H), 7.32 (m, 2 H, 4,5-H), 8.17 (m, ³J_{H,Sn} = 67.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃, 50.3 MHz, 20 °C): $\delta = -0.28$ (s, ${}^{1}J_{\text{C,Sn}} = 492.4/515.4$ Hz, SnCH₃), 45.15 (s, NCH₃), 64.78 (s, ${}^{2}J_{C,Sn}$ = 28.8 Hz, CH₂N), 126.46 (s, ${}^{3}J_{C,Sn}$ = 59.1 Hz, C-3), 127.88 (s, ${}^{3}J_{C,Sn}$ = 67.2 Hz, C-5), 129.32 (s, ${}^{4}J_{C,Sn}$ = 13.2 Hz, C-4), 137.60 (s, ${}^{2}J_{C.Sn}$ = 42.9 Hz, C-6), 140.28 (s, C-1), 141.78 (s, ${}^{2}J_{C.Sn}$ = 38.6 Hz, C-2) ppm. 119 Sn NMR (CH₂Cl₂/[D₆]acetone, 149.2 MHz, 20 °C): δ = -48.7 ppm (s). C₁₁H₁₈ClNSn (318.41): calcd. C 41.49, H 5.70, N 4.40; found C 41.23, H 5.61, N 4.53.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}Me₂SnF] (2b): Same procedure as for **1b**, using **2a** (0.25 g, 0.78 mmol) and KF (0.228 g, 3.92 mmol). Recrystallisation from CH₂Cl₂/*n*-hexane (approximately 1:3) mixture gave **2b** (0.21 g, 89%) as colourless crystals (m.p. 92–94 °C). ¹H NMR (CDCl₃, 400 MHz, 20 °C): $\delta = 0.56$ (d, ${}^{3}J_{\rm H,F} = 3.7$, ${}^{2}J_{\rm H,Sn} = 64.8/67.2$ Hz, 6 H, SnCH₃), 2.28 (s, 6 H, NCH₃), 3.59 (s, 2 H, CH₂N), 7.12 (m, 1 H, 3-H), 7.32 (m, 2 H, 4.5-H), 7.97 (m, ${}^{3}J_{\rm H,Sn} = 60.4$ Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃, 100.6 MHz, 20 °C): $\delta = -3.67$ (d, ${}^{2}J_{\rm C,F} = 16.7$, ${}^{1}J_{\rm C,Sn} = 507.7/$ 531.3 Hz, SnCH₃), 45.16 (s, NCH₃), 64.91 (s, ${}^{2}J_{\rm C,Sn} = 30.3$ Hz, CH₂N), 126.47 (s, ${}^{3}J_{\rm C,Sn} = 58.3$ Hz, C-3), 127.83 (s, ${}^{3}J_{\rm C,Sn} =$

64.6 Hz, C-5), 129.24 (s, ${}^{4}J_{C,Sn}$ = 12.8 Hz, C-4), 137.19 (s, ${}^{2}J_{C,Sn}$ = 38.2 Hz, C-6), 141.32 (d, ${}^{3}J_{C,F}$ = 21.7 Hz, C-1), 142.04 (s, ${}^{2}J_{C,Sn}$ = 39.4 Hz, C-2) ppm. ¹⁹F NMR (CDCl₃, 376.5 MHz, 20 °C): δ = -178.4 ppm (s, ${}^{1}J_{F,Sn}$ = 1944.2/2034.6 Hz). ¹¹⁹Sn NMR (CDCl₃, 111.9 MHz, 20 °C): δ = -52.7 ppm (d, ${}^{1}J_{F,Sn}$ = 2039.3 Hz). C₁₁H₁₈FNSn (301.96): calcd. C 43.75, H 6.01, N 4.64; found C 43.41, H 5.79, N 4.41.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}Me₂SnBr] (2c): An aqueous solution of KBr (0.93 g, 7.85 mmol) was added to a solution of 2a (0.5 g, 1.57 mmol) in CH₂Cl₂ (30 mL) and the reaction mixture was stirred for 3 h at room temperature. The organic layer was separated and the water solution was washed twice with 10 mL of CH₂Cl₂. The organic solution was dried with anhydrous Na₂SO₄. The solvent was removed in vacuo and the obtained pale brownred residue was recrystallised from a CH2Cl2/n-hexane mixture to give 2c (0.52 g, 91%) [m.p. 136–138 °C (dec); ref.^[2] white solid, 136– 137 °C]. Colourless crystals suitable for single-crystal X-ray diffraction were obtained from a CH₂Cl₂/n-hexane (approximately 1:4) solution. ¹H NMR (CDCl₃, 200 MHz, 20 °C): δ = 0.87 (s, ²J_{H,Sn} = 63.5/66.4 Hz, 6 H, SnCH₃), 2.32 (s, 6 H, NCH₃), 3.64 (s, 2 H, CH₂N), 7.12 (m, 1 H, 3-H), 7.35 (m, 2 H, 4,5-H), 8.26 (m, ${}^{3}J_{H,Sn}$ = 68.5 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃, 50.3 MHz, 20 °C): $\delta = 1.02$ (s, ${}^{1}J_{\text{C,Sn}} = 483.1/505.1$ Hz, SnCH₃), 45.22 (s, NCH₃), 64.74 (s, ${}^{2}J_{C,Sn}$ = 28.1 Hz, CH₂N), 126.46 (s, ${}^{3}J_{C,Sn}$ = 58.9 Hz, C-3), 127.89 (s, ${}^{3}J_{C,Sn} = 67.6$ Hz, C-5), 129.39 (s, C-4), 138.22 (s, ${}^{2}J_{C,Sn}$ = 44.7 Hz, C-6), 139.54 (s, C-1), 141.58 (s, ${}^{2}J_{C,Sn}$ = 37 Hz, C-2). ¹¹⁹Sn NMR (CDCl₃, 149.2 MHz, 20 °C): $\delta = -55.5$ ppm (s). C11H18BrNSn (362.86): calcd. C 36.41, H 5.00, N 3.86; found C 36.11, H 5.21, N 3.67.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}Me₂SnI] (2d): Same procedure as for 1b, using 2a (0.2 g, 0.63 mmol) and KI (0.52 g, 3.14 mmol). Recrystallisation from a CH₂Cl₂/n-hexane (approximately 1:3) mixture gave 2d (0.21 g, 82%) as pale-yellow crystals (m.p. 105-107 °C). ¹H NMR (CDCl₃, 300 MHz, 20 °C): $\delta = 1.05$ (s, ² $J_{H,Sn} =$ 63.2/65.0 Hz, 6 H, SnCH₃), 2.34 (s, 6 H, NCH₃), 3.65 (s, 2 H, CH₂N), 7.11 (d, ${}^{3}J_{H,H}$ = 7.0 Hz, 1 H, 3-H), 7.35 (m, 2 H, 4,5-H), 8.30 (d, ${}^{3}J_{H,H} = 6.6$, ${}^{3}J_{H,Sn} = 71.2$ Hz, 1 H, 6-H) ppm. ${}^{13}C$ NMR (CDCl₃, 75.5 MHz, 20 °C): δ = 3.18 (s, ${}^{1}J_{C,Sn}$ = 470.1/492.0 Hz, SnCH₃), 45.42 (s, NCH₃), 64.84 (s, ²*J*_{C,Sn} = 26.9 Hz, CH₂N), 126.54 (s, ${}^{3}J_{C,Sn} = 58.9$ Hz, C-3), 128.03 (s, ${}^{3}J_{C,Sn} = 69.4$ Hz, C-5), 129.58 (s, ${}^{3}J_{C,Sn} = 13.7$ Hz, C-4), 138.26 (s, ${}^{1}J_{C,Sn} = 664.0/694.8$ Hz, C-1), 139.62 (s, ${}^{2}J_{C,Sn}$ = 46.2 Hz, C-6), 141.40 (s, ${}^{2}J_{C,Sn}$ = 35.8 Hz, C-2) ppm. ¹¹⁹Sn NMR (CDCl₃, 111.9 MHz, 20 °C): $\delta = -72.8$ ppm (s). C₁₁H₁₈INSn (409.87): calcd. C 32.24, H 4.43, N 3.42; found C 32.11, H 4.25, N 3.33.

Synthesis of [{2-(Me₂NCH₂)C₆H₄}Ph₂SnF] (3b): Same procedure as for 1b, using 3a (0.25 g, 0.56 mmol) and KF (0.164 g, 2.82 mmol). Recrystallisation from a CH2Cl2/n-hexane (approximately 1:3) mixture gave **3b** (0.21 g, 87%) as colourless crystals (m.p. 161–163 °C). ¹H NMR (CDCl₃, 400 MHz, 20 °C): δ = 1.97 (s, 6 H, NCH₃), 3.56 (s, 2 H, CH₂N), 7.20 (d, ${}^{3}J_{H,H}$ = 7.2 Hz, 1 H, 3-H), 7.44 (m, 8 H, 4,5-H + C₆H₅-meta,para), 7.72 (m, ${}^{3}J_{H,Sn}$ = 61.1 Hz, 4 H, C₆H₅ortho), 8.31 (d, ${}^{3}J_{H,H} = 7.0$, ${}^{3}J_{H,Sn} = 64.4$ Hz, 1 H, 6-H) ppm. ${}^{13}C$ NMR (CDCl₃, 100.6 MHz, 20 °C): δ = 45.76 (s, NCH₃), 64.82 (s, ${}^{2}J_{C,Sn}$ = 31.2 Hz, CH₂N), 127.03 (s, ${}^{3}J_{C,Sn}$ = 64.6 Hz, C-3), 128.05 (s, ${}^{3}J_{C,Sn} = 68.7$ Hz, C-5), 128.75 (s, ${}^{3}J_{C,Sn} = 67.5$ Hz, C₆H₅-meta), 129.53 (s, ${}^{4}J_{C,Sn}$ = 13.5 Hz, C₆H₅-para), 129.93 (s, ${}^{4}J_{C,Sn}$ = 13.1 Hz, C-4), 136.03 (s, ${}^{2}J_{C,Sn}$ = 44.8 Hz, C₆H₅-ortho), 138.34 (s, ${}^{2}J_{C,Sn}$ = 39.1 Hz, C-6), 140.29 (d, ${}^{3}J_{C,F}$ = 15.5 Hz, C₆H₅-*ipso*), 142.88 (s, ${}^{2}J_{C,Sn}$ = 44.3 Hz, C-2) ppm; the resonance for C-1 is overlapped by the resonance of C-6. ¹⁹F NMR (CDCl₃, 376.5 MHz, 20 °C): δ = -182.4 ppm (s, ${}^{1}J_{\text{F,Sn}} = 2058.3/2154.0 \text{ Hz}$). ${}^{119}\text{Sn}$ NMR (CDCl₃,

111.9 MHz, 20 °C): δ = -197.6 ppm (d, ¹J_{F,Sn} = 2157 Hz). C₂₁H₂₂FNSn (426.10): calcd. C 59.20, H 5.20, N 3.29; found C 58.96, H 5.05, N 3.07.

Synthesis of [$\{2-(Me_2NCH_2)C_6H_4\}Ph_2SnI$] (3d): Same procedure as for 1b, using 3a (0.2 g, 0.45 mmol) and KI (0.375 g, 2.26 mmol). Recrystallisation from a CH₂Cl₂/*n*-hexane (approximately 1:4) mixture gave 3d (0.22 g, 91%) as pale-yellow crystals (m.p. 235– 236 °C). ¹H NMR (CDCl₃, 300 MHz, 20 °C): δ = 1.87 (s, 6 H, NCH₃), 3.56 (s, 2 H, CH₂N), 7.18 (d, ³J_{H,H} = 7.3 Hz, 1 H, 3-H), 7.40 (m, 7 H, 4-H + C₆H₅-*meta*,*para*), 7.53 (dd, ³J_{H,H} = 7.5 Hz, 1 H, 5-H), 7.72 (m, ³J_{H,Sn} = 65.3 Hz, 4 H, C₆H₅-*ortho*), 8.60 (d, ³J_{H,H} = 7.1, ³J_{H,Sn} = 75.1 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃, 75.4 MHz, 20 °C): δ = 45.84 (s, NCH₃), 64.64 (s, ²J_{C,Sn} = 25.8 Hz, CH₂N), 127.19 (s, ³J_{C,Sn} = 62.1 Hz, C-3), 128.29 (s, ³J_{C,Sn} = 74.2 Hz, C-5), 128.85 (s, ³J_{C,Sn} = 69.3 Hz, C₆H₅-*meta*), 129.35 (s,

Table 6. Crystallographic data for compounds 1a, 1b, 1b·CH₂Cl₂ and 1d.

	1a	1b	1b·CH ₂ Cl ₂	1d
Empirical formula	C ₁₈ H ₂₄ Cl ₂ N ₂ Sn	$C_{18}H_{24}F_2N_2Sn$	$C_{18}H_{24}F_2N_2Sn \cdot CH_2Cl_2$	$C_{18}H_{24}I_2N_2Sn$
Formula mass	457.98	425.08	510.01	640.88
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	$P2_1/n$	Cc	$P2_1/n$
$a [\mathring{A}]$	16.9910(4)	9.4178(13)	12.9347(16)	10.0711(10)
<i>b</i> [Å]	8.0759(1)	16.101(2)	12.7973(16)	13.7642(14)
<i>c</i> [Å]	14.5798(4)	12.2211(17)	13.4533(17)	15.1918(15)
a [°]	90	90	90	90
β [°]	105.9252(11)	111.560(2)	102.312(2)	96.531(2)
γ [°]	90	90	90	90
V [Å ³]	1980.0(3)	1723.6(4)	2175.7(5)	2092.2(4)
Ζ	4	4	4	4
$D_{\rm calcd.} [\rm g cm^{-3}]$	1.581	1.638	1.557	2.035
F(000)	920	856	1024	1208
Crystal size [mm]	$0.25 \times 0.15 \times 0.13$	$0.40 \times 0.31 \times 0.18$	$0.32 \times 0.20 \times 0.10$	$0.44 \times 0.20 \times 0.20$
μ (Mo- K_{α}) [mm ⁻¹]	1.607	1.503	1.442	4.174
θ range [°]	3.79-27.45	2.19-27.10	2.26-26.37	2.00-26.37
No. of reflections collected	8700	10414	8549	16388
No. of independent reflections	2201 ($R_{int} = 0.0330$)	$3778 \ (R_{\rm int} = 0.0201)$	$4259 \ (R_{\rm int} = 0.0349)$	$4274 \ (R_{\rm int} = 0.0392)$
No. of parameters	107	213	239	212
Absorption correction	none	multi-scan (Bruker SAINT)	multi-scan (SAINT)	multi-scan (SAINT)
$R_I [I > 2\sigma(I)]$	0.0211	0.0240	0.0381	0.0465
wR_2	0.0452	0.0529	0.0816	0.1068
GOF on F^2	1.006	1.080	1.023	1.157
Residual electron density [eÅ ⁻³]	0.370/-0.601	0.408/-0.334	0.767/-0.700	1.277/-1.382

Table 7. Crystallographic data for compounds 2a, 2a' and 2b-2d.

	2a	2a'	2b	2c	2d
Empirical formula	C ₁₁ H ₁₈ ClNSn	C ₁₁ H ₁₈ ClNSn	C ₁₁ H ₁₈ FNSn	C ₁₁ H ₁₈ BrNSn	C ₁₁ H ₁₈ INSn
Formula mass	318.40	318.40	301.97	362.86	409.85
Crystal system	orthorhombic	orthorhombic	monoclinic	orthorhombic	monoclinic
Space group	Pbca	$Pna2_1$	$P2_1/n$	Pbca	$P2_1/n$
<i>a</i> [Å]	13.993(9)	17.155(3)	9.5956(8)	14.1705(13)	7.1685(10)
b [Å]	12.973(9)	11.2080(19)	12.7844(12)	13.0368(12)	7.5197(11)
c [Å]	14.687(10)	7.0150(12)	11.3157(10)	14.6525(14)	26.236(4)
a [°]	90	90	90	90	90
β [°]	90	90	111.521(2)	90	90.067(2)
γ [°]	90	90	90	90	90
<i>V</i> [Å ³]	2666(3)	1348.8(4)	1291.4(2)	2706.9(4)	1414.3(4)
Ζ	8	4	4	8	4
$D_{\rm calcd.} [\rm gcm^{-3}]$	1.586	1.568	1.553	1.781	1.925
F(000)	1264	632	600	1408	776
Crystal size [mm]	$0.13 \times 0.21 \times 0.23$	$0.42 \times 0.37 \times 0.17$	$0.24 \times 0.29 \times 0.53$	$0.25 \times 0.22 \times 0.17$	$0.37 \times 0.21 \times 0.08$
μ (Mo- K_{α}) [mm ⁻¹]	2.084	2.084	1.957	4.808	3.959
θ range [°]	2.55-26.37	2.17-26.37	2.4-26.4	2.54-26.37	1.55-26.37
No. of reflections collected	19522	10378	7352	20438	10856
No. of independent reflections	$2716 (R_{int} = 0.0372)$	2727 ($R_{int} = 0.0220$)	2623 ($R_{int} = 0.0174$)	2763 ($R_{int} = 0.0362$)	2876 ($R_{int} = 0.0519$)
No. of parameters	131	131	131	131	132
Absorption correction	multi-scan (SAINT)	multi-scan (SAINT)	multi-scan (SAINT)	multi-scan (SAINT)	multi-scan (SAINT)
$R_I \left[I > 2\sigma(I) \right]$	0.0315	0.0217	0.0260	0.0317	0.0354
wR_2	0.0620	0.0447	0.0588	0.0715	0.0752
GOF on F^2	1.100	1.092	1.060	1.101	1.116
Residual electron density [eÅ ⁻³]	0.522/-0.470	0.218/-0.408	0.476/-0.202	0.534/-0.602	0.701/-0.762

	3a	3b	3d
Empirical formula	C ₂₁ H ₂₂ ClNSn	C ₂₁ H ₂₂ FNSn	C ₂₁ H ₂₂ INSn
Formula mass	442.54	426.09	533.99
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
<i>a</i> [Å]	9.2370(15)	9.2868(7)	8.8090(15)
<i>b</i> [Å]	24.215(4)	23.5553(17)	15.875(3)
<i>c</i> [Å]	17.832(3)	17.8373(13)	15.058(3)
a [°]	90	90	90
β [°]	97.558(3)	99.7480(10)	92.636(3)
γ [°]	90	90	90
V [Å ³]	3954.1(11)	3845.6(5)	2103.5(6)
Ζ	8	8	4
$D_{\text{calcd.}} [\text{g cm}^{-3}]$	1.487	1.472	1.686
<i>F</i> (000)	1776	1712	1032
Crystal size [mm]	$0.24 \times 0.23 \times 0.18$	$0.20 \times 0.19 \times 0.04$	$0.22 \times 0.15 \times 0.14$
μ (Mo- K_{α}) [mm ⁻¹]	1.429	1.339	2.684
θ range [°]	1.43-26.35	1.45-26.38	1.87-26.37
No. of reflections collected	31134	30497	16667
No. of independent reflections	$8068 \ (R_{\rm int} = 0.0424)$	7877 ($R_{\rm int} = 0.0411$)	$4292 \ (R_{\rm int} = 0.0438)$
No. of parameters	220	437	219
Absorption correction	multi-scan (SAINT)	multi-scan (SAINT)	multi-scan (SAINT)
$R_I \left[I > 2\sigma(I) \right]$	0.0444	0.0457	0.0425
wR_2	0.0933	0.1091	0.0830
GOF on F^2	1.195	1.026	1.058
Residual electron density [eÅ ⁻³]	1.161/-0.509	2.576/-0.921	0.797/0.874

Table 8. Crystallographic data for compounds 3a, 3b and 3d.

⁴*J*_{C,Sn} = 13.7 Hz, C₆H₅-*para*), 130.20 (s, ⁴*J*_{C,Sn} = 14.2 Hz, C-4), 135.18 (s, ²*J*_{C,Sn} = 45.8 Hz, C₆H₅-*ortho*), 135.23 (s, C-1), 140.80 (s, ²*J*_{C,Sn} = 50.3 Hz, C-6), 142.32 (s, ²*J*_{C,Sn} = 38.4 Hz, C-2), 142.36 (s, ¹*J*_{C,Sn} = 705.1/737.9 Hz, C₆H₅-*ipso*). ¹¹⁹Sn NMR (CDCl₃, 111.9 MHz, 20 °C): δ = -199.5 ppm (s). C₂₁H₂₂INSn (534.01): calcd. C 47.23, H 4.15, N 2.62; found C 47.01, H 3.88, N 2.45.

X-ray Crystallographic Study: The crystal structure measurement and refinement data for **1a**, **1b**, **1b**·CH₂Cl₂, **1d**, **2a**, **2a'**, **2b–2d**, **3a**, **3b** and **3d** are given in Tables 6, 7 and 8. Data for **1a** were collected with a Nonius KappaCCD diffractometer (University of Dortmund) at 291 K. For all the other compounds the data were collected using a SMART APEX diffractometer ("Babes-Boyai" University) at 297 K. In both cases a graphite monochromator was used to produce a wavelength (Mo- K_a) of 0.71073 Å. The structures were solved by direct methods (full-matrix least-squares on F^2). All non-hydrogen atoms were refined with anisotropic thermal parameters. For structure solving and refinement the SHELX-97 software package was used.^[42] The drawings were created with the Diamond program by Crystal Impact GbR.^[43]

CCDC-231308 (for 1a), -230620 (for 1b), -230621 (for 1b·CH₂Cl₂), -285103 (for 1d), -215229 (for 2a), -215230 (for 2a'), -215224 (for 2b), -230622 (for 2c), -215380 (for 2d), -215228 (for 3a), -215226 (for 3b) and -215227 (for 3d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information Available (for details see the footnote on the first page of this article): Figure S1 (variable-temperature ¹H NMR spectra for **1a** and **1b**, in CDCl₃ solution), Figures S2–S8 (simulation of the aromatic region of the¹H NMR spectra for **1a**, **1b**, **2a–2d** and **4b**, respectively) and Figures S9–S43 (details of the different supramolecular architectures based on hydrogen-bonding networks in the crystals of investigated compounds).

Acknowledgments

This work was supported by the National University Research Council of Romania [a CNCSIS grant (A_T -23/552/2004) and a CERES Project (contract no. 32/12.11.2004). We thank the National Center for X-ray Diffraction ("Babes-Bolyai" University, Cluj-Napoca) for performing the single-crystal X-ray diffraction studies.

- [1] J. T. B. H. Jastrzebski, G. van Koten, *Adv. Organomet. Chem.* **1993**, *35*, 241–294.
- [2] G. van Koten, C. A. Schaap, J. G. Noltes, J. Organomet. Chem. 1975, 99, 157–170.
- [3] G. van Koten, J. G. Noltes, A. L. Spek, J. Organomet. Chem. 1976, 118, 183–189.
- [4] G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, W. M. G. F. Pontenagel, J. Kroon, A. L. Spek, J. Am. Chem. Soc. 1978, 100, 5021–5028.
- [5] G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, A. L. Spek, J. C. Schoone, J. Organomet. Chem. 1978, 148, 233–245.
- [6] G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, J. Organomet. Chem. 1979, 177, 283–292.
- [7] R. Barbieri, A. Silvestri, G. van Koten, J. G. Noltes, *Inorg. Chim. Acta* 1980, 40, 267–271.
- [8] J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, G. van Koten, M. C. Zoutberg, D. Heijdenrijk, *Organometallics* 1989, 8, 1373–1375.
- [9] J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, M. de Wit, Y. Wang, D. Heijdenrijk, C. H. Stam, J. Organomet. Chem. 1991, 407, 301–311.
- [10] J. T. B. H. Jastrzebski, J. Boersma, G. van Koten, J. Organomet. Chem. 1991, 413, 43–53.
- [11] J. T. B. H. Jastrzebski, D. M. Grove, J. Boersma, G. van Koten, J.-M. Ernsting, *Magn. Reson. Chem.* **1991**, *29*, S25–S30.
- [12] E. Vedejs, S. M. Duncan, A. R. Haight, J. Org. Chem. 1993, 58, 3046–3050.

- [13] P. Steenwinkel, J. T. B. H. Jastrzebski, B.-J. Deelman, D. M. Grove, H. Kooijman, N. Veldman, W. J. J. Smeets, A. L. Spek, G. van Koten, *Organometallics* **1997**, *16*, 5486–5498.
- [14] A. Růžička, V. Pejchal, J. Holeček, A. Lyčka, K. Jacob, Collect. Czech. Chem. Commun. 1998, 63, 977–989.
- [15] K. Schwarzkopf, M. Blumenstein, A. Hayen, J. O. Metzger, *Eur. J. Org. Chem.* 1998, 177–181.
- [16] R. Rippstein, G. Kickelbick, U. Schubert, *Inorg. Chim. Acta* 1999, 290, 100–104.
- [17] R. Rippstein, G. Kickelbick, U. Schubert, Monatsh. Chem. 1999, 130, 385–399.
- [18] A. Růžička, R. Jambor, J. Brus, I. Cisařová, J. Holeček, *Inorg. Chim. Acta* 2001, 323, 163–170.
- [19] R. Jambor, A. Růžička, J. Brus, I. Cisařová, J. Holeček, *Inorg. Chem. Commun.* 2001, *4*, 257–260.
- [20] R. A. Varga, M. Schürmann, C. Silvestru, J. Organomet. Chem. 2001, 623, 161–167.
- [21] A. Růžička, A. Dostál, R. Jambor, V. Buchta, J. Brus, I. Cisařová, M. Holčapek, J. Holeček, *Appl. Organomet. Chem.* 2002, 16, 315–322.
- [22] M. Biesemans, J. C. Martins, R. Willem, A. Lyčka, A. Růžička, J. Holeček, Magn. Reson. Chem. 2002, 40, 65–69.
- [23] A. Růžička, A. Lyčka, R. Jambor, P. Novák, I. Cisařová, M. Holčapek, M. Erben, J. Holeček, *Appl. Organomet. Chem.* 2003, 17, 168–174.
- [24] A. Růžička, R. Jambor, I. Cisařová, J. Holeček, Chem. Eur. J. 2003, 9, 2411–2418.
- [25] P. Novák, I. Cisařová, R. Jambor, A. Růžička, J. Holeček, Appl. Organomet. Chem. 2004, 18, 241–243.
- [26] J. Bareš, P. Novák, M. Nádvorník, R. Jambor, T. Lébl, I. Cisařová, A. Růžička, J. Holeček, *Organometallics* 2004, 23, 2967– 2971.
- [27] R. A. Varga, C. Silvestru, C. Deleanu, Appl. Organomet. Chem. 2005, 19, 153–160.
- [28] L. M. Opris, A. Silvestru, C. Silvestru, H. J. Breunig, E. Lork, *Dalton Trans.* 2003, 4367–4374.

- [29] O. Bumbu, C. Silvestru, M. C. Gimeno, A. Laguna, J. Organomet. Chem. 2004, 689, 1172–1179.
- [30] L. M. Opris, A. Silvestru, C. Silvestru, H. J. Breunig, E. Lork, Dalton Trans. 2004, 3575–3585.
- [31] M. Kulcsar, A. Silvestru, C. Silvestru, J. E. Drake, C. L. B. Macdonald, M. E. Hursthouse, M. E. Light, J. Organomet. Chem. 2005, 690, 3217–3228.
- [32] IUPAC Nomenclature of Organic Chemistry, Pergamon Press, Oxford, 1979.
- [33] J. Beckmann, D. Horn, K. Jurkschat, F. Rosche, M. Schürmann, U. Zachwieja, D. Dakternieks, A. Duthie, A. E. K. Lim, *Eur. J. Inorg. Chem.* 2003, 164–174.
- [34] N. Pieper, C. Klaus-Mrestani, M. Schürmann, K. Jurkschat, M. Biesemans, I. Verbruggen, J. Martins, R. Willem, *Organometallics* **1997**, *16*, 1043–1052.
- [35] J. Holeček, A. Lyčka, K. Handlíř, M. Nádvorník, Collect. Czech, J. Chem. Soc., Chem. Commun. 1990, 55, 1193–1207.
- [36] H. Weichmann, C. Schmoll, Z. Chem. 1984, 24, 390-391.
- [37] P. J. Cox, S. J. Garden, R. A. Howie, O. A. Melvin, J. L. Wardell, J. Organomet. Chem. 1996, 516, 213–224.
- [38] H. Bai, R. K. Harris, H. Reuter, J. Organomet. Chem. 1991, 408, 167–172.
- [39] I. Wharf, A.-M. Lebuis, G. A. Roper, *Inorg. Chim. Acta* 1999, 294, 224–231.
- [40] J. Emsley, Die Elemente, Walter de Gruyter, Berlin, 1994.
- [41] A. Meller, H. Hoppe, W. Maringgele, A. Haase, M. Noltemeyer, Organometallics 1998, 17, 123–124.
- [42] G. M. Sheldrick, SHELXTL-97, University of Göttingen, Germany, 1997.
- [43] DIAMOND Visual Crystal Structure Information System, CRYSTAL IMPACT: P. O. Box 1251, 53002 Bonn, Germany, 2001.

Received: November 15, 2005 Published Online: February 6, 2006