A Facile Procedure for the Synthesis of Condensed Dipyrazoles

S. Matsugo*, A. Taramizawa

Niigata College of Pharmacy, Niigata 950-21, Japan

Utilizing the tautomeric property of 1,3-disubstituted-4,5-dihydropyrazol-5-ones 1, a facile one-pot synthesis of highly substituted 1,4,6,9-tetrahydro-4,9-methano-1,5-dioxocin[2,3-c:6,7-c']dipyrazoles 2 has been achieved.

The tautomerism of 1,3-disubstituted-4,5-dihydro-pyrazol-5-ones such as 1 has been widely investigated 1-5. However, utilization of the tautomeric property of them in organic synthesis has not been in detail. In the course of our work to utilize this characteristic tautomerism of 1,3-disubstituted-4,5-dihydro-pyrazol-5-ones (1) in organic synthesis, we

October 1986 Communications 867

found a general procedure to prepare 1,5-dioxocin dipyrazoles⁶. In this paper we wish to report a facile one-pot synthesis of condensed dipyrazoles 2 from the reaction of various 1,3-disubstituted-4,5-dihydro-pyrazol-5-ones 1 with acetylacetone in basic medium.

Table 1. Condensed Dipyrazoles 2 Prepared

Reaction of 1,3-disubstituted-4,5-dihydro-pyrazol-5-ones 1a-h with acetylacetone in ethyl alcohol containing triethylamine at reflux gives 4,9-dimethyl-1,3,6,8-tetrasubstituted-1,4,6,9-tetrahydro-4,9-methano-1,5-dioxocin[2,3-c:6,7-c'] dipyrazoles 2a-h in high yields.

The plausible reaction mechanism for the formation of 2a-h can be depicted as follows. It has been well known that active methylene positions of 1a-h, are reactive enough to condense with carbonyl compounds to afford 4-alkylidene-1,3-disubstituted-4,5-dihydropyrazol-5-ones^{5,7}. This can be applied in the reactions of 1a-h with acetylacetone and as a result, [2:1] adducts 3a-h are formed in the initial stage of the reaction. In the reaction conditions employed, [2:1] adducts 3a-h are isomerized to their enol tautomers 4a-h by the action of triethylamine as those observed in our case⁶. Intramolecular cyclization of 4a-h takes place accompanying with the hydrogen migration to afford dipyrazoles 2a-h as final products. In these conversions, isomerizations of 3a-h to 4a-h caused by triethylamine play the crucial role.

The structures of **2a-h** are fully supported by the IR. ¹H-NMR, and ¹³C-NMR spectra (Tables 1 and 2).

3,4,8,9-Tetramethyl-1,6-diphenyl-1,4,6,9-tetrahydro-4,9-methano-1,5-dioxocin[2,3-c:6,7-c']dipyrazole (2a); Typical Procedure: A solution of 3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-5-one (1a, 1.74 g, 0.01 mol) and dry acetylacetone (10.0 g, 0.1 mole) in dry ethyl

Product No.	R ¹	\mathbb{R}^2	Yield ^a [%]	m.p. [°C] 169-171	Molecular Formula ⁶	IR (Film) + [cm ⁻¹]	¹ H-NMR (CDCl ₃ /TMS _{int}) δ [ppm]	
2a	Н	СН3			$C_{25}H_{24}N_4O_2$ (412.5)	2990, 2930 1600, 1580 1515, 1460 1405, 1385	1.97 (s, 6H, CH ₃ at C-4, C-9); 2.15 (s, 2H, CH ₂); 2.37 (s, 6H, CH ₃ at C-3, C-8); 7.20 (dd. 2H, $J = 1.22$, 7.32 Hz); 7.38 (dd. 4H, $J = 7.32$, 8.32 Hz); 7.69 (dd. 4H, $J = 1.22$, 8.32 Hz)	
2b	Br	CH ₃	87	180-182	$\begin{array}{c} C_{25}H_{22}Br_2N_4O_2\\ (570.3) \end{array}$	2990, 2935 \$590, 1575 \$510, 1500 \$410, 1395	1.98 (s, 6H, CH ₃ at C-4, C-9); 2.16 (s, 2H, CH ₂), 2.34 (s, 6H, CH ₃ at C-3, C-8), 7.49 (d, 4H, $J = 9.04$ Hz); 7.60 (d, 4H, $J = 9.04$ Hz)	
2 c	Cl	CH ₃	85	196–198	C ₂₅ H ₂₂ Cl ₂ N ₄ O ₂ (491.4)	2980, 2935 1590, 1575 1510, 1500 1410, 1395	1.98 (s, 6H, CH ₃ at C-4, C-9); 2.17 (s. 2H, CH ₂), 2.35 (s, 6H, CH ₃ at C-3, C-8); 7.35 (d, 4H, $J = 8.79$ Hz); 7.65 (d, 4H, $J = 8.79$ Hz)	
2d	CH ₃	CH ₃	82	183184	$\begin{array}{c} C_{27} E_{28} N_4 O_2 \\ (440.5) \end{array}$	2990, 2930 1595, 1575 1515, 1490 1415, 1395	1.94 (s, 6H, CH ₃ at C-4, C-9); 2.11 (s, 2H, CH ₂); 2.32 (s, 6H, CH ₃ at C-4', CH ₃ at C-3, C-8); 2.34 (s, 6H, CH ₃ at C-4' or CH ₃ at C-3, C-8); 7.16 (d, 4H, <i>J</i> = 8.54 Hz); 7.55 (d, 4H, <i>J</i> = 8.54 Hz)	
2e	Н	С ₆ Н ₅	89	195197	$C_{35}H_{28}N_4O_2$ (536.6)	2990, 2940 1590, 1575 1515, 1485 1415, 1390	1.75 (s. 6H, CH ₃ at C-4, C-9); 2.20 (s. 2H, CH ₂); 7.23–7.50 (m, 12H); 7.684 (m, 4H); 7.91 (dd, 4H, <i>J</i> = 1.22, 8.64 Hz)	
2f	Br	C ₆ H ₅	90	185-187	C ₃₅ H ₂₆ Br ₂ N ₄ O ₂ (694.4)	2990, 2940 1590, 1565 1500, 1485 1410, 1390	1.75 (s, 6H, CH ₃ at C-4, C-9); 2.22 (s, 2H, CH ₂); 7.35–7.65 (m, 14H); 7.83 (d, 4H, $J = 8.79$ Hz)	
2g	Cl	C ₆ H ₅	86	199~201	C ₃₅ H ₂₆ Cl ₂ N ₄ O ₂ (605.5)	2990, 2940 1595, 1565 1510, 1485 1415, 1390	1.76 (s, 6H, CH ₃ at C-4, C-9); 2.22 (s. 2H, CH ₂); 7.35–7.69 (m, 14H); 7.89 (d. 4H, $J = 8.79$ Hz)	
2h	CH ₃	C_6H_5	86	186~-188	$\frac{C_{37}H_{32}N_4G_2}{(564.7)}$	2980, 2930 1595, 1565 1520, 1490 1415, 1390	1.74 (s, 6H, CH ₃ at C-3 at C-4, C-9); 2.18 (s, 2H, CH ₂); 2.39 (s, 6H, CH ₃ at 4'); 7.22 7.38 (m. 10H); 7.71–7.73 (m, 4H); 7.78 (d, 4H, <i>J</i> = 8.30 Hz)	

a Yield of recrystallized product.

Mass spectra and microanalyses were in satisfactory agreement with the calculated values: $C \pm 0.25$, 11 ± 0.17 , $N \pm 0.28$, $Cl \pm 0.33$, $Br \pm 0.36$.

Table 2. 13C-NMR Data of Compound 2 Prepareda

Compound No.	CH ₃ at C-3 and C-8	CH ₃ at C-4 and C-9	C-11	C-4 C-9	C-3a C-8a	C-3 C-8	C-5a C-10a	Phenyl groups
2a	14.862	23.797	44.208	77.350	99.804	145.677	152.656	120.478 (d, 4C), 125.646 (d, 2C),
	(q, 2C)	(q, 2C)	(t, 1C)	(s. 2C)	(s, 2C)	(s, 2C)	(s, 2C)	125.858 (d, 4C), 138.582 (s, 2C)
2b	14.838	23.716	43.882	77.523	99.927	146.071	152.615	118.827 (s, 2C), 121.673 (d, 4C),
	(q, 2C)	(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	131.938 (d, 4C), 137.023 (s, 2C)
2c	14.838	23.741	44.028	77.207	99.927	146.023	152.663	121.436 (d, 4C), 129.019 (d, 4C),
	(q, 2C)	(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	131.087 (s, 2C), 137.023 (s, 2C)
2d	14.813	23.789	44.198	77.231	99.635	145.390	152.469	20.919 (q, 2C, 4'-CH ₃), 120.554
	(q,CC)	(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	(d, 4C), 129.433 (d, 4C), 135.393 (s, 2C), 136.122 (s, 2C)
2e		23.330	45.113	77.408	99.483	149.824	152.977	121.033 (d, 4C), 126.289 (d, 2C),
		(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	128.216 (d, 4C), 128.332 (d, 2C). 128.916 (d, 8C), 134.202 (s, 2C). 138.523 (s, 2C)
2f	****	23.272	44,880	77,379	96,688	150.203	152.977	119.573 (s, 2C), 122.230 (d, 4C),
		(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	128.362 (d, 4C), 128.683 (d, 2C), 128.858 (d, 4C), 132.070 (d, 4C), 133.793 (s, 2C), 137.530 (s, 2C)
2g		23.301	44.938	77.642	99.629	150.086	152.948	121.879 (d, 4C), 128.384 (d, 4C),
		(q, 2C)	(t,1 C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	128.858 (d, 6C), 129.004 (d, 4C), 131.720 (s, 2C), 133.910 (s, 2C), 137.122 (s, 2C)
2h		23.376	45.195	77.231	99.270	149.477	152.785	20.992 (q, 2C, 4'-CH ₃), 121.041
		(q, 2C)	(t, 1C)	(s, 2C)	(s, 2C)	(s, 2C)	(s, 2C)	(d, 4C), 128.192 (d, 6C), 128.971 (d, 4C), 129.457 (d, 4C), 134.347 (s, 2C), 136.001 (s, 2C), 136.171 (s, 2C)

^a The assignment of signals to C-3, C-8, C-5a and C-10a are done analogous to the reported ^{8 -10} values for 5-alkoxy (hydroxy, thiohydroxy) pyrazoles.

alcohol (300 ml) containing dry triethylamine (10.1 g, 0.1 mole) is refluxed for 24 h. The solvent ist then removed *in vacuo* at room temperature to leave a dark brown oily residue, which is washed with 10% acetic acid (100 ml) and filtered to afford crude 2a as a white precipitate. Recrystallization from dry acetone (10 ml) gives analytically pure 2a; yield: 1.85 g (90%); m.p. 169–171°C

C₂₅H₂₄N₄O₂ calc. C 72.79 H 5.87 N 13.58 (412.5) found 72.61 5.92 13.49

MS: $m/e = 412 \text{ (M}^+, 5\%), 278 \text{ (13)}, 238 \text{ (88)}, 174 \text{ (100)}.$

UV (CH₃CN): $\lambda = 255$ nm (log $\varepsilon = 4.28$).

Received: July 30, 1985 (Revised form: November 11, 1985)

Katritzky, A.R., Maine, F.W. Tetrahedron 1964, 20, 299.

² Newman, G. A., Pauwels, P.J.S. Tetrahedron 1970, 26, 1571.

³ Newman, G. a., Pauwels, P.J.S. Tetrahedron 1970, 26, 3429.

⁴ Dorn, H. J. Prakt. Chem. 1973, 315, 382.

⁵ Arriau, J., Deschamps, J., Teysseyre, J., Maquestiau, A., van Heverbeke, Y. *Tetrahedron* 1974, 30, 1225.

⁶ Matsugo, S., Saito, M., Takamizawa, A. Synthesis 1983, 482.

⁷ Desimoni, G., Tacconi, G. Gazz. Chim. Ital. **1968**, 98, 1329.

³ Feeny, J., Newman, G.A., Pauwels, P.J.S. *J. Chem. Soc.* (C) **1970**, 1842.

⁹ Bergman, J.J., Lynch, B.M. J. Het. Chem. 1974, 11, 135.

¹⁰ Hawkes, G. E., Randall, E. W., Elugero, J., Marzin, C. J. J. Chem. Soc. Perkin 2, 1977, 1024.