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Abstract--Recent NMR studies of lignin isolated from maize demonstrated that p-coumarate esters are attached 
exclusively to the y-position of phenylpropane side chains. Thioacidolysis/desulphuration experiments have 
revealed that p-coumarate units are attached primarily (ca 90%) to syringyl moieties in maize lignin. In model 
studies with guaiacylglycerol and syringylglycerol-B-guaiacyl ethers, cleavage of B-ether linkages by 
thioacidolysis was reduced 40% by y-acylation of phenylpropane side chains with p-coumarate. Our results 
indicate that y-p-coumarate esters significantly reduce the yields of syringyl products recovered after thioacidolysis 
of grass lignins. 

INTRODUCTION 

p-Coumaric acid is a major component of lignin in 
grasses, comprising up to 20% of lignins isolated from 
maize [ 1 ]. Recent NMR studies have demonstrated that 
p-coumaric acid is esterified exclusively to the y-posi- 
tion of B-aryl ethers (Fig. 1) and other types of lignin 
substructures [1]. For reasons yet to be elucidated, the 
p-coumarate moiety does not incorporate into lignin 
and remains as a terminal unit with a free phenolic 
group and an unsaturated side chain [1]. Correlative 
evidence from NMR spectroscopy [1], radiotracer/mi- 
croscopy [2] and solvolytic studies [3-5] suggest that 
p-coumarate esters are attached primarily to syringyl 
units in grass lignins. 

Solvolytic cleavage of [3-0-4 inter-unit linkages by 
thioacidolysis has proved to be an extremely useful tool 
for characterizing and identifying structural components 
in lignin [6, 7]. Since p-coumarate esters are only 
partially cleaved during thioacidolysis [8], dimeric 
thioacidolysis products from maize were analysed to 
determine if p-coumarate is esterified to syringyl units 
in lignin. The effect of p-coumarate esters on the 
cleavage of B-aryl ethers by thioacidolysis was also 
investigated. 

RESULTS AND DISCUSSION 

Maize lignin (24:1 dioxane-water soluble fraction 
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isolated from ball-milled and cellutase-degraded cell 
walls [1]) was subjected to thioacidolysis under stan- 
dard conditions [8] to release phenylpropane units 
acylated with p-coumaric acid. Thioethylated products 
were hydrogenated with Raney nickel and analysed by 
GC-mass spectrometry [9, 10]. Mass spectra of two 
previously unidentified peaks were consistent with 
compounds 3a and 3b, hydrogenated forms of coniferyl 
and sinapyl p-coumarate (Figs 1 and 2). The identity of 
these peaks was confirmed by comparing their GC 
retention times and mass spectra with those of authentic 
compounds. Recovery of conferyl and sinapyl p- 
coumarates was low (representing less than 10% of 
p-coumarate esters in maize lignin) and varied in 
tandem between thioacidolysis runs. A large proportion 
of the p-coumarate esters were cleaved during 
thioacidolysis; the concentration of p-coumarate mono- 
mers was similar to that of syringyl monomers. 

Thioacidolysis/Raney nickel products from maize 
walls and maize lignin [1] were analysed by GC-FID to 
estimate the relative abundance of p-coumarate esters. 
The peak area of sinapyl p-coumarate (3b) was con- 
sistently eight to nine times greater than that of 
coniferyl p-coumarate (3a), indicating that p-coumarate 
moieties were primarily attached to syringyl units. A 
similar ratio of syringyl to guaiacyl p-coumaroylated 
products was also observed after acetyl bromide/Zn 
reductive cleavage of maize lignin (Lu, F., unpublished 
results). This new lignin characterization method spe- 
cifically cleaves B-ether structures while leaving p- 
coumarate esters intact [11, 12]. The relatively high 
proportion of 3b recovered after thioacidolysis is due in 
part to syringyl units being involved in a higher 

1189 



1190 J.H. GRABBER et al. 

~ OMe 
R ~ M e  2 

LIGNIN "0 

O ~  1 OH 

R Me " ~ ~ l .  Thioacidolysis O ~  
LIGNIN'Oo~OH /~" Raney Ni [H] ~ 

R" "~ "OMe 
OH 

a R=H 
b R=OMe 

3 

Fig. 1. p-Coumarate esters are incorporated into lignin to give, among other products, two types of fl-ether structures: the 
hydroxycinnamyl p-coumarate end unit (1) and the fl-ether (2). Thioacidolysis cleaves fl-ethers while leaving a small proportion 
of the p-coumarate esters intact. After Raney nickel treatment, products 3a and 3b result, providing a distinction between 

p-coumarate esterification of guaiacyl and syringyl units in lignin. 

proportion of labile fl-ether structures than guaiacyl 
units. However, the overall ratio of syringyl to guaiacyl 
units of this lignin was only 1.4 as determined by 
thioacidolysis [13]. Since acylation did not differential- 
ly affect the release of syringyl or guaiacyl units from 
fl-ether models (4, Fig. 3), our results demonstrate that 
p-coumarate esters are primarily attached to syringyl 
units in maize lignin. Preferential attachment of p- 
coumarate to syringyl lignins or lignin precursors (e.g. 
sinapyl p-coumarate) may involve enzyme specificity. 
However, temporal aspects of lignification are more 
likely involved since deposition of p-coumarate and 
syringyl-rich lignins occur concurrently at late stages of 
lignification [2-5]. 

The possibility of 3b being an artefact formed during 
thioacidolysis was discounted by subjecting a mixture 
of coniferyl p-coumarate t -e ther  (4a, Fig. 3) and 
willow lignin (a syringyl-guaiacyl lignin with no p- 
coumarate esters [10]) to thioacidolysis/desulphuriza- 
tion. Although small quantities of 3a were recovered, 
3b was not, confirming that 3b was a component of 
maize lignin and not an artefact formed by transesterifi- 
cation reactions. 

Model studies were done to identify methods for 

improving the recovery of p-hydroxycinnamyl p- 
coumarate products from lignins subjected to 
thioacidolysis. Recovery of 3b was not improved when 
sinapyl p-coumarate t -e ther  (4b) was subjected to 
thioacidolysis under reduced duration or temperature. 
We then evaluated if saturation of phenylpropane 
sidechains by hydrogenation would allow stabilization 
and subsequent quantitation of p-hydroxycinnamyl p- 
coumarate end units (1) and t -e ther  structures (2, Fig. 
1) by thioacidolysis. Although unsaturated sinapyl p- 
coumarate (10b, Fig. 4) was extensively degraded, 
saturated sinapyl p-coumarate (3b) was quantitatively 
recovered after thioacidolysis, indicating that p-couma- 
rate end units would be quantified by this approach. 
These end units, however, comprise only a small 
proportion of the structures involving p-hydroxy- 
cinnamyl p-coumarates [1]. Unfortunately, attempts to 
release 3b from a saturated form of 4b failed due to 
v-ester cleavage, apparently mediated by thioethyl 
addition to the syringyl sidechain. Since these t -e ther  
structures are abundant in maize lignin I l l  further 
efforts to quantify p-coumarate ester structures by 
thioacidolysis were abandoned. More recent work by 
our group demonstrated that t -e ther  cleavage allows 
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Fig. 2, GC-MS of dimers recovered after thioacidolysis of maize lignin. Dimers were tdmethylsilylatexi prior to analysis. 
p-Coumarate ester products (3a and 3b) are observed later in the total ion chromatogram than previously identified products [9, 
23]. Peaks are identified by their linkage types (e.g. 5-5) and the aromatic nuclei involved (G = guaiacyl-guaiacyl, S = syringyl- 

syringyl, and M = guaiacyl-syringyl or syringyl-guaiacyl). 

acetyl bromide/Zn reduction by quantitative recovering 
of p-coumaroylated structures from lignin [12]. 

In the course of our model studies, we observed that 
significant quantities of p-coumaroylated r-ethers re- 
sisted degradation during thioacidolysis. Under stan- 
dard thioacidolysis conditions (100 ° for 5 hr), yields of 
syringyl or guaiacyl monomers recovered from p- 
coumaroylated r-ether models (4) were ca  45%, In 
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Fig. 3. Models (4) used to investigate the release of hydroxy- 
cinnamyl p-coumarates (3) from/~-ether structures (2) during 

thioacidolysis. 

contrast, yields of monomers from nonacylated 
syringylglycerol-fl-guaiacyl and guaiacylglycerol-fl- 
guaiacyl ether models were ca 75%, which is compar- 
able to that reported by Lapierre e t  al. [14], It has been 
observed that yields of thioacidolysis products from 
p-coumaroylated grass lignins are lower than non- 
acylated wood lignins [15]. Recently, Chesson et  al. [5] 
found that yields of syringyl products from maize lignin 
were two-fold greater with NaOH-microwave digestion 
than with thioacidolysis. Both of these methods for 
cleaving of r-ethers gave comparable yields of 
guaiacyl products. When considered together, these 
results suggest that yields of syringyl products from 
thioacidolysis are significantly reduced by acylation of 
r-ether structures with p-coumaric acid. 

CONCLUSIONS 

Analysis of thioacidolysis/Raney nickel products has 
demonstrated that p-coumaric acid is esterified primari- 
ly to syringyl units in maize lignin. Recovery of p- 
hydroxycinnamyl p-coumarates was low due to ester 
cleavage and incomplete /3-ether cleavage by 
thioacidolysis. Modifications of the analytical proce- 
dure did not signicantly improve yields. Since acylation 
of lignin by p-coumarate significantly reduces 
thioacidolysis yields, alternate methods of r-ether 
cleavage (e.g. NaOH-microwave digestion or acetyl 
bromide/Zn reductive cleavage) should be used for 
solvolytic analysis of grass lignins. 
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Fig. 4. Synthetic route to p-hydroxycinnamyl p-coumarates (10). 

EXPERIMENTAL 

General. Mps were measured on an electrothermal 
digital mp apparatus and were uncorr. Evapns were 
conducted under red. pres. at temps <42 ° unless 
otherwise noted. Further elimination of organic sol- 
vents, as well as drying of residues, was accomplished 
under high vacuum (90-120 mtorr) at room temp. CC 
was performed on silica gel 60 (230-400 mesh) and 
TLC was performed with Alugram Sil-G/UV2~ 4 plates 
(Macherey-Nagel), with visualization by UV light. 
NMR spectra of samples in Me2CO-d 6 (unless other- 
wise noted) were run at 300 K on a Bruker AMX- 
360 MHz narrow-bore instrument fitted with a 5 mm 
4-nucleus (QNP) probe with normal geometry (proton 
coil further from the sample). The central solvent 
signals were used as int. reference 1H, 2.04ppm; ~3C, 
29.8 ppm). All assignments were fully authenticated by 
the normal complement of 1D and 2D inverse-detected 
experiments. Full data for all title compounds and key 
intermediates recorded in Me2CO-d6, DMSO-d 6 and 
CDC13, are given in the recently released NMR data- 
base of plant cell wall model compounds [16]. High 
resolution EI-MS data were collected on a Kratos 
MS-80RFA spectrometer. Percentage values in paren- 
theses refer to the height relative to the spectrum base 
peak. THF was distilled from Na-benzophenone imme- 

diately before use. Petrol refers to the boiling range 
40-60 ° . 

p-Hydroxycinnamyl p-coumarates (10). Modifica- 
tions to the methods of Nakamura and Higuchi. [17] 
allowed simpler syntheses of compounds 10 with better 
reproducibility (Fig. 4). The synthesis of coniferyl p- 
coumarate (10a) using the original 2,4-dinitrophenyl 
(DNP) protected 5 was recently described [1]. The 
modification preparation of 10a via the acetate 8 was 
analogous to that of sinapyl p-coumarate (10b) de- 
scribed below. 

Sinapyl alcohol 2,4-dinitrophenyl ether [4-(2,4- 
dinitrophenoxy)- 3,5-dimethoxycinnamyl alcohol] ( Tb ). 
Sinapyl alcohol (61), 352 mg, 1.67 retool) was dissolved 
in MezCO (2 ml) and cooled to 0 °. To this stirred sol 
was added NaHCO 3 (281mg, 3.34mmol) in H20 
(5 ml). 2,4-Dinitrofluorobenzene (342 mg, 1.84 mmol) 
in Me2CO (2 ml) was then slowly added. The resulting 
orange soln was stirred in the dark at room temp. for 
24 hr. A yellow solid pptd on hydrolysis with cold aq. 
3% HC1. The mixt. was stirred for ca 2 hr, after which 
time the yellow ppt. was recovered by filtration and 
washed with H20 and Et20. Recrystallization from hot 
Me:CO afforded 7b (571 mg, 91%) as fine yellow 
crystals, mp 146-148 ° (lit. 153-154°[18]); ~H NMR t~: 
3.82 (6H, s, A3/5-OMes), 3.96 (1H, t , J=5 .5Hz ,  
"y-OH), 4.26 (2H, td, J = 5.3, 1.6 Hz, Ts), 6.50 (1H, dt, 
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J =  15.9, 4.9 Hz, fl), 6.64 (1H, dt, J =  15.9, 1.6 Hz, a), 
6.93 (2H, s, A2/6), 7.05 (1H, d, J =  9.3 Hz, DNP-6), 
8.39 (1H, dd, J = 9 . 3 ,  2.8Hz, DNP-5), 8.83 (1H, d, 
J = 2.8 Hz, DNP-3). 

Coupling reactions with 9. Coupling of 4-acetoxy- 
cinnamoyl chloride (8) [19] with the protected p-hy- 
droxycinnamyl alcohols was efficiently carried out 
using 4-dimethylaminopyridine (DMAP) [20]. The 
dinitrophenyl ethers (Ta) [17] (prepd as described for 
7b) or 7b (1.09 mmol) were dissolved in dry CH2C12 
(5 ml). The soln was cooled in an ice-water bath, and 
(8) (1.33 mmol) and DMAP (179 mg, 1.46 mmol) were 
successively added. (For large-scale reactions, DMAP 
was used catalytically and Et3N added.) The cooling 
bath was removed and the reaction mixt. stirred for 
1 hr, after which time TLC [CHC13-EtOAc (5:1)] 
indicated complete conversion into a faster moving 
material. The sotn was diluted with CH2CI 2 and 
washed successfully with cold aq. 3% HCI and aq. 
NH4CI. Drying (Na2SO4), evapn and purification by 
silica gel chromatography [CHCI3-EtOAc (1:1) gave 
9a and 9b in 92-94% yield after crystallization. 
Compound 9a (in aq. Me2CO) and 9b (in CHCI 3- 
petrol) crystallized as pale yellow spherulites; 9a, mp 
145-147°; 1H NMR: 3 2.27 (3H, s, OAc), 3.82 (3H, s, 
A3-OMe), 4.88 (2H, dd, J = 6.2, 1.3 Hz, ys), 6.53 (1H, 
dt, J = 15.9, 6.1Hz,/3), 6.58 (1H, d, J = 16.0 Hz, P-8), 
6.81 (1H, dt, J =  15.9, 1.3Hz, a), 7.09 (1H, d, J =  
9.3 Hz, DNP-6), 7.20 (3H, m, A-6, P-3/5), 7.28 (1H, d, 
J = 8 . 2 H z ,  A-5), 7.40 (IH, d, J =  1.9Hz, A-2), 7.73 
(1H, d, J =  16.0Hz, P-7), 7.74 (2H, m, P-2/6), 8.40 
(1H, dd, J = 9 . 3 ,  2.8Hz, DNP-5), 8.84 (1H, d, J =  
2.8Hz, DNP-3); 9b, mp 177-179°; JHNMR: c5 2.27 
(3H, s, OAc), 3.83 (3H, s, A3-OMe), 4.88 (2H, dd, 
J = 6.1, 1.3 Hz, ys), 6.56 (IH, dt, J = 15.9, 6.1Hz, /3), 
6.58 (1H, d, J =  16.0Hz, P-8), 6.79 (1H, dt, J=  15.9, 
1.3Hz, or), 7.01 (2H, s, A-2/6), 7.06 (IH, d, J =  
9.3Hz, DNP-6), 7.20 (2H, m, P-3/5), 7.73 (1H, d, 
J = 16.0Hz, P-7), 7.75 (2H, m, P-2/6), 8.38 (1H, dd, 
J = 9 . 3 ,  2.8Hz, DNP-5), 8.83 (IH, d, J = 2 . 8 H z ,  
DNP-3). 

Deprotection. Deprotection was accomplished at 
room temp. using piperazine in THF, significantly 
milder conditions than those used in ref. [17]. Com- 
pound 9a or 9b (0.906mmol) was dissolved in dry 
THF (10ml), and piperazine (780mg, 9.05mmol) in 
dry THF (10ml) was added dropwise at room temp. 
under N:. The soln was stirred for 2 hr, after which 
time the reaction mixt. was diluted in EtOAc (30 ml) 
and washed thoroughly with aq. NH4CI (ca 10 × 15 ml) 
to ensure complete removal of excess of piperazine and 
2,4-dinitrobenzene by-product from the organic layer. 
After drying (MgSO4) and evap, the resulting syrup 
was submitted to silica gel chromatography [CHC13- 
EtOAc (1:1)] (silica gel was deactivated by treatment 
with 1% HOAc-EtOH) to afford 10a and 10b in 
87-90% yield; 10a, pale yellow solid; ~H NMR: 3 3.86 
(3H, s, A3-OMe), 4.78 (2H, dd, J = 6.5, 1.3 Hz, y's), 
6.25 (IH, dr, J=  15.8, 6.5Hz, /3), 6.37 (IH, d, J =  
16.0Hz, P-8), 6.65 (1H, dt, J =  15.8, 1.3 Hz, a), 6.79 

(1H, d, J =  8.1 Hz, A-5), 6.88 (2H, m, P-3/5), 6.91 
(1H, dd, J =  8.1, 2.0 Hz, A-6), 7.11 (1H, d, J = 2.0 Hz, 
A-2), 7.54 (2H, m, P-2/6), 7.63 (1H, d, J =  16.0Hz, 
P-7); 13CNMR t$: 56.20 (A3-OMe), 65.49 (y), 110.20 
(A-2), 115.45 (P-8), 115.83 (A-5), 116.68 (P-3/5), 
121.19 (A-6), 121.72 (/3), 126.90 (P-I), 129.39 (A-I), 
130.9l (P-2/6), 134.90 (a), 145.49 (P-7), 147.80 (A- 
4), 148.53 (A-3), 160.65 (P-4), 167.27 (P-9); 10b, pale 
yellow solid; IHNMR: 3 3.84 (6H, s, A3/5-OMes), 
4.78 (2H, dd, J = 6 . 5 ,  1.3Hz, ys), 6.28 (1H, dt, J=  
15.8, 6.5 Hz, /3), 6.38 (1H, d, J = 15.9 Hz, P-8), 6.64 
(IH, dr, J=  15.8, 1.3Hz, c~), 6.79 (2H, m, A-2/6), 
6.89 (2H, m, P-3/5), 7.55 (2H, m, P-2/6), 7.63 (1H, d, 
J =  15.9Hz, P-7); ~3CNMR ~5:56.61 (A3/5-OMes), 
65.42 (y), 105.16 (A-2/6), 115.52 (P-8), 116.70 (P-3/ 
5), 122.07 (/3), 126.99 (P-I), 128.22 (A-I), 130.95 
(P-2/6), 135.14 (cr), 137.27 (A-4), 145.49 (P-7), 
148.84 (A-3/5), 160.62 (P-4), 167.22 (P-9). 

Hydrogenation to authentic compounds 3. Com- 
pounds 3 were prepd from compounds 10 by hydro- 
genation. For example, 10b (60mg, 0.168 mmol) was 
dissolved in 0.5 ml CH2CI 2 and Pd/C (5% Pd on C, 
15 rag) was added under H 2. After stirring for 5 hr, the 
Pd/C was filtered and washed (CH2C12). Evapu of the 
solvent left a pale yellow oil which was purified by 
silica gel chromatography [CH2CI2-MeOH (20:1)] to 
give pure 3b in 60% yield as an oil. Compound 3a was 
obtained from 10a according to the same procedure. 3a, 
1H NMR: ~ 1.86 (2H, m, /3), 2.55 (2H, t, J = 7.4 Hz, 
ce), 2.56 (2H, t, J = 7 . 6 H z ,  P-8), 2.82 (2H, t, J =  
7.6Hz, P-7), 3.80 (3H, s, OMe), 4.03 (2H, t, J = 
6.5Hz, y), 6.61 (1H, dd, J =  8.0, 2.0Hz, A-6), 6.73 
(1H, d, J = 7 . 9 H z ,  A-5), 6,75 (2H, m, P-3/5), 6.79 
(IH, d, J =  2.0Hz, A-2), 7,06 (2H, m, P-2/6), 7.26 
(IH, s, ArOH), 8.10 (1H, s, ArOH); ~3C NMR t$: 30.75 
(P-7), 31.33 (13), 32.24 (~r), 36.69 (P-8), 56.16 (OMe), 
64.03 (y), 112.73 (A-2), 115.62 (A-5), 116.00 (P3/5), 
121.55 (A-6), 130.05 (P-2/6), 132.38 (P-l), 133.55 
(A-I), 146.58 (A-4), 148.16 (A-3), 156.57 (P-4), 
173.09 (P-9); MS: 330 [M] ÷ (38), 164 (100), 149 (19), 
137 (42), 107 (39); HR MS, found: [M] ÷, 330.1442, 
C19H2205 requires M, 330.1467. 3b, IHNMR: ~ 1.87 
(2H, m, /3), 2.55 (2H, t, J = 7.6 Hz, o0, 2.56 (2H, t, 
J =  7.5Hz, P-8). 2.82 (2H, t, J =  7.6Hz, P-7), 3.79 
(6H, s, A3/5-OMes), 4.03 (2H, t, J = 6.5 Hz, 7), 6.48 
(2H, s, A-2/6), 6.74 (2H, m, P-3/5), 6.89 (1H, s, 
A4-OH), 7.06 (2H, m, P-2/6), 8.08 (1H, s, P4-OH); 
~3CNMR c5:30.77 (P-7), 31.31 (13), 32.71 (or), 36.71 
(P-8), 56.57 (OMes), 64.04 (y), 106.69 (A-2/6), 
116.01 (P-3/5), 130.07 (P-2/6), 132.40 (P-I), 132.59 
(A-l), 135.07 (A-4), 148.62 (A-3/5), 156.61 (P-4), 
173.08 (P-9); MS: 360 [M] + (92), 194 (100), 179 (20), 
168 (45), 167 (76), 163 (43), 107 (69); HR MS, Found: 
[M] +, 360.1576, C2oH240 6 requires M, 360.1573. 

~3-Ether models. Prepn of guaiacylglycerol and 
syringylglycerol-/3-guaiacyl ethers, and 4a have been 
previously reported [20]. Compound 4b was prepd 
using the same synthetic methodology [20, 21]. Hydro- 
genation of 4b was performed as described for 3b. Data 
are deposited in the database [16]. 
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Analytical methods. Thioacidolysis [8, 22] and 
Raney nickel desulphuration [9] were performed on 
10mg lignin, 40mg cell walls and 2 -5mg  model 
compounds. Desulphurized products were tri- 
methylsilyated with BSTFA (25/zl) plus pyridine 
(5/zl) for 30 min at 60 ° and identified by GC-MS [10]. 
The relative abundance of 3a and 3b recovered after 
thioacidolysis was determined by GC using a 
0.25 mm × 30 m DB-1 (J & W Scientific) column and 
FID with He as carrier gas (1.0cm 3 mln" -1). The 
column was held at 200 ° for 1 min, ramped at 5 ° min 
to 300 ° and then ramped at 10 ° min -1 to 350 °. The 
injector and detector were set at 350 °. The injector vol. 
was 2 -4 /z l  and the split ratio was 50:1. Under these 
conditions, peaks corresponding to the int. standard 
(docosane), 3a and 3b were observed at 11.4, 22.4 and 
24.0 min, respectively. 
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