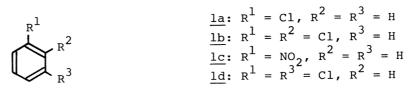
CHEMISTRY LETTERS, pp. 395-398, 1988.

The Friedel-Crafts Type Methanesulfonylation of Deactivated Benzenes

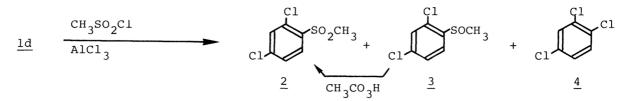
Mitsunori ONO,* Yoshisada NAKAMURA, Shingo SATO, and Isamu ITOH Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Kanagawa 250-01

The participation of nonionic donor-acceptor complex [A] was suggested by the analyses of product isolated in the Friedel-Crafts reaction of m-dichlorobenzene with CH_3SO_2Cl in the presence of AlCl₃. On the basis of these observations a new practical method of methanesulfonylation of deactivated benzenes employing methanesulfonic anhydride and CF_3SO_3H was developed.

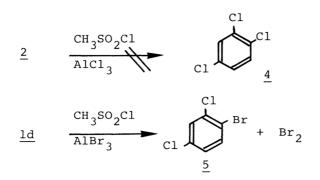
There are several methods of synthesizing methyl aryl sulfones from sulfides, sulfoxides and their derivatives.¹⁾ The most practical laboratory method of preparing methyl aryl sulfones is the Friedel-Crafts reaction employing methane-sulfonyl chloride, aromatic hydrocarbon and $AlCl_3$ catalyst.²⁾ The structure of electrophilic complexes has been widely discussed,³⁾ and the oxo sulfonium salt [B]⁴⁾ (Scheme 1) is regarded as a plausible reactive species. However, it is also

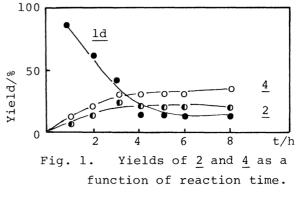

$$RSO_{2}X + M_{n}X_{m} \longrightarrow RSO_{2}^{+} + M_{n}X_{m+1}$$

$$RSO_{2}X + M_{n}X_{m} \longrightarrow RSO_{2}^{+} + M_{n}X_{m+1}$$

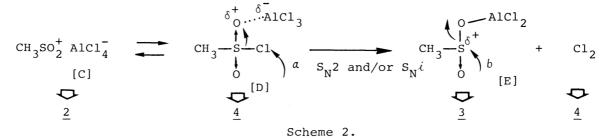

$$(A) \qquad (B)$$

Scheme 1.


known that the Friedel-Crafts type methanesulfonylation reactions have serious limitations in particular for certain deactivated benzenes containing halogen or nitro substituents, owing to the electron-withdrawing nature of them.⁵⁾ In fact, it is reported that the methanesulfonylation of <u>la</u>, <u>lb</u>, and <u>lc</u> gives the corresponding methyl aryl sulfones in extremely low yield (0-10%), leaving a considerable amount of the starting materials unchanged.⁶⁾



In connection with our program in the chemistry of phenolic azo dyes exhibiting a low pKa value,⁷⁾ we examined in detail the Friedel-Crafts methanesulfonylation of m-dichlorobenzene <u>ld</u>. On the basis of the analyses of the experimental facts, we found a new practical approach involving heating of methanesulfonic anhydride in the presence of CF_3SO_3H , and the results are presented in this communication. Treatment of <u>1d</u> (1.0 equiv.) with methanesulfonyl chloride (0.8 equiv.) in the presence of AlCl₃ (0.8 equiv.) without solvents⁸⁾ gave rise to a mixture of 2,4dichloro-methylsulfonylbenzene <u>2</u> (mp 70-72 °C; 15%), 2,4-dichloro-methylsulfinylbenzene <u>3</u> (mp 89-90 °C; 20%), and 1,2,4-trichlorobenzene <u>4</u> (35%). The structure of <u>3</u> was determined by the following spectral data: MS m/z 208 (M⁺); ¹H-NMR δ (CDCl₃) 2.75 (s, 3H, CH₃), 7.43 (d, 1H, J=2 Hz, C-3-H), 7.50 (dd, 1H, J=2 and 7 Hz, C-5-H), and 7.91 (d, 1H, J=7 Hz, C-6-H). In addition, <u>3</u> was easily converted into <u>2</u> on oxidation with CH₃CO₃H at 85 °C.



To our knowledge, the unexpected 3 and 4 are the first products isolated in the Friedel-Crafts methanesulfonylation reaction of dichlorobenzenes. As shown in Fig. 1, the formation of 4 seemed to proceed independently of that of 2. Further reaction of 2 under the same conditions resulted in the recovery of unreacted 2. Moreover, treatment of 1d with methanesulfonyl chloride in the presence of AlBr₃ gave 1-bromo-2,4-dichlorobenzene 5 as a sole isolable product, together with gaseous bromine.⁹⁾

These observations support the assumption that the formation of $\underline{4}$ is explained in terms of an electrophilic chlorination.¹⁰⁾ Owing to the difficulty of generation of an electrophilic centre on the halogen atom (X) of the ionic salt [B], it is considered that the formation of both $\underline{3}$ and $\underline{4}$ preferably derived from the nonionic complex [A] regarded as a transient one. The plausible pathways (a and b) which account for the formation of $\underline{3}$ and $\underline{4}$ are summarized in Scheme 2.

396

Chemistry Letters, 1988

The complex [E] leading to <u>3</u> would be formed by the electrophilic substitution of <u>1d</u> with the polarized chlorine atom of the complex [D] (S_N^2) and/or by the elimination of Cl₂ from the complex [D] (S_N^i). In spite of the fact that the Friedel-Crafts sulfonylation is realized as a modification of the acylation reaction,¹¹⁾ it is interesting to note that the behavior of the reaction suggests the intermediary participation of the oxygen-coordinated donor-acceptor complexes [D] and [E].

These findings also indicate the limitation of the Friedel-Crafts sulfonylation by use of <u>alkylsulfonyl chloride</u> in the presence of <u>AlX</u>₃ and led us to the examination of alternative approaches generating no halonium ions. As a results, we found the addition of a catalytic amount of $CF_3SO_3H^{12}$ in a small excess of methanesulfonic anhydride is effective for methanesulfonylation of <u>1d</u> (83%) (Table 1, entries 1-5). This procedure is also applicable to other deactivated benzenes and

				5	22	
Entry	Substrate	Solvent	Catalyst	Time/h	Temp/°C	Products(Yield/%)
1	<u>1d</u>	Cl ₂ C=CCl ₂	^н з ^{ро} 4	3	120	no reaction
2	<u>ld</u>	neat	H ₃ PO ₄	3	120	no reaction
3	<u>ld</u>	neat	H ₂ SO ₄	3	120	<u>2</u> (17) <u>1d</u> (53)
4	<u>ld</u>	neat	сн _з so _з н	5	120	<u>2</u> (37) <u>1d</u> (52)
5	<u>ld</u>	neat	CF 3 SO 3 H	3	120	<u>2</u> (83) 1d (3)
6	<u>la</u>	neat	сғ _з so _з н	2	100 0	(85) -o:-p=1:2
7	<u>lb</u>	neat	CF ₃ SO ₃ H	3	90 C	^{C1} SO ₂ CH ₃ (60)
8	lc	neat	CF ₃ SO ₃ H	5	120	$\bigcup_{NO_2}^{SO_2CH_3} (20)$
9	F Cl	neat	CF ₃ SO ₃ H	3	90	$F \bigcup_{C1}^{2} SO_2CH_3 (65)$
10 E	r C_{cl}^{cl}	neat	CF ₃ SO ₃ H	5	140 C	$\sum_{n=1}^{n} \sum_{so_2 CH_3}^{Br} (38)$
11 H	3C NHAC	neat	CF ₃ SO ₃ H	4	н _з с 90 Ас	
12 C	D2ND CH3	neat	CF ₃ SO ₃ H	5	120 ⁰ 2	^N CH ₂ ^{SO₂CH₃ (55)}
13	C OCH3	neat	CF ₃ SO ₃ H	0.5	н ₃ С 30	³ (85) SO ₂ CH ₃ (85) -o:-p=1:2

Table 1. Results of Methanesulfonylation of Deactivated Benzenes with Methanesulfonic Anhydride ((CH₃SO₂)₂O)^{a)}

a) Prepared in situ from SOCl₂ (2.0 equiv.) and CH_3SO_3H (5.0 equiv.).

gave the corresponding methyl aryl sulfones in fairly good yields (Table 1, entries 6-12).

A typical procedure is as follows: a solution of methanesulfonic acid (325 cm³, 5.0 mol) and thionyl chloride (145 cm³, 2.0 mol) was heated under reflux for 1 h. To the reaction mixture cooled to 25 °C was added <u>1d</u> (147 g, 1.0 mol) and CF_3SO_3H (8.8 cm³, 0.1 mol). The whole mixture was heated at 120 °C for 3 h and cooled down to 50 °C, and then poured into ice-water (2 dm³) and extracted with ethyl acetate (2 x 1 dm³). The ethyl acetate solution was washed with water (2 x 1 dm³) and saturated brine (2 x 1 dm³), dried, and evaporated to leave crude crystals (230 g). Recrystallization from ethyl acetate/hexane (3 : 1) gave pure <u>2</u> as white crystals (mp 70-72 °C, 187 g, 83%)

The authors wish to thank Miss Reiko Shibata for carring out some of the analytical experiments.

References

- A. T. Fuller, J. M. Tonkin, and J. Walker, J. Chem. Soc., <u>1949</u>, 633;
 G. B. Barlin and W. V. Brown, J. Chem. Soc., B, <u>1967</u>, 648; L. Field and R. D. Clark, J. Org. Chem., <u>22</u>, 1129 (1957).
- 2) W. E. Truce and G. W. Vriesen, J. Am. Chem. Soc., <u>75</u>, 5032 (1953).
- 3) M. Tashiro, Yuki Gosei Kagaku Kyokai Shi, <u>36</u>, 426 (1978); R. Nakane, ibid., <u>36</u>, 440 (1978).
- 4) G. A. Olah and A. M. White, J. Am. Chem. Soc., <u>89</u>, 3591 (1967); B. Chevrier, J-M. LeCarpentier, and R. Weiss, ibid., <u>94</u>, 5718 (1972); G. A. Olah, S. Kobayashi, and J. Nishimura, ibid., 95, 564 (1973).
- 5) A. Schoeberl and A. Wagner, "Houben-Weyl, Methoden der Organischen Chemie," 4th ed, Georg Thieme, Stuttgart (1955), Vol. IX.
- 6) E. E. Gilbert, J. Org. Chem., <u>28</u>, 1945 (1963); B. M. Graybill, ibid., <u>32</u>, 2931 (1967).
- 7) S. Ichijima and M. Ono, Japan Kokai, 61-184541 (1986).
- 8) The use of other Lewis acids (FeCl₃, SnCl₄) and also the use of any solvents with a high boiling point resulted in the recovery of <u>ld</u>.
- 9) The formation of Br₂ was also detected in the mixture of CH₃SO₂Cl and AlBr₃ even without <u>ld</u>; For an interesting behavior of the complexes: G. Holt and B. Pagdin, J. Chem. Soc., 1960, 2508.
- 10) As an example of similar chlorinations: E. C. Dart, G. Holt, and K. D. Jeffreys, J. Chem. Soc., <u>1966</u>, 1284.
- 11) F. Klages and F. E. Malecki, Liebigs Ann. Chem., <u>691</u>, 15 (1966); F. R. Jensen and G. Goldman, "Friedel-Crafts and Related Reactions," ed by G. A. Olah, John Wiley (1964), Vol. 3; G. A. Olah, "Friedel-Crafts Chemistry," Interscience, New York (1973).
- 12) F. Effenberger, Angew. Chem., <u>84</u>, 295 (1972).

(Received November 6, 1987)

398