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Stereochemical analysis of a1, a mating hormone of the
phytopathogen Phytophthora
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Abstract—The stereochemistry of a1, the first identified mating hormone of the plant pathogen Phytophthora, has been unknown due to
its acyclic flexible nature. Here, two stereogenic centers of a1 are determined to be (3RS,15R)-configuration by NMR analysis of the
Mosher’s esters of a1 and a synthetic model compound. The information obtained here will be helpful for reducing the burden of the
researchers who are trying to synthesize all the possible stereoisomers of a1 to elucidate its full stereochemistry.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The fungus-like microorganisms of the genus Phytophthora
include notorious plant pathogens that can devastate
important agricultural products, such as potatoes and
tomatoes. The heterothallic members of Phytophthora uti-
lize mating hormones for their sexual reproduction, result-
ing in the formation of sexual spores known as oospores,1,2

which greatly contribute to their durability and pathogenic
success.3 In 2005, one of the mating hormones, a1 1, was
identified and characterized from the A1 mating type of
Phytophthora nicotianae.4 This substance induced oospores
in the counter mating type A2 at a nanogram level. The
mating hormone a1 1 is an acyclic oxygenated diterpene,
with four discrete stereogenic centers. Although the deter-
mination of the absolute configuration is essential for
further chemical biological researches, the flexibility of
the molecular skeleton, as well as the unavailability of 1
(1.2 mg from ca. 1800 L culture broth),4 hampers the
stereochemical analysis. Recently, an isomeric mixture that
could contain all possible stereoisomers of 1 has been syn-
thesized and its hormonal activity demonstrated,5 suggest-
ing that the synthetic mixture contains 1. However, the
stereoselective total synthesis of the 16 possible stereoiso-
mers will be needed without any stereochemical informa-
tion on the natural specimen of 1. To aid the future total
synthesis of 1, we examined the absolute configuration of
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the two terminal stereogenic centers, C-3 and C-15, by
the NMR analysis of the Mosher’s esters of 1.
2. Results and discussion

A hundred micrograms of the mating hormone a1 1 were
first converted to bis-[a-methoxy-a-(trifluoromethyl)phen-
ylacetate] (bis-MTPA) esters, (R)-2 and (S)-2.6 The proton
chemical shifts of the oxymethylene groups (H-1 and H-16)
were affected by the neighboring MTPA esters, providing
us with valuable information about their stereochemistry.
The 1H NMR spectra indicated that both (R)-2 and (S)-2
were mixtures of stereoisomers, suggesting that a1 1 was
originally an epimeric mixture. This could be supported
by the facts that the epimers ratio was not particularly
affected by the esterification time (data not shown) and that
the synthetic model ketone 3 was converted to the corres-
ponding MTPA esters without epimerization (vide infra).
The major isomer of (R)-MTPA ester (R)-2 (60:40 ratio)
indicated splitting methylene signals both for H-1 (d 4.23
and 4.37, Dd = 0.14) and for H-16 (d 4.08 and 4.25,
Dd = 0.17) (Fig. 1a). On the other hand, the major isomer
of (S)-MTPA ester (S)-2 (64:36 ratio) indicated overlap-
ping methylene signals both for H-1 (d 4.34, Dd = 0) and
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Figure 1. Partial 1H NMR spectra of (R)-2 (a) and (S)-2 (b) in CDCl3. The
signals due to the minor epimers [40% in (R)-2, 36% in (S)-2] are indicated
with asterisks.

Table 1. Chemical shift differences of two oxymethylene protons of
MTPA esters

MTPA esters Dd (R-MTPA) Dd (S-MTPA)

(R)-2, (S)-2 (H-16) 0.17 0.03
(S)-RCH(CH3)CH2OMTPA6 0.00–0.05 0.14–0.20
(R)-2, (S)-2 (H-1) 0.14 0.00
(R)-7, (S)-7 0.00 0.14

Figure 2. 1H NMR signals due to the oxymethylene protons of (R)-7 (a)
and (S)-7 (b) in CDCl3.
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for H-16 (d 4.15 and 4.18, Dd = 0.03) (Fig. 1b). Kobayashi
et al. studied the absolute configuration of the primary
alcohols with a b-methyl branch [R–CH(CH3)–CH2OH]
and reported that the (R)- and (S)-MTPA esters of
(S)-alcohols indicated overlapping (Dd = 0–0.05) and split-
ting (Dd = 0.14–0.20) methylene signals, respectively,
(Table 1).7 Since the opposite phenomenon was observed
for the oxymethylene protons (H-16) of (R)-2 (Dd = 0.17)
and (S)-2 (Dd = 0.03) (Table 1), the (15R)-configuration
of a1 1 was determined.

To determine the absolute configuration of C-3, the NMR
data for the MTPA esters of c-methyl-branched primary
alcohols [R–CH(CH3)–CH2CH2OH] are needed. Although
some examples of simple alcohols (R = alkyl)8,9 and a
d-hydroxy compound (R = R 0CH(OH)–)10 are already
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Scheme 1. Synthesis of model compound 3 and its MTPA esters (R)-7 and (S
known, the absolute configuration of d-oxo compounds
(R = R 0CO–), such as a1 1 has not been examined. There-
fore, a model compound that possesses the same substruc-
ture (C-1 to C-6) as that of 1, (S)-1-hydroxy-3-methyl-4-
octanone 3, was synthesized (Scheme 1). (S)-2-Methyl-
1,4-butandiol was converted to monosilyl ether 411 with
3:1 regioselectivity. After chromatographic separation, 4
was oxidized to aldehyde 5.11 Addition reaction with
buthyllithium followed by oxidation gave ketone 6.12

Deprotection of the silyl group furnished the desired keto
alcohol 3.13 Esterification of 3 with MTPA chlorides gave
(R)- and (S)-MTPA esters, (R)-7 and (S)-7, respectively.

The 1H NMR of (R)-7 and (S)-7 indicated overlapping
(Dd = 0) and splitting (Dd = 0.14) oxymethylene signals,
respectively, (Table 1, Fig. 2). Since the opposite pheno-
menon was observed for the oxymethylene protons (H-1)
of the major isomers of (R)-2 (Dd = 0.14) and (S)-2
(Dd = 0) (Table 1, Fig. 1), the (3R)-configuration of the
major epimer of a1 1 was also determined.
3. Conclusion

The absolute configuration of the Phytophthora mating
hormone a1 1 was partially determined as 3RS,15R (3R/
3S = ca. 3:2) by NMR analysis of the Mosher’s esters of
OH
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1 and the synthetic model compound 3. This stereochemi-
cal outcome has limited the number of the possible stereo-
isomers of 1 from sixteen to four. The total synthesis of the
four stereoisomers, as well as the evaluation of their
hormonal activity, will be essential for determining the full
stereochemistry of a1 (1).
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