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(32)- and (3E)-Dactomelynes (1 and 2, Scheme 1) were 
isolated from the digestive glands of the sea hare Aplysia 
dactylomela by Schmitz and co-workers. ' Together with 
elatenyne,* isolated from a sample of Luurencia ehta, they 
represent a group of nonisoprenoid ethers which are character- 
ized by a unique pyranopyranyl skeleton with ethyl and 
pentenynyl substituents. The most characteristic feature in their 
structures is the presence of strategically located halogen atoms 
on the tetrahydropyran rings. The chlorine substituent is 
oriented on the sterically hindered side, whereas the bromine 
substituent avoids steric congestion. Stereoselective introduction 
of the halogen atoms in the ring systems is difficult, and the 
lack of general synthetic methods for stereoselective halide 
preparation is amply manifested in an unsuccessful attempt for 
the synthesis of dactomelynes by Kozik~wski.~ 

Recently, we reported the use of ,!?-alkoxyacrylates4 as radical 
acceptors resulting in the efficient formation of (tetrahydrofuran- 
2-y1)- and (tetrahydropyran-2-yl)a~etates.~ Importantly, the 
reactions were highly stereoselective in the absence of extrane- 
ous steric influence: cis-2,5-disubstituted tetrahydrofurans and 
cis-2,6-disubstituted tetrahydropyrans were formed exclusively 
when substrates derived from secondary alcohols were em- 
p l~yed .~ . '  The stereoselectivity was explained on stereoelec- 
tronic grounds in that the s-trans conformation involving the 
0-Cg bond should be favored in the chair-like transition state. 

Our interest in dactomelynes derived from the fact that they 
exhibit a dual cis-2,6-disubstituted pyran motif. We were 
confident that the construction of the pyranopyran skeleton could 
be achieved via two independent radical cyclization reactions 
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of j3-alkoxyacrylate substrates prepared ultimately from (-)- 
diethyl D-tartrate (9). The cyclization products were expected 
to possess (methoxycarbony1)methyl groups of correct orienta- 
tion, from which the ethyl and 2-penten-4-ynyl substituents 
would be elaborated. Employment of polyhalogenated sub- 
strate~*,~ for the stereoselective introduction of halogen atoms 
required more careful analysis. The trichloro substrate 7 should 
be transformed into the dichloro bicyclic product 6, from which 
the chloro derivative 5 would be obtained by stereoselective 
radical dehalogenation via the intermediate radical 10. Finally, 
radical cyclization of the dibromo substrate 4 should lead to 

~~~ ~ 

(9) /?-Alkoxyacrylate substrates carrying three and two bromine substit- 
uents were synthesized, and they were found to be efficient precursors in 
the tributylstannane-mediated radical cyclizations. 

t) ( p w  K C O , .  KcozEt 

qt X=Y=Z=Br 80 % 

o*co,Et e) K C 0 2 E t  R C O Z E t  K C O 2 E t  

Br 

f d) 90 % 
80%(1.9:1) 

C) - a) orb) cyp 
X=Y=Br. z=ti 76 % 

1 d) 99 % 

Br Br 
19 'Ye (1:1.3) 81 % 

a) 5.0 eq. LDA. 5.2 eq. CHBra, THF-Ether-HMPA (1 :1: 0.2), -1 10 OC (Reverse Addition) 
b) Same as in a) but with 2.0 eq. LDA. 2.1 eq. CHaBr2, -90 "C 
c) oat. pTsOH, MeOH, r.1. d) 1.2 eq. HCCCO2E1, 1.5 eq. NMM, DCM, r.t. 
e) 1.2 eq. Bu$3nH. 0.2 eq. AIBN, Benzene (0.02M), Reflux (Syringe Pump, 5 h) 
r) Same as in e) but with1 .O eq. BuSSnH 
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Scheme 3 Scheme 2 
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the pyranopyran product 3. In the intermediate radical 11, the 
bromo substituent was expected to stay away from steric 
congestion (Scheme 1). It is noteworthy that, in each of these 
reactions, steric bias in the cis-fused bicyclic intermediate and 
the transition state was to be utilized for maximal stereoselection. 

In the event, the cyclic acetal 8 was prepared from 9 via the 
known intermediates'O (Scheme 2). The corresponding triflate 
12 was reacted with excess (trichloromethy1)lithium" at -1 10 
"C in the presence of HMPA to yield the trichloro product 13. 
Hydrogenolysis was achieved uneventfully to give the alcohol, 
which was converted into the P-alkoxyacrylate 7 in an excellent 
yield. The reaction of 7 with a slight excess of tricyclohexyl- 
stannane under high-dilution conditions led to the isolation of 
the dichloro product 6 in 67% yield. The monochloro product 
5 was also isolated in 17% yield, accompanied by 14 in 11% 
yield, as products of further reduction.I2 For stereoselective 
dechlorination, a variety of reagents and conditions were 
examined.13 Eventually, reaction of 6 with 1 equiv of t r is -  
(trimethyl~ily1)silane~~~~~ at room temperature in the presence 
of triethylborane produced a 13:l mixture of 5 and 14 in 98% 
yield. 1 

Lithium aluminum hydride reduction of 5 and subsequent ten- 
butyldiphenylsilyl protection afforded 15, which was selectively 
reducedI6 to the primary alcohol 16. The corresponding nitrile 
was obtained via the triflate derivative of 16, and reduction with 
alane" led to production of the homologous primary amine 17. 
The reaction of 17 with cupric bromide and tert-butyl nitrite at 
room temperature'* led to the isolation of the dibromo derivative 
1819 in 64% yield. It was selectively deprotected to give the 
corresponding alcohol, from which the P-alkoxyacrylate 4 was 
again efficiently produced. Under standard high-dilution condi- 
tions with tributylstannane and AIBN in hot benzene, the 
pyranopyran product 3 was obtained exclusively from 4 (Scheme 
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3). Remarkably, no trace of the epimeric byproduct was found 
in the reaction mixture.*O 

Elaboration of the side chain ethyl and 2-penten-4-ynyl groups 
was carried out uneventfully. The pyranopyran 3 was reduced 
with lithium aluminum hydride at low temperature to give the 
primary alcohol, which was converted into the product 19 via 
the corresponding iodide. Deprotection of 19 and subsequent 
oxidation led to the isolation of the aldehyde 20. A mixture of 
the protected enynes 21 and 22 was produced in 68% yield upon 
reaction of 20 with lithiated 1,3-bis(triis0propylsilyl)propyne.~' 
Deprotection with tetrabutylammonium fluoride yielded a 10: 1 
mixture of dactomelynes 1 and 222 in quantitative yield (Scheme 
4). 

This synthesis is characterized by stereoselective introduction 
of alkyl and halogen substituents around the pyranopyran ring 
system completely in line with prediction and provides further 
examples of the power of radical-mediated reactions in the 
construction of complex molecules. 
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