
Regiocontrolled Synthesis ofβ-**Trimethylsilyloxy Carbonyl** Compounds through an Aldol-Grignard Elaboration Sequence.

Claudio Palomo*, Jesus M. Aizpurua, Natalia Aurrekoetxea and M. Concepción López.

Departamento de Química Orgánica. Facultad de Química. Universidad del País Vasco. Apartado: 1072. 20080-San Sebastián. Spain.

Abstract: Reaction of carbonyl compounds with α -lithio- or α -halozinc N-methoxy-N-methylamides, followed by silylation and Grignard addition resulted in a regiocontrolled synthesis of β -trimethylsilyloxy carbonyl compounds.

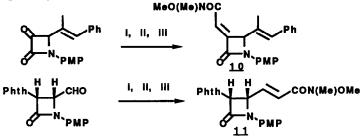
The aldol addition of an enolate anion derived from a carbonyl compound for the construction of a carbon-carbon bond is one of the most important operations in organic synthesis¹. Among various problems associated with this process, the controlled cross-aldol addition between two dissimilar carbonyl compounds becomes of crucial importance². Although modern variants and selective procedures have been developed to solve this problem³, the introduction of new and simple methodologies to obtain one of the possible regio-aldols is still of considerable interest. Yamamoto⁴ introduced the Reformatsky type reaction between a-halo ketones and carbonyl compounds induced by zinc in combination with dialkylaluminium chloride as an approach to the above problem⁵. However, from this methodology, regioespecific formation of the corresponding α -halo ketones as starting materials is required. Reported here is a general method for a regiocontrolled synthesis of β-trimethylsilyloxycarbonyl compounds through an aldol-Grignard elaboration sequence. Our approach to this problem is based on the straightforward conversion of the N-methoxy-Nmethyl amide function into a carbonyl group discovered by Weinreb and Nahm⁶. We have found that α bromo N-methoxy-N-methylacetamide 2 (10mmol) reacted with carbonyl compounds 1 (5mmol) in the presence of zinc powder (15mmol) and trimethylchlorosilane⁷ (15mmol) in tetrahydrofuran as solvent, to provide the corresponding β -trimethylsilyloxy carbonyl compounds <u>4</u> in good to excellent isolated yield. Conversion of 1 into 4, usually proceeds at room temperature within 1h and 1.5h, and the reaction works well with both enolizable and nonenolizable carbonyl compounds⁸. The final step of the method was easily accomplished by addition of the desired organometallic reagent to the amide function under standard protocol⁶. Results in Table 1 (Method A) illustrate the general utility of this simple aldol type-Grignard sequence. In general, the addition of the organometallic reagent (1.5 equiv.) proceeded smoothly at -40°C in tetrahydrofuran or diethyl ether as solvents to provide after workup the desired β -trimethylsilyloxy carbonyl compound in good isolated yield. The overall sequence could also be carried out in a single operation by addition of the Grignard reagent (1.3equiv.) to the reaction mixture of the Reformatsky adduct.

Scheme 1. Reagents and Conditions: A: i, BrCH₂CON(Me)OMe 2, Zn, ClSiMe₃, THF, r.t. B: ii MeCON(Me)OMe 3, LDA, THF,-78°C. iii, NEt₃, ClSiMe₃ iv, R₃MgX, THF or Et₂O, -40°C—>r.t.;1h.


To determine the scope of the method, we next explored the addition of the lithium enolate of N-methoxy-N-methylacetamide 3 to the carbonyl compound 1. The choice of 3 was based on Rathke's⁹ success in reactions of other amide enolates with various electrophiles. Conversion of 1 into 4 was accomplished in the usual way by adding a solution of 1 to the preformed lithium enolate of 3^{10} (1.2 equiv.) in tetrahydrofuran at -78°C. After stirring for 1h at room temperature, triethylamine (1 equiv.) and trimethylchlorosilane (1.1equiv.) were added and the mixture was further stirred (1h, r.t.). After usual workup, the corresponding β -trimethylsilyloxy amides 4 were isolated in comparable yields as above.

Carbonyl	Method	Product 4		Product 5		
compound 1		Yield ^c ,	% b.p. ⁰C/mmHg ^d	R ₃	Yield ^c ,%	b.p. ⁰C/mmHg ^d
C ₆ H ₅ CHO	A	73	120/0.05	Me	81	135/0.01
	в	82		MeOC ₆ H ₄	73	160/0.005
4-CIC ₆ H ₄ CHO	Α	76	135/0.01	Et	65	180/0.005
	в	70				
C ₆ H ₅ CH(Me)CHO	Α	68	200/0.02	CH2CH=CH	276	120/0.01
	в	70				
(E)C ₆ H ₅ CH=C(Me)CHC	A	70	160/0.02	C ₆ H ₅	61 ^e	
	в	81	*	-		
cyclohexanone	в	72	95/0.02	Me	70	70/0.01
pinacolone	в	63 ^f	170/15 ^f			

Table. Preparation of β-trimethylsilyloxy Carbonyl Compounds^{a,b}


^aReactions conducted on 5mmol scale. ^bAll compounds gave consistent analytical and spectroscopic data ^cYields were not optimized and refer to isolated pure products. ^dUncorrected boiling points observed during distillation with Kügelrohr apparatus. ^θIsolated as 1,5-diphenyl-4-methyl-2,4-pentadien-1-one [m.p: 76-78°C (MeOH)]. ^fReaction carried out in Et₂O. Only desilylated product (β-hydroxyamide) was obtained.

In view of the results obtained, the reaction sequence was examined from 2,3-Oisopropylidene-D-glyceraldehyde $\underline{6}$ as starting material (Scheme 2). The choice of this aldehyde was based on its increasing utility as chiral building block for organic synthesis¹¹. The aldol reaction was first carried out by adding the aldehyde over the preformed lithium anion of $\underline{3}$ at -78°C and warming the reaction mixture to room temperature for 2h. After silylation and workup of the reaction crude, a mixture of *anti-7* and *syn-7* (molar ratio: 81/19) was obtained in 78% isolated yield. When the reaction was performed entierely at -78°C, the *anti/syn* ratio could be increased up to 95/5. The subsequent treatment of $\underline{7}$ with Grignard reagents, afforded the compounds $\underline{8}$ as single isomers in good yields¹². The *anti* relative configuration of compound $\underline{7}$ was confirmed by its transformation into $\underline{2}$, following a protocol similar to this described by.Kita et al.¹³.

Scheme 2. Reagents and Conditions: i MeCON(Me)OMe <u>3</u>, LDA, THF, -78^oC, 2h. then, NEt₃, ClSiMe₃, -78^oC, 2h ii, RMgX, THF or Et₂O, iii F₃C-CO₂H-H₂O (1:1), reflux, 2h.

On the other hand, the procedure can also be applied to the preparation of α,β -unsaturated carbonyl compounds by dehydration^{7b} of compounds **4** and subsequent Grignard addition¹⁴. For example, this sequence was successfully used for the synthesis of β -lactams derivatives **10** and **11** in 71% and 59% overall yields, respectively.

Scheme 3. Reagents and Conditions: i MeCON(Me)OMe <u>3</u>, LDA, THF, -40°C, 1h. ii MeSO₂Cl, NEt₃, CH_2Cl_2 iii DBU, C_6H_6 , 80°C, 30min. PMP: 4-methoxyphenyl group. Phth: phthalimido group.

In conclusion, our method represents a novel alternative to achieve regiocontrolled aldol additions. Further studies are currently under way in our laboratory for its extension to other synthetic applications.

ACKNOWLEDGEMENT: The present work has been supported by Gobierno Vasco (Project 170.215-0017/89).

REFERENCES AND NOTES:

- 1. Hajos, Z.G. Carbon-Carbon Bond Formation, vol. 1; Augustine, R.L. Ed.; Marcel Dekker: New York. 1979, p. 1.
- 2. (a) House, H.O. Modern Synthetic Reactions ; 2nd ed.; Benjamin, W.A.; Reading, Mass.; 1972; p.

629. (b) Negishi, E.-I. Organometallics in Organic Synthesis; John Wiley: New York. 1980; p.
201. (c) Heathcock, C. Asymmetric Synthesis, vol. 2. Morrison, J.M. Ed.; Academic Press: New York. 1983. (d) Mukaiyama, T. Pure and Appl. Chem. 1983, 55, 1749. (e) Carruthers, W.
Some Modern Methods of Organic Synthesis; 3rd ed.; Cambridge: London. 1986; p. 48.

- 3. (a) Mukaiyama, T. Angew. Chem. Int. Ed. Engl.. 1977, 16, 817. (b) Nogradi, M. Stereoselective Synthesis; Verlag: Berlin. 1987; p. 193.
- (a) Fukuzawa, S.I.; Tsuruta, T.; Fujinami, T.; Sakai, S. J. Chem. Soc: Perkin Trans I. 1987, 1473. (b) Marouka, K.; Hashimoto, S.; Kitagawa, Y.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc., 1977, 99, 7705. For related reactions, see: Dubois, J.-E.; Axiotis, G.; Bertounesque, E.; Tetrahedron Lett. 1985, 26, 4371. Nozaki, N.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1041. Huang, Y.-Z.; Chem, C.; Shen, Y. J. Chem. Soc; Perkin Trans I. 1988, 2855, and references therein.
- For recent reviews on Reformatsky reaction, see: (a) Miginiac, L. The Chemistry of the Metal-Carbon Bond; Hartly, F.R. and Patai, S. Eds.; vol. 3; Wiley: New York, 1985; p. 99. (b) Fürstner, A. Synthesis, 1989, 571.
- 6. Nahm, S.; Weinreb, S.M. Tetrahedron Lett. 1981, 22, 3815.
- For the use of trimethylchlorosilane in related Reformatsky reactions, see: (a) Picotin, G.; Miginiac, P. J. Org. Chem. 1987, 52, 4796. (b) Palomo, C.; Aizpurua, J.M.; López, M.C.; Aurrekoetxea, N. Tetrahedron Lett. 1990, 31, 2205. (c) Palomo, C.; Aizpurua, J.M.; Aurrekoetxea, N. Tetrahedron Lett. 1990, 31, 2209. (d) Palomo, C.; Aizpurua, J.M.; López, M.C.; Aurrekoetxea, N.; Oiarbide, M. Tetrahedron Lett. 1990, 31, 6269.
- 8 For aromatic aldehydes, the products **4** were obtained toghether with the corresponding 1,2-bis(trimethylsilyloxy)-1,2-diarylethanes in less than 5%, see So, J.-H.; Park, M.K.; Budjouk, P. J. Org. Chem. **1988**, 53, 5871.
- 9. Woodbury, R.P.; Rathke, M.W. J. Org. Chem. 1977, 42, 1688.
- 10. While our work was in progress, a paper dealing with the behaviour of N-methoxy-N-methylamides towards strong bases was appeared, see Graham, S.L.; Scholz, T.H. *Tetrahedron Lett.* **1990**, *31*, 6269.
- For reviews, see: (a) McGarvey, G.J.; Kimura, M.; Oh, T.; Williams, J.M. Carbohydr. Chem. 1984, 3, 125. (b) Jurczak, J.; Pikul, S.; Bauer, T. Tetrahedron. 1986, 42, 447.
- Representative data: anti-<u>7</u>: b.p: 150°C/0.02Torr. ¹H-NMR(CDCl₃ δ ppm): 4.22 (m, 1H, C₍₄₎H), 3.93-4.01 (m, 2H, C₍₅₎H₂), 3.78 (m, 1H, J: 3.5Hz, J: 8.5Hz, C₍₃₎H), 3.65 (s, 3H, OCH₃), 3.13 (s, 3H, N-CH₃), 2.35-2.74 (m, CH₂CO), 1.36 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 0.12 (s, 9H, SiMe₃). MS: m/e (M⁺-15): 290. <u>8a</u>: b.p. 85°C/0.01Torr. ¹H-NMR(CDCl₃ δ ppm): 4.11 (m, 1H, CHOC), 3.96, 3.88 (m, 1H, 1H, CH₂O), 3.73 (m, 1H, CHOSi), 2.59, 2.54 (dd, 1H, 1H, CH₂CO), 2.13 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.28 (s, 3H, CH₃), 0.06 (s, 9H, SiMe₃). MS: m/e (M⁺-15): 245. <u>11</u>: Syrup. ¹H-NMR(CDCl₃ δ ppm): 7.85-7.72 (m, 4H, arom.), 7.39 (d, 2H, arom.), 6.95 (dd, 1H, CH=, J: 6.4Hz, J: 15.8Hz), 6.87 (d, 2H, arom.), 6.74 (d, 1H, CH=, J: 15.8 Hz), 5.65 (d, 1H, C₍₃₎H, J: 5.6Hz), 5.05 (dd, 1H, C₍₄₎H, J: 6.4Hz, J: 5.7Hz), 3.78 (s, 3H, OCH₃), 3.56 (s, 3H, OCH₃), 3.12 (s, 3H, CH₃). Anal. calcd. for C₂₃H₂₁N₃O₆: C, 63.44; H, 4.86; N, 9.65. Found: C, 63.83; H, 5.04, N, 9.72.
- Kita, Y.; Tamura, O.; Itoh, F.; Yasuda, H.; Kishino, H.; Ke, Y.Y.; Tamura, Y. J. Org. Chem. 1988,53, 554. See also, Heathcock, C.H.; Young, S.D.; Hagen, J.P.; Pirrung, C; White, C.T.; VanDerveer, D. J. Org. Chem. 1980, 45, 3846.
- 14. Nuzillard, J.M.; Boumendjel, A.; Massiot, G. Tetrahedron Lett. 1898, 30, 3779.

(Received in UK 6 March 1991)