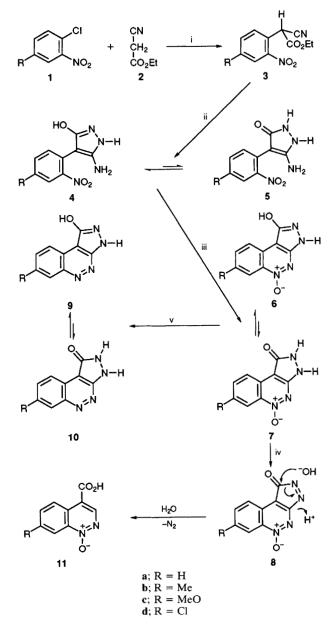
1756


A New Strategy for the Synthesis of Cinnoline Derivatives

Martin Scobie and George Tennant*

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ

Readily accessible 3-amino-5-hydroxy-4-(2-nitroaryl)pyrazoles undergo efficient base-catalysed cyclisation to afford 7-substituted 1-hydroxy-3*H*-pyrazolo[3,4-*c*]cinnoline 5-*N*-oxides, hypochlorite oxidation of which provides a viable synthetic route to hitherto inaccessible cinnoline-4-carboxylic acid 1-*N*-oxides.

As part of an investigation concerned with the design of new radical scavenging agents having anti-inflammatory activity we required efficient and unambiguous synthetic access to cinnoline 1-N-oxides containing exploitable functionality at the 3- and/or 4-positions. There is no simple method for the synthesis of cinnoline N-oxides other than direct peracid oxidation of the parent heterocycles.¹ Moreover this approach in practice is often ambiguous in regard to the site of mono-oxidation, inefficient owing to the formation of mixtures of 1- and 2-N-oxides, and incompatible with existing

Scheme 1 Reagents and conditions: i, NaH, DMF, 100 °C; ii, NH₂NH₂·H₂O, EtOH, reflux; iii, 2 mol l^{-1} NaOH, reflux; iv, 14% NaOCl aq., 2 mol l^{-1} NaOH, room temp.; v, Na₂S₂O₄, DMF, H₂O, reflux

functionality sensitive to oxidation. These potentially undesirable features precluded the use of direct peracid oxidation for the synthesis of the cinnoline *N*-oxides in question and prompted the development of an alternative synthetic route based on a new strategy for the construction of the cinnoline ring system. This incorporates two novel synthetic procedures. Firstly the regiospecific formation of a cyclic azoxy nucleus using the known² but little explored base-catalysed aldol-type condensation of an amino substituent with a suitably positioned aromatic nitro group, and secondly the previously unexploited oxidative transformation of a fused pyrazolone ring into a carboxy substituent.³ Application of the new strategy is now shown to provide a viable synthetic route to otherwise inaccessible cinnoline-4-carboxylic acid 1-*N*oxides.

The key starting materials for the new synthetic route to cinnoline 1-N-oxide derivatives (Scheme 1) were 3-amino-5hydroxy-4-(2-nitroaryl)-1H-pyrazoles **4a–d**. These previously undescribed pyrazole derivatives were readily obtained (Scheme 1) by the condensation of easily accessible (Table 1) ethyl 2-cyano-2-(2-nitroaryl)acetates **3a–d** with hydrazine under standard conditions. The lack of carbonyl absorption in the IR spectra of the products **4a–d** supports their formulation as hydroxypyrazoles rather than the alternative tautomeric pyrazolinones **5a–d**.⁴ However the unusual behaviour of the hydroxypyrazole derivatives **4a–d** at their melting points (Table 1), the reason for which is not yet clear, may indicate their tautomeric conversion into the pyrazolinones **5a–d** at elevated temperature.

Heating the amino-nitropyrazoles 4a-d with 2 mol l^{-1} aqueous sodium hydroxide under reflux (2 h) resulted in their clean cyclisation to the expected pyrazolo[3,4-c]cinnoline N-oxides 6a-d in good to excellent yields (Table 1). The gross structures of these derivatives of the previously undescribed pyrazolo[3,4-c]cinnoline ring system are supported by their simple reduction to the parent heterocycles 9a-d in high yield (Table 1) using sodium dithionite in aqueous dimethylformamide (DMF). The existence of the pyrazolocinnoline derivatives 6a-d and 9a-d predominantly in the hydroxy rather than the keto tautomeric forms 7a-d and 10a-d respectively is, as for the hydroxypyrazoles 4a-d, indicated by the absence of carbonyl absorption in their IR spectra.

т	я	h	1	e	1	
-		~	-	-	-	

Compound ^a	Yield $(\%)^b$ Mp $(t^{\circ}C)$ C		Compounda	Yield Compound ^a (%) ^b	
3a	92	60	6c	53	>320
3b	83	oil	6d	75	>320
3c	62	oil	9a	97	330f
3d	97	82	9b	77	>320
4 a	64	178 ^c	9c	88	>320
4b	53	124^{d}	9d	63	>320
4c	81	224	11a	100	222
4d	22	135e	11b	83	250
6a	80	320f	11c	90	320f
6b	56	>320	11d	73	252

^a Satisfactory elemental combustion analyses and mass, IR and ¹H NMR spectral data were obtained for all new compounds. ^b Yields are unoptimised. ^c Monohydrate. ^d With resolidification and remelting at 213 °C. ^e With resolidification and remelting at 221 °C. ^f Decomp.

J. CHEM. SOC., CHEM. COMMUN., 1993

Exposure of the pyrazolocinnoline N-oxides 6a-d to aqueous alkaline sodium hypochlorite at room temperature for 0.5 h resulted in their smooth conversion in high yield (Table 1) into the corresponding previously unknown cinnoline-4-carboxylic acid 1-N-oxides 11a-d. These processes are readily explained (Scheme 1) in terms of the oxidative transformation of the pyrazolocinnoline N-oxides 6a-d (presumably reacting in the pyrazolinone tautomeric forms 7a-d) into transient pyrazolone structures 8a-d which suffer spontaneous hydrolytic ring cleavage with loss of nitrogen, in the alkaline medium. The efficiency of these transformations demonstrates that the apparent existence of the pyrazolocinnoline N-oxides largely as the hydroxy tautomers $\mathbf{6a}$ -d does not preclude their ability to react in the pyrazolinone tautomeric forms 7a-d when the occasion demands. Preliminary investigations indicate that the analogous oxidative cleavage reactions of the parent pyrazolocinnolines 9a-d are not so straightforward.

We thank the SERC for a research studentship (to M. S.) and Hoechst UK Ltd. for financial support.

Received, 21st July 1993; Com. 3/04437A

References

- G. M. Singerman, in *Condensed Pyridazines including Cinnolines* and *Phthalazines*, ed. A. Weissberger and E. C. Taylor, Wiley, New York, 1973, vol. 27, ch. 1, part J, pp. 272–299; M. Tisler and B. Stanovnik, in *Comprehensive Heterocyclic Chemistry*, ed. A. J. Boulton and A. McKillop, Pergamon Press, Oxford, 1984, vol. 3, ch. 2.12.
- 2 J. D. Loudon and G. Tennant, Quart. Rev., Chem. Soc., 1964, 18, 389; P. N. Preston and G. Tennant, Chem. Rev., 1972, 72, 627.
- 3 E. F. Ullman and E. A. Bartkus, *Chem. Ind. (London)*, 1962, 93;
 J. Adamson, D. L. Forster, T. L. Gilchrist and C. W. Rees,
 J. Chem. Soc. C, 1971, 981.
- 4 J. Elguero, in *Comprehensive Heterocyclic Chemistry*, ed. K. T. Potts, Pergamon Press, Oxford, 1984, vol. 5, ch. 4.04, pp. 214–215.