A Convenient Synthesis of α -Vinyl-lactones by Photo-Deconjugation of α,β -Unsaturated γ - or δ -Lactones

Françoise HÉNIN, Reza MORTEZAEI, Jean-Pierre PETE*

Laboratoire de Photochimie, E.R.A. 688 "Réarrangements thermiques et photochimiques", UER Sciences, F-51062 Reims Cedex, France

Recently, we required a convenient synthesis of α -vinyl-lactones 2. These compounds have been relatively little studied and only a few methods are available for their preparation^{1,2}. Since α -alkylidene-lactones 1 can be easily prepared^{3,4,5}, access to α -vinyl-lactones should be possible by isomerization.

1020 Communications SYNTHESIS

It has been shown previously that deconjugation of conjugated unsaturated ketones⁷ and esters⁸ can be realized by irradiation with U.V. light. Furthermore, the mechanism of photodeconjugation of 3-ethylidene-4,5-dihydro-2(3H)-furanone has been shown to involve a photodienol intermediate9. We have found that this type of isomerization reaction can be applied to prepare α -vinyl-lactones 2 in very high yields.

Irradiation at 254 nm of a methanolic solution of the α -alkylidene-butyrolactone 1a-f or the valerolactone 1g results in the complete disappearance of the educts and nearly quantitative transformation into the corresponding 3-alkenyl compound 2.

The starting materials are selectively excited at this wavelength, whereas the deconjugated compounds 2 are almost unreactive under the reaction conditions (e.g., ε at 254 nm; 1a: 261; 2a: 6). The $(Z) \rightleftarrows (E)$ photoisomerization of compounds 1 is very fast, thus, the formation of 2 is independent on the initial geometry of the double bond. The deconjugation is sensitive to the solvent; the best yields of 2 are obtained in methanol.

1, 2	n	R ¹	R²	R3	
а	1	н	н	н	
b	1	н	Н	CH ₃	
С	1	Н	н	C₂H5	
d	1	Н	CH ₃	CH ₃	
e	1	CH ₃	н	н	
f	1	-(CH	н		
g	2	н	н	н	

Table. Photochemical Preparation of α -Vinyl-Lactones 2

Educt	Prod- uct	Yield [%] ^a	(E/Z) ratio	b.p. [°C]/torr	Molecular formulab	I.R. (solvent) $v \text{ [cm}^{-1}$]	1 H-N.M.R. (CDCl ₃ /TMS) δ [ppm]	M.S. m/e (M ⁺)
(E)-1a	2a	75 (90)		41-42°/0.5	C ₆ H ₈ O ₂ ^c (112.1)	935, 1022, 1157, 1646, 1772, 3087 (CCl ₄)	2.32 (m, 2H); 3.20 (m, 1H); 4.93- 5.23 (m, 2H); 5.05-6.10 (m, 3H)	112
(Z)- 1a	2a	80 (95)						
(<i>E</i>)-1b	2b	72 (89)	60/40	67-68°/0.4 ^d	$C_7H_{10}O_2$ (126.2)	(E): 965, 1028, 1160, 1675, 1770, 3040 (CCl ₄)	(E)°: 1.75 (t, 3 H, J=5.3 Hz); 2.32 (m, 2 H); 3.25 (m, 1 H); 4.25 (m, 2 H); 5.92 (m, 1 H); 6.19	126
						(Z): 710, 1025, 1150, 1660, 1780, 3030 (CS ₂)	(m, 1H) (Z)°: 1.75 (t, 3 H, J=6.3 Hz); 2.31 (m, 2H); 3.52 (q, 1H); 4.37 (m, 2H); 5.40 (m, 1H); 5.80 (m, 1H)	126
(Z)-1b	2b	73 (90)	62/38				(T) 4 0 (1 2 H + 7 H) 2 15 (m)	140
(E)-1c	2c	74 (92)	55/45	49-50°/0.07 ^d	$C_8H_{12}O_2$ (140.2)	(E): 960, 1025, 1160, 1685, 1765, 3030 (CCl ₄)	(E)°: 1.0 (t, 3 H, J=7 Hz); 2.15 (m, 4 H); 3.22 (m, 1 H); 4.40 (m, 2 H); 5.46 (m, 1 H); 5.71 (m, 1 H)	140
						(Z): 710, 1028, 1160, 1660, 1776, 3030 (CCl ₄)	(Z)°: 1.0 (t, 3 H, J=7 Hz); 2.31 (m, 4 H); 3.25 (q, 1 H); 4.37 (m, 2 H); 5.33 (m, 1 H); 5.71 (m, 1 H)	140
(Z)-1c	2c	72 (92)	60/40	67-68°/0.4	$C_8H_{12}O_2$	839, 1024, 1156,	1.70 (dd, 6 H, J=4.5 Hz, 1.2 Hz);	140
(E)- 1d	2d	80 (90)	sam.	07-08 70.4	(140.2)	1679, 1769 (CHCl ₃)	1.86-2.8 (m, 2H); 3.28 (m, 1H); 4.18 (m, 2H); 4.98 (m, 1H)	
(Z)-1d	2d	70 (90)	anamon.			005 1005 1003	1.87 (s, 3 H); 2.35 (m, 2 H); 3.27 (t,	126
1e	2e	72 (94)		44-45°/0.1	$C_7H_{10}O_2$ (126.2)	905, 1005, 1022, 1160, 1650, 1771, 3090 (CHCl ₃)	1H, J=7 Hz); 4.30 (m, 2H); 5.00 (m, 2H)	
1f	2f	77 (94)		54~55°/0.08	$C_{10}H_{14}O_2$ (166.2)	795, 810, 1025, 1155, 1665, 1775, 3050	1.37-1.82 (m, 4H); 1.82-2.50 (m, 6H); 3.15 (t, 1H, <i>J</i> =12 Hz); 4.27 (m, 2H); 5.66 (m, 1H)	166
(E)-1g	2g	70 (90)	erena.	38-40°/0.1	C ₇ H ₁₀ O ₂ (126.2)	(CS ₂) 922, 999, 1157, 1657, 1747, 3047, 3107 (CHCl ₃)	(m, 2H); 3.06 (lll, 1H) 1.93 (m, 4H); 3.17 (m, 1H); 4.25 (m, 2H); 4.98 (m, 1H); 5.10 (m, 1H); 5.93 (m, 1H)	126
(Z)-1g	2g	83 (93)						

Yield of isolated product after distillation; value in bracket is the crude yield as estimated by ¹H-N.M.R. spectroscopy.

Satisfactory microanalysis obtained: C ± 0.14 , H ± 0.09 ; exception 2g: C -0.59; determined on the (E/Z) mixture after distillation.

Identical in all respects with an authentic sample; Ref.9.

d b.p. measured for the mixture of (E)- and (Z)-isomers.

 $^{^{\}circ}$ The chemical shifts (δ) of the olefinic protons were determined by calculation after decoupling experiments as were the coupling constants: (E)-2b, J = 16 Hz; (Z)-2b, J = 10.65 Hz; (E)-2c, J = 15.6 Hz; (Z)-2c, J = 10.40 Hz.

If R^2 and R^3 are different, two geometrical isomers of 2 can be isolated with an observed stereoselectivity leading to the preferred formation of (E)-2. The stereochemistry is attributed on the basis of I.R. and ¹H-N.M.R. data with special reference to decoupling experiments⁹.

¹H-N.M.R. spectra were determined on a Bruker CW 80 instrument. Chemical shifts are given in δ units [ppm] relative to tetramethylsilane as internal standard. I.R. spectra were determined on a Philips SP 2000 spectrophotometer and mass spectra were determined on a Jeol D 300 Mass spectrometer.

The starting materials were prepared according to the literature; Ref.⁴: 1a-d, 1g; Ref.³: 1f; Ref.⁵: 1e.

3-(1-Propenyl)-tetrahydro-2-furanone (2b); Typical Procedure:

A methanol solution (500 ml) of the (E)- or (Z)-isomer of 3-propylidene-4,5-dihydro-2(3H)-furanone (1b; 500 mg, 3.96 mmol) is purged with argon and irradiated at 254 nm in an apparatus equipped with 12 Philips TUV 15-lamps. The deconjugation reaction is followed by analytical T.L.C. on silica gel (Merck) using a mixture of petroleum ether/ethyl acetate (7/3) as eluent. The total conversion is obtained after 6.5 h. Then the solvent is evaporated under reduced pressure. As examined by ¹H-N.M.R. on the crude mixture, the chemical yield of 2b is almost quantitative.

The (E)- and (Z)-stereoisomers were separated on silica gel T.L.C. plates containing silver nitrate (10%) using a petroleum ether/ethyl acetate mixture (1/1).

Received: June 6, 1983

^{*} Address for correspondence.

M. Bortolussi, R. Bloch, J. M. Conia, Bull. Soc. Chim. Fr. 1975, 2727.

² G. D. Annis, S. V. Ley, C. R. Self, R. Sivaramakrishnan, J. Chem. Soc. Perkin Trans. 1 1981, 270.

³ T. Minami, I. Niki, T. Agawa, J. Org. Chem. 39, 3236 (1974).

⁴ G. M. Ksander, J. E. McMurry, M. Johnson, *J. Org. Chem.* **42**, 1180 (1977)

⁵ K. Tanaka, H. Uneme, N. Yamagishi, R. Tanigaka, A. Kaji, *Bull. Chem. Soc. Jpn.* **53**, 2910 (1980).

⁶ S. L. Eng, R. Ricard, C. S. K. Wan, A. C. Weedon, J. Chem. Soc. Chem. Commun. 1983, 236; and references cited therein.

⁷ N. C. Yang, M. J. Jorgenson, Tetrahedron Lett. 1964, 1203.

⁸ J. A. Barltrop, J. Wills, Tetrahedron Lett. 1968, 4987.

⁹ K. Ohga, T. Matsuo, Bull. Chem. Soc. Jpn. 46, 2181 (1973).