Short Reports

- 5. Cheng, K. P., Nagano, H., Bang, L. and Ourisson, G. (1977) J. Chem. Res. (S) 217; J. Chem. Res. (M) 2501.
- Nagano, H., Poyser, J. P., Cheng, K. P., Bang, L. and Ourisson, G. (1977) J. Chem. Res. (S) 218, J. Chem. Res. (M) 2522.
- 7. Van Lier, J. E. and Smith, L. L. (1970) J. Org. Chem. 35, 2627.
- Teng, T. J., Kulig, M. J., Smith, L. L. and Kang, G. (1973) J. Org. Chem. 38, 119.
- 9. Katsui, N., Matsue, H., Hirata, T. and Masamune, T. (1972) Bull. Chem. Soc. Jpn 45, 223.
- 10. Rohmer, M. and Brandt, R. (1973) Eur. J. Biochem. 36, 446.
- 11. Rohmer, M., Ourisson, G., Benveniste, P. and Bimpson, T. (1975) Phytochemistry 14, 727.
- Schroeder, G., Rohmer, M., Beck, J. P. and Anton, R. (1979) Planta Med. 35, 235.

Phytochemistry, 1980, Vol. 19, pp. 2215-2216. @ Pergamon Press Ltd. Printed in England.

0031 9422/80/1001 -2215 \$02.00/0

A PHENOLIC GLUCOSIDE FROM THE SEEDS OF CARUM COPTICUM

S. K. GARG, N. D. SHARMA and S. R. GUPTA

Department of Chemistry, University of Delhi, Delhi-110007, India

(Received 28 January 1980)

Key Word Index—Carum copticum; Umbelliferae; phenolic glucoside; 2-methyl-3-glucosyoxy-5-isopropylphenol; structure elucidation.

A continuation of our study of Indian medicinal plants [1, 2] has led to a chemical investigation of the seeds of *Carum copticum* and the isolation of a new phenolic glucoside, 2-methyl-3-O- β -D-glucosyloxy-5-isopropylphenol (1). *C. coptium* is cultivated both in the Mediterranean region and India and is known for its medicinal properties [3].

1, mp 177-8°, M⁺ 328, was obtained as a colourless powder. The spectral studies of 1 and its acetate, 2 showed the presence of two protons, a hydroxyl, a glucosyl, a methyl and an isopropyl group substituted in a benzene ring. A positive Gibb's test of 1 and of its acid hydrolysed methylether, 4 indicated that the glucosyloxy group is meta to the phenolic hydroxyl. If the glucosyloxy group was ortho to the hydroxyl, the two protons would appear as doublets of J = 10 Hz each. The appearance of two singlets at $\delta 6.82(1 \text{ H})$ and $\delta 7.0(1 \text{ H})$ confirms the presence of a glucosyloxy group at the 3-position in the phenol nucleus leaving positions 2 and 5 for the methyl and isopropyl groups. The possibility of an isopropyl group at position 2 was ruled out by direct comparison of the derivative 6 (see Experimental) with an authentic sample of thymol (2isopropyl-5-methylphenol) methyl ether. Permethylation [5] and hydrolysis of 1 gave 2,3,4,6-tetra-O-methyl-D-glucopyranose establishing that C_1 of the glucose is linked with the aglucone, 3. Finally, the β -linkage of the glucose was confirmed by enzymatic hydrolysis.

$$\mathbf{R} = \mathbf{H}, \mathbf{R}_1 = \mathbf{OGlc}.$$

- 2 $R = Ac, R_1 = -OGlc \cdot Ac_4$
- 3 $R = H, R_1 = -OH$
- 4 $R = Me, R_1 = OH$
- 5 $\mathbf{R} = \mathbf{Me}, \mathbf{R}_1 = -0 \cdot \mathbf{SO}_2 \cdot \mathbf{C}_6 \mathbf{H}_4 \cdot \mathbf{Me} p$

6
$$R = Me, R_1 = H$$

EXPERIMENTAL

UV spectra were recorded in MeOH and in the NMR spectra TMS was used as internal standard.

Extraction and Isolation. Dried C. copticum seeds (3.0 kg) were extracted successively with petrol, C_6H_6 and EtOH. The C_6H_6 insoluble portion of the EtOH extract was concd and chromatographed on a Si gel column (400 g) with a CHCl₃ \rightarrow MeOH gradient. The fractions eluted with CHCl₃-MeOH (23:2) on prep. TLC (Si gel, EtOAc-MeOH-H₂O, 100:16.5:13.5) yielded the glucoside, 1(500 mg).

Identification of 1 R_f s on Si gel: 0.43 (EtOAc-MeOH-H₂O, 100:16.5:13.5);0.55(CHCl₃-MeOH, 7:3); (Found: C, 58.2; H, 7.7.

C₁₆H₂₄O₇ requires: C, 58.5; H, 7.7%); UV λ_{max} nm (log ε); 260 (3.41), 275 (3.59) and 320 (3.14); IR(KBr) v cm⁻¹; 3378, 1510, 1452, 1371, 1253, 1060 and 822; MS *m/e* (% abundance); 328 (M⁺, 2), 194 (3), 167 (13), 166 (100), 151 (31), 137 (3), δ 91 (5) and 73 (8). It gave positive Molisch's and Gibb's tests. Acetate 2(Ac₂O/Pyridine), colourless powder from EtOAc-petrol, mp 106-107°; UV λ_{max} nm: 265, 275 and 320; IR(KBr) v cm⁻¹ 1743, 1500, 1370, 1216, 1038 and 912; ¹H NMR(CDCl₃): δ 1.20 and 1.29 (s, 3 H) each, gem diMe), 2.10 (*brs*, 12 H, 4 × -OCOMe), 2.18 (s, 3 H, -OCOMc), 2.34 (s, 3 H, Me), 3.0 (t, 1 H, → CH), 3.80-4.32 (m, 3 H, sugar protons), 4.93 5.41 (m, 4 H, sugar protons), 6.82 and 7.0 (s, 1 H each, H₆ and H₄).

1 (50 mg) was hydrolysed with H_2SO_4 (7 $^{\circ}_{0}$) for 4 hr. under reflux. The soln was extracted with EtOAc and D-glucose was detected in the aq. soln. The EtOAc extract on evapn gave the aglucone, **3**, as a light brown semi-solid, UV λ_{max} nm: 275 and 310; IR(KBr) v cm⁻¹: 3418, 1630, 1460, 1379, 1140 and 1090.1 (250 mg) was methylated with Me₂SO₄ K₂CO₃-Me₂CO for 30 hr and the methyl ether hydrolysed with H₂SO₄ (7 $^{\circ}_{0}$). The aglycone was extracted with Et₂O and purified by prep. TLC (Si gel, EtOAc-C₆H₆, 1: 49), when it was obtained as a dark brown semisolid, 4 M⁺ 180; UV λ_{max} nm: 285; IR(KBr) v cm⁻¹: 3420, 1610, 1491, 1442, 1338 and 1193; ⁻¹H NMR(CDCl₃): δ 1.12 and 1.20 (s, 3 H, gem diMe), 2.20 (s, 3 H, -Me), 3.21 (t, 1 H, \rightarrow CH), 3.8 (s, 3 H, -OMe) and 6.6 (s, 2 H, H₆ and H₄). It gave a positive Gibb's test.

4 (200 mg) was tosylated with $p \cdot Me \cdot C_6H_4 \cdot SO_2Cl \cdot K_2CO_3 - Me_2CO$ for 6 hr. filtered and purified by prep. TLC (SI gel,

EtOAc $-C_6 H_{6^*}$ 1:200) to yield 5 as a semi-solid, UV λ_{max} nm : 260 and 305; IR (KBr) v cm⁻¹: 1598, 1503, 1397, 1251, 1091 and 846. A mixture of 5 (120 mg), EtOH (10 ml), HCl (4 ml) and Zn granules (400 mg) [4] was refluxed for 1.5 hr filtered, evapd, cooled, diluted with H₂O, extracted with Et₂O and purified by prep. TLC (Si gel, C_6H_6) to yield 6 as a light brown semi-solid, UV λ_{max} nm: 275 and 305; IR(KBr) v cm⁻¹: 1614, 1598, 1397, 1250, 1147, 1059 and 812; ¹H NMR (CDCl₃): δ 0.96 and 1.04 (s, 3 H each, gem diMe), 2.35 (s, 3 H, Me), 3.14 (t, 1 H, \rightarrow CH), 3.78 (s, 3 H, -OMe), 6.53 (d, J = 4 Hz, 1 H, H₆), 7.22 (m, 1 H, H₄) and 7.47 (d, J = 9 Hz, 1 H, H₃). 6 was found to be different from an authentic sample of thymol methyl ether on direct comparison (TLC and IR).

Permethylation of 1 by Hakomori's method followed by acid hydrolysis gave 2,3,4,6-tetra-O-methyl-D-glucopyranose which was confirmed by direct comparison with an authentic sample. The β -configuration of the glucose linkage was established by the hydrolysis of 1 with emulsin.

REFERENCES

- Garg, S. K., Gupta, S. R. and Sharma, N. D. (1979) Phytochemistry 18, 1580.
- Garg, S.K., Gupta, S. R. and Sharma, N. D. (1980) Planta Med. 38, 186.
- 3. (1976) The Wealth of India, Raw Materials Vol. X, p. 267. CSIR. New Delhi.
- 4. Ahluwalia, V. K. and Sunita (1977) Indian J. Chem. 15b, 936.
- 5. Hakomori, S. (1964) J. Biochem. 55, 205.