OLIGOFURO- AND SPIRO-STANOSIDES OF ASPARAGUS ADSCENDENS

S. C. SHARMA and H. C. SHARMA

Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla-171005, India

(Revised received 19 August 1983)

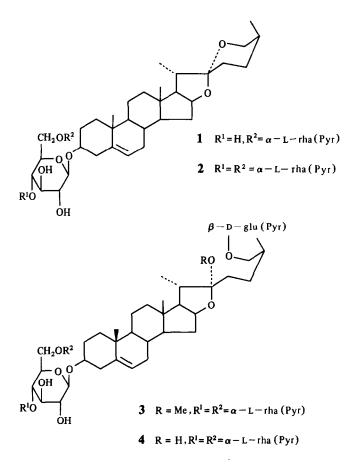
Key Word Index-Asparagus adscendens; Liliaceae; saponins; oligofurostanosides; spirostanosides.

Abstract—Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{ α -L-rhamnopyranosyl(1 \rightarrow 4}]{ α -L-rhamnopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl]-26-O-[β -D-glucopyranosyl]-22 α -methoxy-(25S)-furost-5-en-3 β ,26-diol (Adscendoside A), 3-O-[{ α -L-rhamnopyranosyl} (1 \rightarrow 6)}- β -D-glucopyranosyl]-26-O-[β -D-glucopyranosyl]-(25S)-furost-5-en-3 β ,22 α ,26-triol-(Adscendoside B), 3-O-[{ α -L-rhamnopyranosyl} (1 \rightarrow 6)}- β -D-glucopyranosyl]-(25S)-spirostan-5-en-3 β -0l (Adscendin A) and 3-O-[{ α -L-rhamnopyranosyl} (1 \rightarrow 4)}{ α -L-rhamnopyranosyl]-(25S)-spirostan-5-en-3 β -0l (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.

INTRODUCTION

Asparagus plants are widely used in medicine [1]. Isolation and characterization of four new spirostanosides and four oligofurostanosides from the fruits [2] and roots [3] of Asparagus adscendens have been published. Two new oligofurostanosides Adscendosides A (3) and B (4) and two spirostanosides Adscendins A (1) and B (2) are reported here from the methanol extract of the leaves of this plant.

RESULTS AND DISCUSSION


Chromatography of the saponin mixture obtained from the methanol extract of the leaves of A. adscendens afforded 1, 2 and an inseparable mixture of 3 and 4. Compounds 1 and 2 gave all the usual tests and IR data for unsaturated spirostanosides, while compounds 3 and 4 gave an intense red colour with the Ehrlich reagent [4, 5] and other characteristic tests of oligofurostanosides.

The mixture of 3 and 4 on refluxing with dioxane-water was converted to TLC homogeneous compound 4, $[\alpha]_D$ -92° (H₂O). By contrast, refluxing in dry methanol furnished TLC pure, non-crystallizable, compound 3, $[\alpha]_D - 89^\circ$ (MeOH), which exhibited a methoxy signal at $\delta 3.25$ in its ¹H NMR spectrum. Such transformations are known [6, 7] in oligofurostanosides. Therefore, the mixture of 3 and 4 was used as such for all studies. Enzymatic hydrolysis of 3 and 4 with β -glucosidase gave a saponin (identical by mmp and co-TLC with 2) and D-glucose. Thus, to determine the structures of 3 and 4 the structure of their artefact 2 was determined first.

On acid hydrolysis 2 gave yamogenin (comparison of physical data with lit., IR and MS), D-glucose and L-rhamnose (1:2, GC). The permethylate 2a of 2, $C_{45}H_{72}O_{16}$, mp 244-246°, $[\alpha]_{D}^{20} - 95^{\circ}$ (prepared by Hakomori's method [8]) on methanolysis gave a mixture of methyl pyranosides of 2,3,4-tri-O-methyl-L-rhamnose and 2,3-di-O-methyl-glucose (2:1, GC) which showed that two rhamnose molecules are attached at two different

carbon atoms (C-4 and C-6) of the glucose, whose C-1 is linked with C-3 of yamogenin. The identity of 2,3-di-Omethyl-D-glucose was further confirmed by its negative Wallenfels' reagent test [9] and resistance to periodate oxidation. The mass spectrum of 2a showed peaks at 980 $[M]^+$, 775 $[M - tri-O - methyl rhamnose + H]^+$, 323 [rhamnose unit at C-6 of D-glucose [10]], 189 [terminal rhamnose]. These conclusions were also supported by the partial hydrolysis of 2 to isolate three prosapogenins PS_1 , PS_2 (identical by mmp and co-TLC with 1) and PS_3 . Hydrolysis of PS_1 , PS_2 and PS_3 furnished yamogenin and D-glucose; PS_2 and PS_3 also provided L-rhamnose. Hydrolysis of PS₂ permethyl ether (1a) afforded 2,3,4-tri-O-methyl-rhamnose and 2,3,4-tri-O-methyl-D-glucose (negative to Wallenfels' reagent). PS3 permethyl ether on hydrolysis gave 2,3,4-tri-O-methyl-rhamnose and 2,3,6-tri-O-methyl-D-glucose. The identity of the latter sugar was confirmed by direct comparison (co-PC) with an authentic sample [7]. The exact configurations at the glycosidic points in all the compounds were established by Klyne's rule [11]. The Field Desorption mass spectrum (FDMS) of 2 fully corraborated the above conclusions through the following peaks at $m/2907 [M + K]^+$, i.e. $M^+ = 868 [413]$ + 455], cationized cluster ion peak 891 $[M + Na]^+$ (base peak), 745 $[(M + Na + H) - 147]^+$, 761 $[(M + K + H) - 147]^+$, 614 $[(M + K + H) - 294]^+$ and 598 $[(M + Na + H) - 147]^+$ $+H) - 294]^+$, 575 [(M + H) - 2 rhamnose]⁺. The loss of two units of mass 147 and formation of ion peaks at m/z745 and 598 clearly established the presence of two rhamnose units at the end of the sugar-chain and the ion peak at m/z 575 confirmed that one glucose molecule was attached to yamogenin. This data also confirmed the purity and molecular weight of this compound. From all these studies 1 and 2 were assigned the structures $3-O-\lceil \{\alpha - \beta\}$ L-rhamnopyranosyl $(1 \rightarrow 6)$ - β -D-glucopyranosyl]-(25S)spirostan-5-en-3 β -ol and 3-O-[{ α -L-rhamnopyranosyl $(1 \rightarrow 4)$ { α -L-rhamnopyranosyl $(1 \rightarrow 6)$ }- β -D-glucopyranosyl]-(25S)-spirostan-5-en-3 β -ol, respectively.

In order to ascertain how many glucose molecules are removed in the transformation of 3 and 4 into 2, the

mixture of 3 and 4 was permethylated and methanolysed to yield the methyl pyranosides of 2,3,4-tri-O-methyl-Lrhamnose, 2,3,4,6-tetra-O-methyl-D-glucose and 2,3-di-Omethyl-D-glucose (2:1:1, GC). These results showed the appearance of only one additional molecule of 2,3,4,6tetra-O-methyl-D-glucose as compared to the methanolysis results of 2a. This implies that the sugar chain present in 2 at C-3 of yamogenin is intact in both these compounds and the additional 2,3,4,6-tetra-O-methyl-Dglucose molecule arises from a glucose attached at C-26 of the furostane skeleton. This fact was further supported by oxidative degradation [7] of 3 and 4 to afford 3β acetoxypregn-5,16-dien-20-one (IR, MS) and δ -hydroxy- γ -methyl-valeric acid-ester glucoside-tetraacetate, m/z 331 (tetra-O-acetyl glucopyranosyl ion) and other peaks in accordance with the expected pattern [12]. Its identity was also confirmed by direct comparison (co-TLC) with an authentic sample [7]. Therefore, 3 and 4 were assigned the structures 3- \bar{O} -[{ α -L-rhamnopyranosyl (1 \rightarrow 4)}{ α -Lrhamnopyranosyl $(1 \rightarrow 6)$ - β - D- glucopyranosyl - 26- O-[β-D-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en- $\overline{3\beta}$,26-diol, and 3-O-[$\overline{\alpha}$ -L-rhamnopyranosyl(1 \rightarrow 4)} { α -L-rhamnopyranosyl $(1 \rightarrow 6)$ - β - D- glucopyranosyl - 26-O- $[\beta$ -D-glucopyranosyl]-(25S)-furost-5-en-3 β -22 α ,26-triol, respectively.

EXPERIMENTAL

All mps are uncorr. CC was carried out on silica gel (60–120 mesh) and TLC on silica gel G. Spots on TLC were developed with 10% H₂SO₄ followed by heating. PC was carried out on Whatman No. 1 paper using the descending method and aniline

hydrogen phthalate as visualizer. The following solvent systems were employed: Solvent A, $CHCl_3-MeOH-H_2O$ (65:30:10); Solvent B, $CHCl_3-MeOH-H_2O$ (65:35:10); Solvent C, $C_6H_6-EtOAc$ (9:1); Solvent D, $C_6H_6-EtOAc$ (4:1); Solvent E, *n*-BuOH-HOAc-H_2O (4:1:5); Solvent F, *n*-BuOH-EtOH-H_2O (5:1:4). GC of methyl methylated sugars; succinate polyester (10% H.P.) column, N₂, 30 ml/min. Oven temp. 175°.

Isolation of saponins. Asparagus adscendens Roxb. leaves (2 kg) were collected from Bilaspur (H.P.) in August, dried, coarsely powdered and defatted with petrol in a Soxhlet and solvent free powder was then exhaustively extracted with 90% aq. MeOH. Evaporation of the solvent under red. pres. gave a crude saponin mixture (14.0 g) which was purified as usual for the isolation of saponins. The saponin mixture, thus obtained, was chromatographed (solvent A) to afford Adscendin A (1, 800 mg), Adscendin B (2, 3 g) and a mixture of Adscendosides A and B (3 and 4, 4 g).

Compound 1. Mp 219-221°, $[\alpha]_{20}^{20} - 102°$ (pyridine, c 1.0); IR ν_{max}^{KBr} cm⁻¹: 3400 (OH), 980, 915, 896 and 850 (intensity 915 > 896, 25S-spiroketal). (Found: C, 64.95; H, 8.30. C₃₉H₆₂O₁₂ requires: C, 64.82; H, 8.59 %.)

Compound 2. Colourless needles from MeOH, mp 244–246°, $[\alpha]_{D}^{20} - 95^{\circ}$ (pyridine, c 1.0); IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 980, 915, 896, 850 (intensity 915 > 896, 25S-spiroketal); ¹H NMR (C₅D₅N): δ 4.82 (1H, d, J = 6 Hz), 4.98 (1H, br s), 5.23 (1H, br s). (Found: C, 61.85; H, 8.01. C₄₅H₇₂O₁₆ requires C, 62.21; H, 8.29 $\frac{9}{3}$)

Compound 3. The mixture of 3 and 4 (1 g) was refluxed with dry MeOH (100 ml) for 6 hr. The soln was coned and cooled to afford 3, TLC homogeneous (solvent B) amorphous solid, $[\alpha]_D^{0} - 89^{\circ}$ (MeOH; c 1.0); IR v $_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), no spiroketal absorptions; ¹H NMR (C₅D₅N): δ 3.25 (3H, s, OMe-22), 4.82 (1H, d, J = 6 Hz) 4.98 (1H, br s), 5.10 (1H, d, J = 6 Hz), 5.25 (1H, br s). (Found: C, 58.19; H, 7.75; C₅₂H₈₆O₂₂ requires: C, 58.85; H, 8.09 %)

Compound 4. The mixture of 3 and 4 (900 mg) was refluxed with dioxanc-H₂O (1:1, 50 ml) for 10 hr, concd, cooled to give TLC homogeneous compound 4 (solvent B) as an amorphous solid (not crystallizable), $[\alpha]_{20}^{20} - 92^{\circ}$ (H₂O, c 1.0); IR $\nu _{\text{max}}^{\text{Kb}}$ rcm⁻¹: 3400 (OH) no spiroketal absorptions. (Found: C, 57.25; H, 8.30; C₅₁H₈₄O₂₂ requires C, 58.39; H, 8.01 %)

Enzymatic hydrolysis of 3 and 4. Compounds 3 and 4 (50 mg) were taken up in H₂O (20 ml) and incubated with β -glucosidase. Toluene (2 ml) was added and the soln was kept for 36 hr at room temp. Compound 2 was detected on TLC (solvent B) and PC showed D-glucose (solvent E).

Acid hydrolysis of 1 and 2. Compounds 1 and 2 (100 mg each) were separately hydrolysed by refluxing with 7% H₂SO₄ (25 ml) for 2 hr, cooled and filtered to afford the aglycone (yamogenin); colourless needles (MeOH), mp 200–202°, $[\alpha]_D^{20} - 126°$ (CHCl₃; c 1.0); lit. [13, 14] mp 201°, $[\alpha]_D^{20} - 129°$; IR v^{KBr} cm⁻¹: 3400 (OH), 980, 915, 896, 850 (intensity 915 > 896, 25S-spiroketal); EIMS (probe) 70 eV, m/z; 414 [M⁺], 355, 345, 342, 300, 285, 271, 139 (base peak). (Found: C, 78.19; H, 10.11; C₂₇H₄₂O₃ calc. for C, 78.26; H, 10.14%). The neutralized (Ag₂CO₃) and concd aq. hydrolysate of 1 and 2 showed D-glucose and L-rhamnose (PC, solvent E, R_f s 0.18 and 0.37, respectively).

Permethylation of 1, 2 and a mixture of 3 and 4. Compounds 1 (350 mg), 2 (500 mg), 3 and 4 (500 mg) were separately permethylated by Hakomori's method to yield their permethylates (1a, 2a, 3a and 4a respectively), which were purified by CC (solvent D).

Compound 1a. Mp 58–59°, $[\alpha]_{18}^{18} - 97^{\circ}$ (CHCl₃; c 1.3); IR ν_{max}^{KBr} cm⁻¹: no OH; EIMS (probe) 70 eV, *m/z*: 806 [M]⁺, 601 [M - tri-0-methyl-rhamnose + H]⁺, 397, 323, 189, 157, 139, 101, 88, 75, 71, 55, 45. (Found: C, 66.96; H, 9.12; C₄₅H₇₄O₁₂ requires C, 66.99; H, 9.18%.)

Methanolysis of 1a. Compound 1a (100 mg) in 1 N HCl-MeOH (1:1, 15 ml) was refluxed (4 hr), neutralized, filtered and the filtrate after concn was subjected to GC; RR_t (min): 0.80 (2,3,4-tri-O-methyl-L-rhamnopyranoside and 0.90 (2,3,4-tri-O-methyl-D-glucopyranoside), whose hydrolysis afforded 2,3,4-tri-O-methyl-L-rhamnose and 2,3,4-tri-O-methyl-D-glucose (PC, solvent F, R_G values 1.01 and 0.85 respectively). Both these methylated sugars were negative to Wallenfels' reagent test.

Compound 2a. Mp $81-83^{\circ}$, $[\alpha]_{D}^{20}-93^{\circ}$ (CHCl₃; c 1.0); IR v_{max}^{KBr} cm⁻¹: no OH; EIMS (probe) 70 eV, m/z: 980 [M]⁺, 948 [M - MeOH]⁺, 775 [M - tri-O-methyl-L-rhamnose + H]⁺, 397, 323, 189 (terminal rhamnose) 157, 139, 101, 88. (Found: C, 64.75; H, 8.57; C₅₃H₈₈O₁₆ requires: C, 64.89; H, 8.98 %.)

Methanolysis of 2a. Compound 2a (100 mg) was methanolysed and the products examined by GC to yield the methyl pyranosides of 2,3,4-tri-O-methyl-L-rhamnose (RR_t 0.8 min) and 2,3-di-O-methyl-D-glucose (RR_t 1.37 min) as a 2:1 mixture, which on hydrolysis liberated sugars identified by PC (solvent F): R_G 1.01 (2,3,4-tri-O-methyl-L-rhamnose), 0.57 (2,3-di-O-methyl-Dglucose; no pink colour with Wallenfels' reagent). NaIO₄ oxidation (as above) of the above mixture of methylated sugars did not show the disappearance of any of the spots previously present.

Partial hydrolysis of 2. A soln of 2 (1.5 g) in 5% aq. HCl was refluxed for 30 min, concd under red. pres., H₂O (30 ml) added and the ppt removed by filtration. The aq. filtrate was neutralized with 5% aq. KOH, extracted with *n*-BuOH (50 ml, \times 2) and the *n*-butanol removed from the extract under vacuum. The resulting residue and the above ppt were together subjected to CC (solvent A) to yield yamogenin (50 mg), PS₁ (100 mg), PS₂ (250 mg), PS₃ (200 mg) and 2 (100 mg).

Permethylation of PS_1 and PS_3 . PS_1 (50 mg) and PS_3 (100 mg) were permethylated, methanolysed and hydrolysed. 2,3,4,6-

Tetra-O-methyl-D-glucose was obtained from PS₁ (co-PC, $R_G = 1.0$, solvent F); 2,3,4-tri-O-methyl-L-rhamnose ($R_G = 1.01$) and 2,3,6-tri-O-methyl-D-glucose ($R_G = 0.83$) were obtained from PS₃.

FDMS of 2. m/z: 907 $[M+K]^+$ i.e., $M^+ = 868 [413+455]$, 891 $[M+Na]^+$ (base peak), 745 $[(M+Na+H)-147]^+$, 761 $[(M+K+H)-147]^+$, 614 $[(M+K+H)-294]^+$ and 598 $[(M+Na+H)-294]^+$, 575 $[(M+H)-294]^+$.

Periodate oxidation of 2. Compound 2 (25 mg) in H_2O (10 ml) was mixed with NaIO₄ (250 mg) and the soln was kept in the dark for 48 hr. Ethylene glycol (1 ml) was added to decompose excess NaIO₄ and the soln was hydrolysed with 10% MeOH-HCI (45 min). It was filtered, the filtrate neutralized, concd and examined by PC (solvent E), which did not show the presence of any monosaccharide.

CrO₃ oxidation of 3 and 4. Compounds 3 and 4 acetates (1 g, prepared as usual) were taken up in Ac₂O (20 ml), refluxed (1 hr), cooled and H₂O (10 ml) added. The mixture was dried under red. pres. and to the residue were added HOAc (15 ml) and NaOAc (250 mg). To the mixture at 15° was added CrO₃ (800 mg) in 50% HOAc (15 ml) over 15 min with continuous stirring for 2 hr. The reaction mixture was diluted with H₂O (50 ml) and extracted with Et₂O. The Et₂O extract was evaporated to dryness, the residue taken up in t-BuOH (25 ml) and KOH (1.5 g) in H₂O (15 ml) added. It was stirred at 30° for 4 hr under N₂, H₂O (20 ml) added, t-BuOH removed and extracted with *n*-BuOH.

 3β -Acetoxy-pregn-5,16-dien-20-one. The *n*-BuOH extract was concd to dryness and the residue purified by CC (solvent A). The purified glycoside was hydrolysed by refluxing with 5% HCl-toluene (20 ml) for 4 hr. The reaction mixture was cooled and the toluene phase separated, evaporated and acetylated as usual to yield a solid; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1724, 1662, 958, 920, 895, 820; EIMS (probe), 70 eV, *m/z*: 356 [M]⁺; UV λ_{max} : 239 nm.

 δ -Hydroxy- γ -methyl-valeric acid methyl ester-glucoside tetra acetate. The above aq. phase was adjusted to pH 3 with 2 N HCl, and extracted alternatively with *n*-BuOH and CHCl₃. The aq. phase was neutralized with 2 N NaOH and evaporated. The residue was acetylated, worked up as usual and treated with CH₂N₂ (15 ml) for 15 min. The reaction mixture was evaporated to yield a syrup. EIMS (probe), 70 eV, m/z: 331, 243, 242, 200, 169, 157, 145, 141, 140, 129, 115, 109, 103, 98, 97, 45.

Methanolysis of 3a and 4a. The mixture of 3a and 4a (100 mg) was methanolysed and worked up as usual to afford a mixture of methylpyranosides of the following sugars: GC, RR_t (min): 0.80 (2,3,4-tri-O-methyl-L-rhamnose), 0.83 (2,3,4,6-tetra-O-methyl-D-glucose) and 1.37 (2,3-di-O-methyl-D-glucose) in the ratio 2:1:1.

Acknowledgements—We are thankful to Professor Dr. G. Spiteller, Bayreuth for MS and Dr. K. Yamasaki, Japan for FDMS. Thanks are also due to FRI, Dehradun for the identification of the plant.

REFERENCES

- 1. Kirtikar, K. R., and Basu, B. D. (1918) Indian Medicinal Plants, p. 2499. M/s Periodical Experts, Delhi.
- Sharma, S. C., Chand, R., and Sati, O. P. (1982) Phytochemistry 21, 2075.
- Sharma, S. C., Chand, R., Bhatti, B. S., and Sati, O. P. (1982) *Planta Med.* 46, 48.
- Stahl, E. (1965) Thin Layer Chromatography, p. 490. Springer, Berlin. Academic Press, New York.
- Kiyosawa, S., Hutoh, M., Komori, T., Nohara, T., Hosokawa, I. and Kawasaki, T. (1968) Chem. Pharm. Bull. (Tokyo) 16, 1162.

- Tschesche, R., Seidel, L., Sharma, S. C., and Wulff, G. (1972) Chem. Ber. 105, 3397.
- 7. Sharma, S. C., Sati, O. P. and Chand, R. (1982) Phytochemistry 21, 1711.
- 8. Hakomori, S. (1964) J. Biochem. (Tokyo) 55, 205.
- 9. Wallenfels, K. (1950) Naturwissenschaften 37, 491.
- Aspinall, G. O. (1973) MTP International Review of Science (Carbohydrates) Vol. 7, p. 174. Butterworths, London. University Park Press, Baltimore.
- 11. Klyne, W. (1950) Biochem. J. 47, 4.
- Biemann, K., Dejongh, D. C. and Schnoes, H. K. (1963) J. Am. Chem. Soc. 85, 1763.
- Marker, R. E., Wagner, R. B., Ulshafer, P. R., Wittbecker, E. L., Goldsmith, D. P. J. and Ruof, C. R. (1943) J. Am. Chem. Soc. 65, 1199.
- Marker, R. E., Wagner, R. B., Ulshafer, P. R., Wittbecker, E. L., Goldsmith, D. P. J. and Ruof, C. R. (1947) J. Am. Chem. Soc. 69, 2167.