APPLICATION OF VICINAL CARBON-PROTON COUPLING CON-STANTS TO THE CONFORMATIONAL ANALYSIS OF BENZYLIDENE-TYPE ACETALS OF 1,6-ANHYDRO- β -D-HEXOPYRANOSES

FELIX H. CANO, CONCHA FOCES-FOCES,

Departamento de Rayos X, Instituto de Química-Física "Rocasolano", C.S.I.C., Serrano 119, 28006 Madrid (Spain)

JESUS JIMENEZ-BARBERO, MANUEL BERNABE, AND MANUEL MARTIN-LOMAS Instituto de Química Orgánica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid (Spain) (Received March 28th, 1986; accepted for publication, May 14th, 1986)

ABSTRACT

¹³C-N.m.r. chemical shifts and ${}^{3}J_{C,H}$ values have been used to investigate the conformation of dioxolane-type acetals of 1,6-anhydro- β -D-hexopyranoses. The crystal structures of some of these compounds have been determined by X-ray diffraction methods. The conformations in solution accord with those in the solid state.

INTRODUCTION

Dioxolane-type acetals cis-fused to dioxolane rings distort the usual chair conformation of the six-membered ring 1,2 . The conformation in solution of pyranoid rings can be investigated by ¹H-n.m.r. spectroscopy³, but this technique is not adequate to study the conformation of dioxolane rings. Carbon-proton vicinal couplings also depend on torsion angles and may give information on the conformation of these rings. Acetal carbons of dioxolane-type acetals cis-fused to pyranoid rings show heteronuclear coupling only with axial bridgehead protons, and the values of these couplings and the chemical shifts of the signals of the carbons involved in the dioxolane ring can be correlated with the configuration of the acetal carbon¹. In order to relate heteronuclear couplings with torsion angles in dioxolanetype acetals of carbohydrate derivatives, it is necessary to study such rigid molecules as the dioxolane-type acetals of 1,6-anhydro- β -D-hexopyranoses^{4,5}. We now report on the ¹H- and ¹³C-n.m.r. spectra of 2-O-acetyl-1,6-anhydro-3,4-O-(S)benzylidene- β -D-galactopyranose (1), 2-O-acetyl-1,6-anhydro-3,4-O-(R)-benzylidene- β -D-galactopyranose (2), 4-O-acetyl-1,6-anhydro-2,3-O-(S)-benzylidene- β -Dmannopyranose (3), 4-O-acetyl-1,6-anhydro-2,3-O-(R)-benzylidene- β -D-mannopyranose (4), 1,6-anhydro-4-O-benzoyl-2,3-O-(S)-benzylidene- β -D-gulopyranose (5), and 1,6-anhydro-4-O-benzoyl-2,3-O-(R)-benzylidene- β -D-gulopyranose (6). The crystal and molecular structures of 1-3 have been determined.

RESULTS AND DISCUSSION

The 300-MHz ¹H-n.m.r. spectra of **1–6** have been analysed, and the computed best values of the chemical shifts and coupling constants are given in Table I. Table II shows the vicinal proton torsion angles of the pyranoid ring calculated from the ${}^{3}J_{H,H}$ values using the equation of Altona⁶. The conformations of the pyranoid rings of **1–6** can be described as flattened ${}^{1}C_{4}(D)$, which is caused by the *cis*-fusion of the dioxolane ring. The values of the torsion angles suggest that the pyranoid ring of the *endo*-phenyl compounds (**1**, **3**, and **5**) is more distorted than that of the *exo*-phenyl (**2**, **4**, and **6**) isomers.

Although ${}^{3}J_{C,H}$ depends on several factors^{7,8}, a Karplus-like relationship has been suggested⁹. Table III shows $J_{C-6,H-1}$, the coupling between C-7 and the bridge-

FABLE	I		

¹H-N.M.R. SPECTRAL PARAMETERS (δ) and J (Hz) of **1–6** in CDCl₃

Parameter	Compo	und				
	1	2	3	4	5	6
H-1	5.359	5.373	5.534	5.568	5.765	5.691
H-2	4.955	4.987	4.212	4.376	4.273	4,249
H-3	4.158	3.846	4.173	4.165	4.561	4.764
H-4	4.518	4.534	5.119	5.138	5.380	5.432
H-5	4.585	4.590	4.617	4.618	4.862	4.830
H-6endo	4.071	4.123	4.075	4.173	4,062	4.035
H-6exo	3.446	3.684	3.838	3.824	3.738	3.719
J _{1.2}	1.0	1.0	3.1	2.9	1.3	0.7
$J_{13}^{1.2}$	0.5	0.5	1.0	0.7	0.0	0.0
J_{15}^{**}	0.2	0.2	0.1	0.7	0.1	0.5
J ₂₃	0.8	0.9	6.9	6.0	7.2	6.3
J_{34}	7.3	6.7	0.5	0.7	5.2	5.8
J _{3.5}	0.5	0.5	1.0	0.5	0.0	0.0
J _{4.5}	5.7	6.0	1.0	0.8	5.5	5.5
J4 berg	0.5	0.5	0.0	0.0	0.8	0.5
J5. bendo	0.5	0.4	1.4	0.5	1.0	1.0
J _{5.6exa}	5.8	5.3	6.2	5.7	5.6	5.5
J _{bendo, bexo}	-7.6	-7.7	-7.6	-7.5	-7.9	-8.2

6

-145

47

84

31

47

-147

PROTON TORSION	ANGLES (DEGREES) F	OR 1-6 FROM	N.M.R. DATA	1 6	
Angle	Сотрои	ınd			
	1	2	3	4	5
$\phi_{1,2} \\ \phi_{2,3}$	89 85	89 85	-58 24	-60 33	86 22

-23

44

95

-80

95

-80

TABLE II

 $\phi_{3,4}$ $\phi_{4,5}$

PROTON TORSION ANGLES	(DEGREES) FOR 1–6	FROM N.M.R.	DATA ⁶
-----------------------	----------	------------------	-------------	-------------------

-18

48

head protons, and also the coupling between the acetal proton (H-7) and the bridgehead carbon atoms. These last values were determined by selective decoupling of the protons and observation of the fully coupled carbon spectra. The values for $J_{C_{6,H-1}}$ are almost the same in all of the compounds and, due to the rigidity of the 1,6-anhydro bridge, could be taken as model values for a torsion angle of $\sim 140^{\circ}$ in carbohydrate derivatives. The acetal carbon shows coupling only with an axial bridgehead proton. These values are larger for the exo-phenyl (2, 4, and 6) than for the endo-phenyl isomers (1, 3, and 5). The couplings of H-7 can be only observed in 2 and 4. An ^{03}E conformation could be assigned to the benzylidene ring of 1 and 2 on the basis of the small values for $J_{C-7,H-3}$, $J_{C-7,H-4}$, and $J_{C-4,H-7}$ (torsion angles ~120°) and the large value for $J_{C-3,H-7}$ in 2 (torsion angle ~140°). A similar conformation could be assigned to the benzylidene ring of 3. The data for 4 indicate a different conformation of the benzylidene ring of this compound. A ${}^{2}T_{o2}$ somewhat distorted towards a ${}^{2}E$ conformation would account for the large $J_{C-7,H-2}$ and the small $J_{C-2,H-7}$ and $J_{C-3,H-7}$ values. On the same basis, the conformation of the benzylidene ring of 5 could be described as $E_{\alpha 2}$ and that of 6 as ${}^{\alpha 3}E$. Thus, the conformation of the benzylidene ring would be the same for both galactopyranose derivatives (1 and 2), but would depend on the configuration at C-7 in the mannopyranose (3 and 4) and gulopyranose (5 and 6) derivatives.

TABLE	Ш
-------	---

Ј _{<i>с,н</i>}	Compo	und					
	1	2	3	4	5	6	
J _{C2 H2}		_	0.0	1.2	0.0	0.0	
J _{C-3 H-7}	0.0	4.5	0.0	2.1	0.0	0.0	
J _{C-4 H-7}	0.0	0.5					
J _{C-7.H-2}	_	_	2.8	5.7	0.0	0.0	
J _{C-7 H-3}	0.0	0.0	0.0	0.0	3.2	6.0	
J _{C-7 H-4}	2.1	3.2	_	-		_	
J _{C-6,H-1}	5.2	5.3	6.0	5.8	5.6	5.6	

 $J_{C,H}$ values for solutions of **1–6** in CDCl₃

4 F. H. CANO, C. FOCES-FOCES, J. JIMENEZ-BARBERO, M. BERNABE, M. MARTIN-LOMAS

TABLE IV

Atom	Compou	nd				
	1	2	3	4	5	6
C-1	99.0	98.8	98.9	99.6	98.6	99.5
C-2	70.9	70.6	71.3	73.1	77.0	75.6
C-3	75.3	73.0	75.7	73.5	74.6	75.7
C-4	69.5	70.0	70.9	70.8	73.1	71.5
C-5	72.3	72.4	73.2	73.0	71.8	70.0
C-6	63.6	63.9	64.5	65.1	63.3	63.4
C-7	103.0	103.6	104.4	104.8	105.7	104.0

¹³C-N.M.R. CHEMICAL SHIFT DATA FOR SOLUTIONS OF **1–6** IN CDCl₃

TABLE V

EXPERIMENTAL TORSION ANGLES (DEGREES) FOR THE PYRANOID, 1,6-ANHYDRO, AND DIOXOLANE RINGS IN 1-3

Angles	Compound			
	1	2	3	
Pyranoid ring				
0-5-C-1-C-2-C-3	-50.4(4)	-51.9(4)	-52.6(3)	
C-1-C-2-C-3-C-4	23.5(4)	27.1(4)	24.3(3)	
C-2C-3C-4C-5	-24.1(4)	-28.9(4)	-22.8(3)	
C-3-C-4-C-5-O-5	51.8(4)	53.6(3)	49.2(3)	
C-4-C-5-O-5-C-1	-77.0(3)	-77.1(3)	-77.8(2)	
C-5-O-5-C-1-C-2	77.1(3)	77.3(3)	78.6(2)	
1,6-Anhydro ring				
0-5-C-1-O-1-C-6	20.2(4)	20.1(3)	24.5(3)	
C-1-O-1-C-6-C-5	7.7(4)	7.4(3)	2.1(3)	
0-1-C-6-C-50-5	-32.6(4)	-31.3(3)	-27.1(3)	
C-6-C-5-O-5-C-1	43.6(3)	43.7(3)	41.4(2)	
C-5-O-5-C-1-O-1	-42.1(4)	-40.6(3)	-41.9(2)	
Dioxolane ring				
C-2-O-2-C-7-O-3	_		-23.7(2)	
0-2-C-7-0-3-C-3			40.1(2)	
C-7O-3C-3C-2	_		-39.7(2)	
0-3-C-3-C-2-0-2			25.1(2)	
C-3-C-2-O-2-C-7	_		-1.2(2)	
C-3O-3C-7O-4	-39.5(3)	-32.1(3)	<u> </u>	
O-3-C-7-O-4-C-4	24.6(3)	13.0(3)		
C-7-O-4-C-4-C-3	0.3(3)	9.9(3)	_	
0-4-C-4-C-3-0-3	-24.4(3)	-28.7(3)	_	
C-4-C-3-O-3-C-7	39.4(3)	37.2(3)	—	

TABLE VI

PROTON-PROTON AND CARBON-PROTON TORSION ANGLES (DEGREES) FROM X-RAY ANALYSES FOR 1-3

Angles	Compound			
	1	2	3	
H-1-C-1-C-2-H-2	65(4)	60(3)	-53(3)	
H-2-C-2-C-3-H-3	-91(3)	-83(3)	28(3)	
H-3-C-3-C-4-H-4	-21(3)	-29(3)	90(3)	
H-4-C-4-C-5-H-5	42(4)	39(3)	-68(3)	
C-2-O-2-C-7-H-7	_ ``	_	94(4)	
C-3-O-3-C-7-H-7	75(3)	127(3)	-73(3)	
C-4-O-4-C-7-H-7	-93(4)	-144(3)	_ ``	
C-7-O-2-C-2-H-2	_ ``	_	-117(2)	
C-7-O-7-C-3-H-3	-76(2)	-81(2)	76(2)	
C-7O-7C-4H-4	119(2)	131(3)		
C-6-O-1-C-1-H-1	136(3)	137(2)	145(2)	

The ¹³C-n.m.r. chemical shifts of 1-6 are shown in Table IV. It has been reported¹ that the value for the signal of the carbon atom bearing the axial-oxygen is 2-3 p.p.m. higher and that of the signal of the carbon atom bearing the equatorial-oxygen is 1-2 p.p.m. lower, in the *endo*-phenyl (1, 3, and 5) than in the *exo*-phenyl (2, 4, and 6) derivatives. Our data accord with these results, except for C-4 of 1 and 2 for which a chemical shift difference of only 0.5 p.p.m. was found.

Tables V and VI show the main geometrical features of the molecular structures of 1-3 in the solid state, following the numbering scheme presented in Figs. 1-3. Bond lengths are similar to those found in other carbohydrate derivatives¹⁰⁻¹³, although 2 displays systematically lower values. The differences in bond angles reflect the arrangement of the substituents in the pyranoid rings. The conformation of the pyranoid rings can be described as ${}^{1}C_{4}$, flattened at C-3. The 1,6-anhydro bridges show an ${}^{05}E$ conformation, and the other dioxolane moieties present

Fig. 1. ORTEP¹⁸ view of the structure of 1, showing the atomic numbering.

Fig. 2. ORTEP¹⁸ view of the structure of 2, showing the atomic numbering.

Fig. 3. ORTEP¹⁸ view of the structure of 3, showing the atomic numbering.

envelopes at O-3 although distorted towards a half-chair for 2. There exists a reasonable agreement with the proposed conformations in solution for 1-3.

EXPERIMENTAL

General methods. — Melting points were determined in capillary tubes and are uncorrected. T.l.c. was performed on Silica gel GF_{254} (Merck) with detection by charring with sulfuric acid. Flash column chromatography was performed on Macherey Nagel (230–400 mesh) silica gel. Optical rotations were determined with a Perkin–Elmer 141 polarimeter.

_
h
~
•
r - 3
ш.
~
<u> </u>
-
m
~
~
E
_

Ϊ.
R
ß
R
Ē
\$
E
E
E
ĝ
8
AT.
2
Ē
Æ
₹
Z
RE
5
S.
Ĕ
LS.
Ĕ.
ž
5

Crvstal data	1	2	3
Formulae Crystal habit	C ₁₅ H ₁₆ O ₆ Prismatic transnarent colourless	C _{ls} H ₁₆ O ₆	C _{Is} H ₁₆ O ₆
Crystal size	$0.43 \times 0.33 \times 0.07 \mathrm{mm}$	$0.17 \times 0.23 \times 0.43 \mathrm{mm}$	$0.13 \times 0.30 \times 0.43 \mathrm{mm}$
Symmetry Unit-cell determination	Least-souares fit. from 86	from 80	$r z_{1} z_{1} z_{1}$, or thormomore from 92
Unit-cell dimensions [a, b, c (Å)] β (°)	19.0795(4), 11.7456(2),	13.0997(8), 5.5143(2),	17.6301(7), 10.7603(3),
Packing: V(Å3) Z	5.9621(1), 90 1305 05/31 4	9.8036(4), 105.842(4) 681-77(6) - 2	7.3755(1), 90
$D_{\mathfrak{c}}(\mathbf{g}.\mathbf{cm}^{-3}),\mathbf{M}$	1388, 616	1454, 616	1425, 308
Experimental data			
Technique	Four-circle, PW-1100, bisecting geo	metry, $\omega/2\theta$, CuK _a , $\theta_{max} = 65^{\circ}$, 1 min	/ref.
Independent reflexions	1371	1289	1398
Observed	1282 [3 <i>o</i> (<i>I</i>) criterion]	1237, same	1335, same
Standard	2 reflexions every 90 min; no variati	ion	
Solution and refinement			
Solution, refinement	Multan ¹⁹ , least squares on Fs with	one block	
Variables, degrees of freedom	254, 1081	254, 1028	253, 984
Final shift/error	0.06	0.09	0.05
Ratio of freedom	5.1	4.9	5.3
w-scheme	Empirical to give no trends in $\Delta^2 F$ v.	s. $ F_{obs} $ and sin θ/λ	
Max. thermal value (A ²)	U_{33} (C-15) = 0.104(3)	$U_{22}(C-15) = 0.099(3)$	U_{33} (C-15) = 0.090(3)
Final ΔF peaks (eA ⁻³)	0.14	0.17	0.12
Final R and R _w	0.042, 0.051	0.039, 0.043	0.032, 0.037
Computing	X-Ray 76 on a Vax 11/750 ²⁰		
Scattering factors	International Tables for X-Ray crys	stallography ²¹	

TABLE VIII

Atom	x/a	y/b	zic
O-1	0.3351(1)	0.4037(2)	0.6850(6)
O-2	0.4715(1)	0.2169(2)	0.5329(4)
O-3	0.3018(1)	0.1469(2)	0.7019(4)
O-4	0.2495(1)	0.1675(2)	0.3680(4)
O-5	0.3843(1)	0.3772(2)	0.3451(5)
O-6	0.4925(1)	0.0857(3)	0.7917(6)
C-1	0.3948(2)	0.3665(3)	0.5788(7)
C-2	0.4076(2)	0.2436(3)	0.6363(6)
C-3	0.3545(1)	0.1641(3)	0.5416(6)
C-4	0.3165(2)	0.2091(3)	0.3369(5)
C-5	0.3157(2)	0.3385(3)	0.3224(7)
C-6	0.2821(2)	0.3974(4)	0.5175(9)
C-7	0.2482(2)	0.1040(3)	0.5734(5)
C-8	0.1822(1)	0.1178(3)	0.6874(5)
C-9	0.1261(2)	0.0648(3)	0.5963(6)
C-10	0.0643(2)	0.0748(3)	0.7004(7)
C-11	0.0583(2)	0.1351(4)	0.8954(7)
C-12	0.1134(2)	0.1860(4)	0.9883(7)
C-13	0.1756(2)	0.1780(3)	0.8861(6)
C-14	0.5091(2)	0.1349(3)	0.6271(7)
C-15	0.5716(2)	0.1148(4)	0.4955(10)

FINAL ATOMIC CO-ORDINATES FOR COMPOUND 1

Materials. — Compounds 1 and 2 were prepared as reported in the literature¹⁴.
2-O-Acetyl-1,6-anhydro-2,3-O-[(R) and (S)]-benzylidene-β-D-mannopyranose (3 and 4). — Conventional treatment with acetic anhydride and pyridine of 1,6-anhydro-2,3-O-[(R) and (S)]-benzylidene-β-D-mannopyranose¹⁵, followed by flash chromatography (hexane-ethyl acetate, 4:1) of the product, gave 3, m.p. 190–192°, [α]_D²⁰ -92° (c 0.7, chloroform).

Anal. Calc. for C₁₅H₁₆O₆: C, 61.64; H, 5.52. Found: C, 61.42; H, 5.60.

Compound 4 was isolated as a syrup, $[\alpha]_D^{20} - 42^\circ$ (c 0.5, chloroform).

Anal. Calc. for C₁₅H₁₆O₆: C, 61.64; H, 5.52. Found: C, 61.50; H, 5.63.

1,6-Anhydro-4-O-benzoyl-2,3-O-[(R) and (S)]-benzylidene- β -D-gulopyranose (5 and 6). — Flash chromatography (hexane-ethyl acetate, 4:1) of the mixture of diastereoisomers, prepared as reported in the literature¹⁵, gave 5, m.p. 102–103°, $[\alpha]_D^{20}$ +146° (c 0.4, chloroform).

Anal. Calc. for C₂₀H₁₈O₆: C, 67.79; H, 5.12. Found: C, 68.00; H, 5.31.

Compound 6 was isolated as a foam, $[\alpha]_D^{20} + 73^\circ$ (c 0.6, chloroform).

Anal. Calc. for C₂₀H₁₈O₆: C, 67.79; H, 5.12. Found: C, 68.06; H, 5.29.

N.m.r. data. — The ¹H-n.m.r. spectra (CDCl₃, internal Me₄Si) were recorded on a Varian XL-300 spectrometer and analysed using a PANIC program. The experimental and calculated spectra from the resulting best values matched satisfactorily. The ¹³C-n.m.r. spectra (75 MHz) were assigned by selective proton irradiation¹⁶. The carbon-proton coupling constants were measured through

TABLE IX

Atom	x/a	y/b	z/c	
O-1	0.3519(2)	0.0000(-)	0.6623(2)	
O-2	0.3996(1)	0.1096(7)	0.3215(2)	
O-3	0.1637(1)	-0.0997(6)	0.4113(6)	
O-4	0.0955(1)	0.2747(7)	0.4306(2)	
O-5	0.3825(1)	0.3525(6)	0.5608(2)	
O-6	0.3768(2)	-0.2238(8)	0.1863(3)	
C-1	0.3997(2)	0.1006(8)	0.5602(3)	
C-2	0.3454(2)	-0.0027(8)	0.4151(3)	
C-3	0.2289(2)	0.0702(7)	0.3636(3)	
C-4	0.2021(2)	0.3101(8)	0.4240(3)	
C-5	0.2751(2)	0.3669(8)	0.5713(3)	
C-6	0.2766(2)	0.1769(9)	0.6831(3)	
C-7	0.0678(2)	0.0257(8)	0.4029(3)	
C-8	-0.0141(2)	-0.0037(8)	0.2607(3)	
C-9	-0.0126(3)	-0.2007(9)	0.1755(4)	
C-10	-0.0910(3)	-0.2271(10)	0.0471(4)	
C-11	-0.1703(3)	-0.0575(10)	0.0069(3)	
C-12	-0.1725(3)	0.1351(10)	0.0922(4)	
C-13	-0.0939(3)	0.1618(10)	0.2191(4)	
C-14	0.4092(2)	-0.0218(9)	0.2093(3)	
C-15	0.4645(3)	0.1250(12)	0.1220(4)	

FINAL ATOMIC CO-ORDINATES FOR COMPOUND 2

TABLE X

FINAL ATOMIC CO-ORDINATES FOR COMPOUND 3

Atom	x/a	y/b	z/c	
0-1	0.4130(1)	0.5433(2)	0.2761(3)	
O-2	0.3418(1)	0.6900(2)	0.5390(2)	
O-3	0.3842(1)	0.8230(1)	0.3236(2)	
O-4	0.2519(1)	0.7550(2)	-0.0375(2)	
O-5	0.3035(1)	0.5281(2)	0.1176(3)	
O-6	0.2728(1)	0.9568(2)	-0.0912(4)	
C-1	0.3335(2)	0.5401(2)	0.2950(4)	
C-2	0.3021(1)	0.6597(2)	0.3753(3)	
C-3	0.3150(1)	0.7725(2)	0.2534(3)	
C-4	0.3249(1)	0.7442(2)	0.0515(3)	
C-5	0.3508(2)	0.6128(3)	0.0170(3)	
C-6	0.4289(2)	0.5866(3)	0.0967(4)	
C-7	0.3764(1)	0.8095(2)	0.5130(3)	
C-8	0.4514(1)	0.8161(2)	0,6076(3)	
C-9	0.4617(2)	0.9005(3)	0.7463(4)	
C-10	0.5307(2)	0.9078(3)	0.8357(4)	
C-11	0.5894(2)	0.8311(3)	0.7869(4)	
C-12	0.5795(2)	0.7463(3)	0.6493(5)	
C-13	0.5109(2)	0.7383(3)	0.5584(4)	
C-14	0.2331(2)	0.8666(3)	-0.1055(4)	
C-15	0.1585(2)	0.8628(4)	-0.1981(7)	

selective decoupling¹⁷ and first-order analysis of the partially coupled carbon spectrum.

X-Ray data. — Crystal and experimental data, and refinement parameters, are given in Table VII. Tables VIII-X present the final atomic co-ordinates for 1-3, respectively.

Supplementary material. — Bond distances bond angles, thermal parameters, and a list of observed and calculated structure factors are deposited with, and can be obtained from, Elsevier Science Publishers B.V., BBA Data Deposition, P.O. Box 1527, Amsterdam, The Netherlands. Reference should be made to No. BBA/DD/345, Carbohydr. Res., 155 (1986) 1–10.

ACKNOWLEDGMENTS

We thank the C.A.I.C.Y.T. and C.S.I.C. for financial support, the Ministerio de Educacióny Ciencia for a fellowship (J.J-B.), Professor A. Liptak for suggesting this investigation, and Professor S. García-Blanco.

REFERENCES

- 1 J. HARANGI, A. LIPTAK, Z. SZURMAI, AND P. NANASI, Carbohydr. Res., 136 (1985) 241-248.
- 2 F. H. CANO, C. FOCES-FOCES, M. BERNABE, J. JIMENEZ-BARBERO, M. MARTIN-LOMAS, AND S. PENADES-ULLATE, *Tetrahedron*, 41 (1985) 3875–3886.
- 3 B. COXON, Methods Carbohydr. Chem., 6 (1972) 513-519.
- 4 M. CERNY AND J. STANEK, JR., Adv. Carbohydr. Chem. Biochem., 34 (1977) 23-117.
- 5 F. H. CANO, C. FOCES-FOCES, J. JIMENEZ-BARBERO. AND M. MARTIN-LOMAS, Carbohydr. Res., 127 (1984) 338-344.
- 6 C. A. G. HAASNOOT, F. A. A. M. DE LEEUW, AND C. ALTONA, Tetrahedron, 36 (1980) 2783-2792.
- 7 M. BARFIELD, J. Am. Chem. Soc., 102 (1980) 1-6.
- 8 R. WASYLISHEN AND T. SCHAEFER, Can. J. Chem., 51 (1973) 961-973.
- 9 R. U. LEMIEUX, T. L. NAGABHUSAN, AND B. PAUL, Can. J. Chem., 50 (1972) 773-776.
- 10 F. H. CANO, C. FOCES-FOCES, A. ALEMANY, M. BERNABE, M. L. JIMENO, AND M. MARTIN-LOMAS, Carbohydr. Res., 139 (1985) 65-73.
- 11 S. ARNOTT AND W. E. SCOTT, J. Chem. Soc., Perkin Trans. 2, (1972) 324-325.
- 12 C. RICHE AND C. PASCARD-BILLY, Acta Crystallogr., Sect. B, 31 (1975) 2565-2570.
- 13 S. H. KIM AND G. A. JEFFREY, Acta Crystallogr., 22 (1967) 537-545.
- 14 C. SUBERO, L. FILLOL, AND M. MARTIN-LOMAS, Carbohydr. Res., 86 (1980) 27-32.
- 15 L. HOFFMEYER, S. JACOBSEN, O. MOLS. AND C. PEDERSEN, Acta Chem. Scand., Ser. B, 33 (1979) 175-186.
- 16 B. BIRDSALL, N. J. M. BIRDSALL, AND J. FEENEY, J. Chem. Soc., Chem. Commun., (1972) 316-317.
- 17 G. COMMENGES AND R. C. RAO, J. Magn. Reson., 58 (1984) 496-499.
- 18 C. K. JOHNSON, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, U.S.A., 1965.
- 19 P. MAIN, S. J. FISKE, S. E. HULL, L. LESSINGER, G. GERMAN, J. P. DECLERCO. AND M. M. WOOLFSON, *Multan-80 System*, University of York, Great Britain, 1980.
- 20 J. M. STEWART, P. A. MACHIN, C. W. DICKINSON, H. L. AMMON, H. HECK, AND H. FLACK, The X-Ray 76 System, Technical Report TR-446, Computer Science Center, University of Maryland, U.S.A., 1976.
- 21 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974.