these reaction conditions were not of general scope and reactions with a variety of aroyl halides either fail or give only very low yields. In contrast, we have found that tin(IV) chloride catalyses the reaction extremely well with a wide variety of aroyl chlorides (1). The yields of aroyl cyanides (2) are good to excellent (Table 1). The reaction fails only with 4-nitrobenzoyl chloride, yielding 4-nitrobenzoic acid as the main product along with a small amount of isolable 4-nitrophenyl-trimethylsiloxymalononitrile. The presently developed method is a good alternative to the synthesis of aroyl cyanides using the readily available cyanotrimethylsilane. $$\begin{array}{c} 0 \\ -C - C1 + (H_3C)_3Si - CN \xrightarrow{SnCl_4/CH_2Cl_2} \end{array}$$ $$\begin{array}{c} 1 \\ R \xrightarrow{C} - CN + \end{array}$$ ## Tin(IV) Chloride-Catalyzed Preparation of Aroyl Cyanides from Aroyl Chlorides and Cyanotrimethylsilane¹ George A. OLAH, Massoud ARVANAGHI, G. K. SURYA PRAKASH Hydrocarbon Research Institute and Department of Chemistry University of Southern California, Los Angeles, California 90089, U.S.A. Acyl cyanides (2-oxoalkanenitriles) are generally prepared by the reaction of the acid chloride with silver², copper(1)³, or mercury(II)4 cyanides. The yields in these reactions are, however, generally only moderate. The reaction has also been performed with sodium cyanide under phase-transfer conditions⁵ with some improvement in yield. Aliphatic acid chlorides react with cyanotrimethylsilane (slight excess) without solvent at 20-70 °C to give the corresponding 2-oxoalkanenitriles in moderate to good yields6; however, aroyl chlorides do not react with cyanotrimethylsilanes under these conditions. The reaction of benzoyl chloride with cyanotrimethylsilane under pyridine catalysis proceeds with introduction of two cyano groups to afford phenyltrimethylsiloxymalononitrile⁷. 4-Dimethylamino-1-naphthoyl cyanide has been prepared from 4dimethylamino-1-naphthoyl chloride and cyanotrimethylsilane using zinc iodide as catalyst. In our studies we found that Table 1. Aroyl Cyanides (2) from Aryl Chlorides (1) and Cyanotrimethylsilane | 2 | R | Yield ^a
[%] | m.p. or b.p./torr ^b [°C] | Molecular formula ^c or Lit. Data [°C] | | | |-------|--------------------|---------------------------|-------------------------------------|--|--|--| |
a | Н | 91 | b.p. 72-73°/0.15 | b.p. 209-210°/760° | | | | b | 2-F | 87 | b.p. 85-87°/0.3 | C ₈ H ₄ FNO (149.1) | | | | c | 3-F | 46 | b.p. 72-74°/0.25 | $C_8H_4FNO (149.1)$ | | | | d | 4-F | 79 | b.p. 46-48°/0.3 | C_8H_4FNO (149.1) | | | | 9 | 4-C1 | 81 | m.p. 42° | m.p. 37-39°9 | | | | • | 4-Br | 85 | m.p. 66-67° | m.p. 65-66°10 | | | | 5 | 4-OCH ₃ | 89 | m.p. 59° | m.p. 58-60°9 | | | | h | 2-CH ₃ | 94 | b.p. 89-90°/0.3 | C ₉ H ₇ NO (145.15) | | | | | 3-CH ₃ | 91 | b.p. 86-87°/0.7 | C ₉ H ₇ NO (145.15) | | | | i | 4-CH ₃ | 94 | m.p. 49° | m.p. 49-49.5°9 | | | - ^a Yield of isolated product characterized by I.R., ¹H-N.M.R., and ¹³C-N.M.R. data - b Melting and boiling points are uncorrected. - The microanalyses of the new compounds were in satisfactory agreement with the calculated values: C, ± 0.10 ; H, ± 0.21 ; N, ± 0.27 ; O, ± 0.18 . Table 2. ¹³C-N.M.R.-spectrometric Data of Compounds 2 (CDCl₃/TMS_{int}, 50 MHz, 24 °C) | 2 | R | C=0 | C≡N | C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | Others | |---|--------------------|-------|-------|------------------------------------|--------------------|-----------------------|-----------------------|---------------------------|-----------------------|-------------------------| | 9 | Н | 167.7 | 112.5 | 133.0 | 130.2 | 129.3 | 136.6 | 129.3 | 130.2 | | | | | 112.9 | | 162.4 | 117.5 | 138.8 | 132.2 | 125.1 | | | | | | | | $(^{1}J_{C-F} = 267.2 \text{ Hz})$ | $(^2J_{C-F}=20.5)$ | $(^3J_{C-F} = 9.8)$ | | $(^3J_{C-F} = 3.7)$ | | | | | | | Hz) | | Hz) | Hz) | | Hz) | | | | e | 3-F | 166.5 | 112.2 | 135.0 | 124.0 | 162.7 | | 131.4 | 126.6 | | | • | | | • • | $(^3J_{C-E}=7.4 \text{ Hz})$ | $(^2J_{C-F}=22.0)$ | $(^{1}J_{C-V}=251.5)$ | $(^2J_{C-F}=23.2)$ | $(^3J_{\text{CF}} = 8.5)$ | $(^4J_{\rm C-F}=2.5)$ | | | | | | | | Hz) | Hz) | Hz) | Hz) | Hz) | | | d | 4-F | 165.2 | 112.4 | 129.7 | 133.2 | 116.9 | | | 133.2 | | | • | | | | | $(^3J_{C-F}=11.0$ | $(^2J_{C-F}=23.2)$ | $(^{1}J_{C-F}=217.4)$ | $(^2J_{C-F}=23.2)$ | $(^3J_{C-F} = 11.0)$ | | | | | | | | Hz) | | Hz) | Hz) | Hz) | | | e | 4-C1 | 166.6 | 112.4 | 131.7 | 131.6 | 130.0 | 143.9 | 130.0 | 131.6 | | | ſ | 4-Br | | 112.2 | 131.9 | 132.8 | 131.3 | 132.8 | 131.3 | 132.8 | 0.633 .550 | | g | 4-OCH ₃ | | | 126.6 | 133.1 | 114.9 | 166.6 | 114.9 | 133.1 | OCH ₃ : 55.9 | | h | 2-CH ₃ | | 113.2 | 131.1 | 142.6 | 126.6 | 135.5 | 132.6 | 134.7 | CH ₃ : 21.7 | | i | 3-CH ₃ | | 113.0 | 133.7 | 130.6 | 139.7 | 137.7 | 127.8 | 129.3 | CH ₃ : 21.1 | | i | 4-CH ₃ | 167.3 | 112.8 | 131.1 | 130.5 | 130.2 | 148.8 | 130.2 | 130.5 | CH_3 : 22.1 | ## Aroyl Cyanides (2); General Procedure: To a stirred solution of the aroyl chloride 1 (20 mmol) and cyanotrimethylsilane (2.282 g, 21 mmol) in dry dichloromethane (50 ml) under nitrogen at room temperature is added tin(IV) chloride (0.5 ml). Stirring is continued for 2 h. The color of the solution gradually changes from initial light yellow to dark brown. After the reaction, the mixture is quenched with ice-cold water (150 ml) and extracted with dichloromethane (2 \times 150 ml). The dichloromethane layer is washed with cold water (2 \times 150 ml), dried with magnesium sulfate, and evaporated to provide the crude aroyl cyanide 2 which is further purified by recrystallization or distillation. Support of our work by the National Science Foundation and National Institutes of Health is gratefully acknowledged. Received: February 8, 1983 Synthetic Methods and Reactions; Part 118. For Part 117, see: G. A. Olah, J. Shih, G. K. S. Prakash, Helv. Chim. Acta, in press. ² H. Habner, Liebigs Ann. Chem. 120, 330 (1861). J. V. Nef, Liebigs Ann. Chem. 287, 307 (1895). ³ F. Wöhler, J. Liebig, Liebigs Ann. Chem. 3, 249 (1832). J. F. Normant, C. Piechucki, Bull. Soc. Chim. Fr. 1975, 2402. ⁴ T. S. Oakwood, C. A. Weisgerber, Org. Synth. Coll. Vol. 111, 112 (1955). ⁵ K. E. Koenig, W. P. Weber, Tetrahedron Lett, 1974, 2275. ⁶ K. Herrmann, G. Simchen, Synthesis 1979, 204. W. Lidy, W. Sundermeyer, Tetrahedron Lett. 1973, 1449. ⁸ J. Goto, S. Komatsu, N. Goto, T. Nambara, Chem. Pharm. Bull. 29, 899 (1981). ⁹ R. L. Soulen, S. C. Carlson, F. Lang, J. Org. Chem. 38, 479 (1973). ¹⁰ Beilsteins Handbuch der Organischen Chemie 10, 664.