SYNTHESIS AND BIOLOGICAL ACTIVITY OF NITRO

DERIVATIVES OF ARYLFURANS

A. F. Oleinik, K. Yu. Novitskii,

E. N. Dozorova, N. P. Solov'eva,

L. M. Polukhina, N. A. Novitskaya,

and G. N. Pershin

In a continuation of our research on the synthesis and study of the biological activity of arylfuran derivatives [1], we have synthesized and investigated the antimicrobial activity of nitro and bromo derivatives of arylfurans. The mono- and dibrominated arylfuran derivatives which we have previously synthesized served as starting materials in the synthesis of the nitro derivatives of arylfurans [1].

UDC 615.281: 547.7221.012.1

In the reaction of 2-aryl-5-bromofurans with nitric acid, replacement of bromine by a nitro group took place, and 2-aryl-5-nitrofurans were formed (Ia, b).

Data on the NMR spectra of compounds Ia and Ib are shown in Table 1. The magnitude of the spin-spin coupling constant for the protons of the furan ring ($J = 3.4 \, \text{Hz}$ for Ia and 3.8 Hz for Ib) corresponds to the interaction of 3 and 4 ring protons. Hence it follows that the nitro group has entered into the 5-position of the furan ring.

On reaction with nitric acid the 2-aryl-3,5-dibromofurans exchanged the bromine in the 5-position for a nitro group and formed 2-aryl-3-bromo-5-nitrofurans (Ha-c) (method A). Nitrofuran Hc was also obtained by nitration of 2-(p-bromophenyl)-3-bromofuran (method B).

The structure of compounds IIa-c was confirmed by evidence from the NMR spectra (see Table 1). The narrow singlet at 7.33-7.38 ppm which is observable in the NMR spectra of IIa-c (signal width at half-height is equal to 0.30 Hz) was assigned to the H⁴ proton of the furan ring. Assignment of the singlet to the H⁴ proton in compounds IIa-c was done similarly to the way which was described for the 2-aryl-3,5-dibromofurans in [1].

TABLE 1. NMR Spectral Data for Compounds I and II

Com- pound	δH³, ppm	δH ⁴ , ppm	δΗ ^α , ppm	δΗ ^β , ppm	JH ³ H ⁴ , Hz
Ia Ib	7,06 6,82	7,46 7,40	8,04 7,74	8,34 7,44	3,4 3,8
IIa	_	7,49 7,34	7,99		
IIb IIc* IIc†	_	7,34	7,99	7,44 7,60	_
Il c†	-	7,33	7,85	7,55	~

^{*} Compound obtained by method A.

[†]Compound obtained by method B.

S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 14, No. 9, pp. 47-49, September, 1980. Original article submitted December 26, 1979.

TABLE 2. Antimicrobial Activity of Nitro Derivatives of Arylfurans

Sompound	Staph. aureus	Str. hemo- lyticus	CI. diph- theriae	B. anthra- coides	Sal. typhi	. Sh. dy- senteriae	E. coli	M. tuber- culosis H ₃₇ R _V	Tr. va- ginalis
_రి	Minimum effective concentration, μg/ml								
Ia Ib IIa IIb II c	31,2 7,8 >125 500 <3,9	31,2 62,5 >125 500 <3,9	31,2 31,2 >125 500 7,8	$\begin{array}{c c} 31,2 \\ <2 \\ >125 \\ 500 \\ <3,9 \end{array}$	7,8 7,8 >125 500 >500	7,8 15,6 >125 500 >500	2 3,9 >125 500 >500	3,9 >1000 500 15,6	8 16 62 2

TABLE 3. Physicochemical Properties of Nitro and Bromonitro Derivatives of 2-Arylfurans

Compound	Yield, %	mp, °C	Found, %			Empirical	Calculated, %				
			С	Н	Br, Cl	N	formula	С	н	Br (Cl)	N
Ia Ib IIa IIb IIb	94 87 22 74 83	175.5-7.0* 101.5-3.0 177-7.5† 114-6† 127-8,5†	51.2 54,0 38,0 39,7 34,6	3,0 3,2 1,6 2,0	15,6 25,3 46,1	12,0 - 8,8 4,5 3,9	C ₁₀ H ₆ N ₂ O ₅ C ₁₀ H ₆ CINO ₃ C ₁₀ H ₅ Br N ₂ O ₅ C ₁₀ H ₅ BrCINO ₃ C ₁₀ H ₅ Br ₂ NO ₃	51,3 53,7 38,4 39.7 34,6	2,6 2,7 1,6 1,7	15.9 25,5 - 46,1	12,0 8.9 4.6 4,0

^{*} From chloroform.

The antimicrobial activity of the compounds synthesized was studied in experiments in vitro by the method of twofold serial dilutions in a liquid growth medium [2] with respect to four types of Gram-positive bacteria, five forms of Gram-negative bacteria, tuberculosis mycobacteria of strain $H_{37}R_V$, and five forms of pathogenic bacteria and trichomonads. It was ascertained that the compounds Ia and b have a definite bacteriostatic activity with respect to both Gram-negative and also Gram-positive bacteria (Table 2). On introduction of bromine into the 3-position of the furan ring, a sharp reduction in the antibacterial activity takes place (compounds IIa, b). Compound IIc is highly active only with respect to Gram-positive bacteria. The compounds studied essentially have no effect on pathogenic fungi or the Gram-negative bacteria B. pyocyaneum and Pr. vulgaris. The compounds investigated showed a definite activity with respect to Trichomonas vaginalis in vitro (see Table 2).

EXPERIMENTAL

NMR spectra were taken on Varian XL-100 (USA) or Jeol C-60 HL (Japan) spectrometers; the solvent was deuterochloroform; the internal standard was tetramethylsilane.

2-(p-Nitrophenyl)-5-nitrofuran (Ia). Method A. To 2.8 g of 2-(p-nitrophenyl)-5-bromofuran [1], over a period of 20 min, under a blanket of nitrogen was added, at room temperature, dropwise 13 ml of nitric acid (d 1.2); then the reaction mixture was heated at 50°C until the evolution of bromine vapor ceased. The reaction mixture, cooled to room temperature, was neutralized with a saturated sodium bicarbonate solution and was extracted with ether. The ether solution was washed with a sodium bicarbonate solution and with water, and was dried over sodium sulfate and evaporated. The residue was recrystallized from ethyl alcohol. Compounds Ib and IIa-c were prepared similarly (see Table 3).

2-(p-Bromophenyl)-3-bromo-5-nitrofuran (IIc). Method B. To a solution of 3.8 g of 2-(p-bromophenyl-3-bromofuran [1] in 25 ml of acetic anhydride. The mixture was stirred for 2 h at 0°C, then for 1.5 h at 12°C, after which the reaction mixture was poured into 300 ml of ice water, neutralized with a saturated sodium bicarbonate solution, and extracted with ether. The ether extract was washed with a saturated sodium bicarbonate solution and then with water to a neutral reaction, dried with sodium sulfate, and evaporated under vacuum.

The residue was recrystallized from alcohol. The yield of compound IIc obtained was 1.3 g; mp 127-128°C. A mixed melting point test of compound IIc obtained by method A with that obtained by method B gave no depression mp.

[†] From ethanol.

LITERATURE CITED

- 1. N. P. Solov'eva, A. F. Oleinik (Oleinic), K. F. Turchin, et al., in: Symposium of Furan Chemistry, Third Collection of Lectures, Bratislava (1979), pp. 242-244.
- 2. G. N. Pershin (editor), Methods of Experimental Chemotherapy [in Russian], 2nd edn., Moscow (1971), pp. 100-104.

SYNTHESIS AND PHARMACOLOGICAL STUDY OF N-(2-SUBSTITUTED-NICOTINOYL) AMINO ACIDS

L. A. Zhmurenko, S. A. Borisenko, O. M. Glozman, R. U. Ostrovskaya,

UDC 615.214: 547.826.].012.1

Yu. V. Burov, and V. A. Zagorevskii

The therapeutic effect of nicotinic acid in the treatment of certain psychic ailments has served as the basis for a search for new psyochotropic substances based on nicotonic acid [1]. Thus, N-nicotinoyl-γaminobutyric acid (N-nicotinovl-GABA) displays a high physiological activity [2]; and another nicotinic acid derivative-nicolite-exerts a tranquilizing action [3, 4]. One of the trends in the search for pharmacologically active substances among the derivatives of nicotinic acid is introduction of various substituents, particularly in the 2- or 4-positions of the pyridine ring, as a result of which it has been ascertained that the 2anilino derivatives of nicotinic acid display a definite anticonvulsant and analgesic activity [5, 6]; some of them are reserpine antigonists and intensify the action of amphetamine [5], while amides of 4-methoxynicotinic acid are antagonists to amphetamine and apomorphine [7].

The objective of the present work was the synthesis of N-(2-substituted-nicotinoyl)-amino acids and the study of both the character of the substituents (chloro-, hydroxy-, methoxy-, benzyloxy-, and phenoxy groups) in the 2-position of the pyridine ring of these compounds, and also of the structure of the amino acid residues (y-aminobutyric acid, glutamic acid, glycine, alanine, etc.) on neurotropic activity, since the amino acids themselves, as is well known, play a definite role in the transfer of nerve impulses.

Synthesis of the 2-substituted nicotinoylamino acids Ia-h was effected starting from the 2-substituted nitocinic acids using the activated ester method [8]. p-Nitrophenyl esters of the 2-substituted nicotonic acids (IIa-d) were prepared by esterification of the 2-substituted nicotinic acids with the aid of dicyclohexyldicarboimide (DCHC).

$$\begin{array}{c} \text{COOH} \\ + \text{ HO} \\ \end{array} \begin{array}{c} \text{NO}_2 \\ \end{array} \begin{array}{c} \text{DCHC} \\ \text{II a-d} \\ \end{array} \begin{array}{c} \text{II a-d} \\ \text{II b: } \text{R=OC}_6 \text{H}_5 \\ \end{array} \begin{array}{c} \text{II d: } \text{R=OH}_2 \text{C}_6 \text{H}_5 \\ \end{array}$$

In the IR spectra of the p-nitrophenyl esters of the 2-substituted nicotinic acids so obtained, Ha-d, there are stretching vibrations for the ester group in the 1747-1723 cm⁻¹ region and for the nitro group in the 1517-1527 and 1352-1347 cm⁻¹ regions.

Compounds Ia-h were synthesized by aminolysis of the esters IIa-d with amino acids (GABA, glutamic acid, glycine, β -alanine, or the racemate of β -phenylalanine, brought into reaction in the form of the Na salt) in aqueous DMF.

Pharmacology Scientific-Research Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 14, No. 9, pp. 49-55, September, 1980. Original article submitted January 3, 1980.