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(�)-Amphidinolide K (1; see Scheme 1) is a member of the
cytotoxic macrolides that were isolated by Kobayashi and co-
workers from the laboratory-cultured dinoflagellates Amphi-
dinium sp., which are symbionts of the marine flatworms
Amphiscolops sp. found in Okinawan.[1] Amphidinolide K (l)
is known to possess cytotoxic activity against L1210 (IC50 =

1.65 mgmL�1) and KB (IC50 = 2.9 mgmL�1) cancer cells in vi-
tro. The total synthesis of (+)-amphidinolide K reported by
Williams and Meyer[2] has clarified the problems concerning
configurational ambiguities at C2, C4, and C18, and as a result
(�)-amphidinolide K (1) was found to be the natural product.
The unique structural features and potent bioactivity of 1
elicited considerable interest in the synthetic community,[3]

and herein we wish to report the results of our recent efforts
on the synthesis of this intriguing molecule.

In the retrosynthetic analysis, epoxidation of the allylic
alcohol intermediate A (R = H) was envisaged as the final
step (Scheme 1). The macrolide intermediate A would be
obtained by lactonization of the seco acid B, which would in
turn be synthesized through the Julia–Kocienski reaction[4] of
aldehyde C and sulfone D. Fragment C would be obtained
from fragment E (Y= B(pinacol)) by a Suzuki coupling
reaction. Fragment E would be the product of the enyne
cross-metathesis reaction[5] of alkynyl boronate F and alkene
G. In another key step, a radical cyclization reaction[6] of the
homopropargylic b-alkoxyacrylate I would provide the meth-
ylidene-substituted oxolane intermediate H en route to frag-
ment D.

In practice, b-alkoxyacrylate 4 was prepared from the
known homopropargylic alcohol 3[7] (Scheme 2). Next, the
radical cyclization reaction[6] of 4 in the presence of tributyl-
stannane and triethylborane proceeded efficiently and gave
mainly (16:1) the cis-2,5-disubstituted oxolane intermediate 5
after acidic destannylation. The corresponding aldehyde was
converted into the homologous aldehyde 6, which was then

treated with alcohol 7[8] to produce the homoallylic alcohol 8.
After protection of the alcohol as the benzoate derivative, 1-
phenyl-1H-tetrazolyl sulfone 9 was prepared by using the
standard procedures as outlined.

Olefin 12 was prepared from the known alcohol 11[9]

through mesylation and subsequent reduction (Scheme 3).
Alkyne 14 was prepared from (R)-glycidol (13) through
protection of the alcohol with THP, then treatment with
lithium TMS-acetylide, protection with a TBS group, and
hydrolytic cleavage of the alkynyl TMS group. Then alkynyl
boronate 15 was prepared from alkyne 14 under standard
reaction conditions. Subsequently, the enyne cross-metathesis
reaction[5, 10] of 15 with olefin 12 proceeded effectively in the
presence of the second-generation Grubbs catalyst to yield a
mixture (7.5:1) that favored the desired E isomer 16. The use
of alkynyl boronate 15 in the enyne cross-metathesis reaction
was important; the use of methyl-substituted alkynes did not
yield useful amount of the cross-metathesis products. For the
synthesis of diene 17 from vinyl boronate 16, a Suzuki–

Scheme 1. Retrosynthetic analysis of (�)-amphidinolide K (1). Ar= aro-
matic.
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Miyaura reaction was envisioned. Suzuki–Miyaura reaction of
16 using iodomethane did not proceed under the known
reaction conditions;[11] however, in the presence of thallium
ethoxide[12] the diene 17 was obtained in 74 % yield.

Selective removal of the TBDPS protecting group of 17,
oxidation, and treatment with TMS diazomethane led to the
methyl ester 18, which was further converted into aldehyde 19
by selective removal of the THP protecting group[13] and
oxidation (Scheme 4). A Julia–Kocienski reaction[4] between
aldehyde 19 and sulfone 9 in the presence of potassium
hexamethyldisilazide proceeded stereoselectively in DMF to
yield the E olefin 20. The seco acid was obtained from 20
through hydrolysis, and it was converted into the correspond-
ing lactone under modified Yamaguchi reaction conditions.[14]

Subsequent removal of the TBS protecting group provided
the allylic alcohol 21. (�)-Amphidinolide K (1)[15] was
prepared in high yield by asymmetric epoxidation of 21 in
the presence of (+)-diethyl tartrate.

The present synthesis represents a highly convergent
route to (�)-amphidinolide K (1) requiring 18 steps in the
longest linear sequence (6.8% total yield) from (S)-glycidol
(2). This synthesis presents another successful example of
stereoselective radical cyclization reactions of b-alkoxyacry-
lates.
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Scheme 2. Synthesis of the fragment D. a) TBDPSCl; b) LiCCSiMe3;
c) K2CO3, MeOH; d) CHCCO2Me, NMM, CH2Cl2; e) nBu3SnH, Et3B,
toluene; f) pTsOH, CH2Cl2; g) DIBAL, CH2Cl2, �78 8C;
h) (Ph3P

+CH2OMe)Cl� , tBuOK, THF; Hg(OAc)2, THF/H2O (10:1),
0 8C; i) 7, TFA, CH2Cl2 (0.03 m); j) BzCl, DMAP, CH2Cl2; k) TBAF, THF;
l) PTSH, DIAD, Ph3P, THF; m) (NH4)6[Mo7O24]·4 H2O, H2O2, EtOH.
Bz = benzoyl, DIAD= diisopropyl azodicarboxylate, DIBAL= diisobutyl-
aluminum hydride, DMAP= 4-dimethylaminopyridine, NMM= N-meth-
ylmorpholine, PT = 1-phenyl-1H-tetrazolyl, TBAF = tetra-n-butylammo-
nium fluoride, TBDPS= tert-butyldiphenylsilyl, TFA = trifluoroacetic
acid, THF = tetrahydrofuran, Ts = 4-toluenesulfonyl.

Scheme 3. Synthesis of the fragment C. a) TBDPSCl; b) LiBH4;
c) SO3·pyridine, TEA, DMSO; d) (E)-MeCHCHCH2B(dIpc)2; e) MsCl,
TEA/CH2Cl2 (1:2); f) LiAlH4, diethyl ether, reflux; g) DHP; h) LiCC-
SiMe3; i) TBSOTf; j) K2CO3, MeOH; k) nBuLi, (pinacol)B(OiPr), THF,
�78 8C; HCl, RT; l) 12, [(H2IMes2)(P(Cy)3)RuCl2CHPh] (15 mol%),
CH2Cl2, reflux; m) [Pd(Ph3P)4] (20 mol%), MeI, TlOEt, THF/H2O (3:1).
Cy = cyclohexyl, DHP = 3,4-dihydro-2H-pyran, DMSO= dimethyl sulfox-
ide, Ipc = isopinocampheyl, Mes = 2,4,6-trimethylphenyl, Ms = meth-
anesulfonyl, TBS = tert-butyldimethylsilyl, TEA = triethylamine, THP=
tetrahydropyranyl.

Scheme 4. Synthesis of (�)-amphidinolide K (1). a) TBAF, THF, 0 8C;
b) IBX, DMSO/THF (1:1); NaClO2, NaH2PO4, 2-methyl-2-butene/
tBuOH/H2O (1:1:1); c) TMSCHN2, MeOH; d) BF3·OEt2, EtSH/CH2Cl2
(1:5), �30 8C; e) DMP, CH2Cl2; f) 9, KHMDS, DMF, �78 8C, 30 min;
RT, 1 h; g) NaOH, MeOH/H2O (4:1); h) 2,4,6-Cl3C6H2COCl, TEA,
DMAP, toluene, reflux; i) TBAF, THF; j) (+)-DET, Ti(OiPr)4, TBHP,
M.S. (4 �), CH2Cl2, �20 8C. DET = diethyl tartrate, DMF= N,N-dime-
thylformamide, DMP = Dess–Martin periodinane, HMDS= 1,1,1,3,3,3-
hexamethyldisilazane, IBX = o-iodoxybenzoic acid, M.S.= molecular
sieves, TBHP= tert-butyl hydroperoxide.
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