Reactions of Di(1-cyclohepta-2,4,6-trienyl)sulfane, $S(C_7H_7)_2$, with Derivatives of the Hexacarbonyls, $M(CO)_6$ (M = Cr, Mo, W)

Max Herberhold*, Jinnan Liu, Wolfgang Milius, Oleg Tok, Bernd Wrackmeyer

Bayreuth, Laboratorium für Anorganische Chemie der Universität

Received May 28th, 2004.

Dedicated to Professor Martin Jansen on the Occasion of his 60th Birthday

Abstract. Mononuclear carbonylmetal complexes of chromium, molybdenum and tungsten containing the sulfane $S(C_7H_7)_2$ (1) have been obtained starting from precursors such as the THF-stabilized pentacarbonylmetal fragments, $[M(CO)_5](thf)$, the acetonitrile intermediates $M(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3) (M = Cr, Mo, W) or the η^4 -norbornadiene complexes $M(CO)_4(C_7H_8)$ (M = Cr, Mo). In addition to the pentacarbonyls, $M(CO)_5[S(Cr_4T_7)_2]$ (M = Cr (2a), Mo (2b), W (2c)) which contain 1 unchanged as a two-electron sulfane ligand with two pending cyclohepta-2,4,6-trienyl substituents, isomeric complexes $M(CO)_5[S(CH_2Ph)(C_7H_7)]$ (M = Cr (3a), W (3c)) were obtained at higher temperatures (40–50 °C) in which one of the two organic groups has been transformed into a benzyl substituent. In the tetracarbonyls, *cis*-

 $M(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (M = Mo (4b), W (4c)), the ligand 1 serves as an olefinic sulfane four-electron chelate ligand. The reaction of either Mo(CO)₆ or (mesitylene)Mo(CO)₃ with $S(C_7H_7)_2$ (1) in boiling THF leads to the sulfur-free ditropyl complex $Mo(CO)_3[(\eta^6-C_7H_7)-C_7H_7]$ (5b, two isomers). The ¹H and ¹³C NMR spectra of the new complexes 2–4 reveal various dynamic processes including pyramidal inversion of the sulfur atom and [1,7]-sigmatropic shifts at the C_7H_7 ring. The molecular structures of 2c, 3a, 4b and 4c have been determined by X-ray crystallography.

Keywords: Chromium; Molybdenum; Tungsten; Sulfane complexes; NMR spectra; Crystal structures

Umsetzungen von Di(1-cyclohepta-2,4,6-trienyl)sulfan, $S(C_7H_7)_2$, mit Derivaten der Hexacarbonyle, $M(CO)_6$ (M = Cr, Mo, W)

Inhaltsübersicht. Einkernige Carbonylmetall-Komplexe des Chroms, Molybdäns und Wolframs mit dem Sulfan $S(C_7H_7)_2$ (1) wurden ausgehend von Vorstufen wie den THF-stabilisierten Pentacarbonylmetall-Fragmenten, $[M(CO)_5](thf)$, den Acetonitril-Zwischenstufen, $M(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3) (M = Cr, Mo, W) oder den η^4 -Norbornadien-Komplexen, $M(CO)_4(C_7H_8)$ (M = Cr, Mo) dargestellt. Neben den Pentacarbonylen, $M(CO)_5[S(C_7H_7)_2]$ (M = Cr (2a), Mo (2b), W (2c)), die 1 in unveränderter Form als Zweielektronen-Sulfanliganden mit zwei frei beweglichen Cyclohepta-2,4,6-trienyl-Substituenten enthalten, entstanden bei höherer Temperatur (40–50 °C) isomere Komplexe $M(CO)_5[S(CH_2Ph)(C_7H_7)]$ (M = Cr (3a), W (3c)), in denen eine der beiden Organylgruppen als Benzyl-Substituent vorliegt. In den Tetracarbonylen, *cis*-M(CO)₄[S(C₇H₇)(η^2 -C₇H₇)] (M = Mo (**4b**), W (**4c**)) fungiert das olefinische Sulfan **1** als Vierelektronen-Chelatligand. Die Reaktion von Mo(CO)₆ oder (mesitylen)Mo(CO)₃ mit S(C₇H₇)₂ (**1**) in siedendem THF führte zum schwefelfreien Ditropyl-Komplex, Mo(CO)₃[(η^6 -C₇H₇)-C₇H₇] (**5b**, zwei Isomere). Die ¹H- und ¹³C-NMR-Spektren der neuen Komplexe **2–4** lassen verschiedene dynamische Prozesse erkennen, darunter pyramidale Inversion am Schwefelatom und [1,7]-sigmatrope Verschiebungen am C₇H₇-Ring. Die Molekülstrukturen von **2c**, **3a**, **4b** und **4c** im Kristall wurden anhand von Röntgenstrukturanalysen bestimmt.

Introduction

Mononuclear derivatives of the hexacarbonyl metals, $M(CO)_6$ (M = Cr, Mo, W), with the olefinic phosphane ligand, tri(1-cyclohepta-2,4,6-trienyl) phosphane, $P(C_7H_7)_3$, have been characterized by ¹H, ¹³C and ³¹P NMR spectroscopy [1]. The stepwise formation of pentacarbonyls, $M(CO)_5[P(C_7H_7)_3]$, tetracarbonyls, *cis*- $M(CO)_4[P(C_7H_7)_2-(\eta^2-C_7H_7)]$, tricarbonyls, *fac*- $M(CO)_3[P(C_7H_7)_2(\eta^4-C_7H_7)]$

* Prof. Dr. M. Herberhold

Anorganisch-Chemisches Laboratorium der Universität D-95440 Bayreuth e-mail: max.herberhold@uni-bayreuth.de (M = Cr, Mo, W) and of a dicarbonyl, *cis*-Cr(CO)₂[P(C₇H₇)(η^2 -C₇H₇)(η^4 -C₇H₇)], has led to complexes in which the phosphane ligand [P(C₇H₇)₃] may progressively act as a two-, four-, six- or eight-electron ligand, although its basic structure remains intact.

The corresponding reactions with the olefinic sulfane, di(1-cyclohepta-2,4,6-trienyl)sulfane, $S(C_7H_7)_2$ (1), are more limited in scope due to the lower thermal stability and photosensitivity of the thioether 1 [2]. For example, the photoinduced reaction of $Mn_2(CO)_{10}$ with 1 produces the thiolato-bridged dimer, $[Mn(CO)_4(\mu_2-SC_7H_7)]_2$ [3], and complete disintegration of 1 has been observed in the reaction of the photo-generated fragment $[CpMn(CO)_2]$ with 1 to give decomposition products such as $[CpMn(CO)_2]_2$ - (μ_2-L) (L = S and SO) [3]. Nevertheless, $S(C_7H_7)_2$ (1) may also be incorporated into carbonylmetal complexes as an intact ligand.

In the present study, we describe three types of Group 6 carbonylmetal complexes: the pentacarbonyls $M(CO)_5[S(C_7H_7)_2]$ (2, M = Cr (2a), Mo (2b) and W (2c)) with an intact di(1-cyclohepta-2,4,6-trienyl)sulfane ligand, the pentacarbonyls $M(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3, M = Cr (3a), W (3c)) containing a partially rearranged sulfane ligand, and the *cis*-tetracarbonyls *cis*-M(CO)_4[S(C_7H_7)-(\eta^2-C_7H_7)] (4, M = Mo (4b), W (4c)) involving a chelating sulfane as a four-electron ligand. The molecular structures of 2c, 3a, 4b and 4c were confirmed by X-ray crystallography.

Synthesis and Spectroscopy

A reliable route to monosubstituted derivatives of the hexacarbonyl metals, $M(CO)_6$, which contain 1 as an unchanged two-electron ligand, involves the acetonitrile precursor $M(CO)_5(CH_3CN)$ (M = Cr, Mo, W). Although up to 3 CO ligands are stepwise replaced from $M(CO)_6$ in boiling acetonitrile to give $M(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3) [4,5], the reaction can be terminated when the pentacarbonyl is the dominant product in the mixture (after evolution of ca. 1.1 equivalent of CO).

The initial complexes (2a,c) may react further under isomerization of one 1-cyclohepta-2,4,6-trienyl to a benzyl substituent to give 3a,c. In the case of M = Mo and W, the tetracarbonyls 4b,c are formed together with 2b,c. Therefore, 2b,c were isolated from the reaction mixtures by column chromatography on silica.

The tungsten complex 2c is also conveniently prepared *via* the 1:1 reaction of the photo-generated intermediate, [W(CO)₅](thf), with the sulfane, S(C₇H₇)₂ (1), in THF solution at room temperature. If the reaction is carried out at

40-50 °C, the benzyl complex W(CO)₅[S(CH₂Ph)(C₇H₇)] (3c) is obtained directly. The corresponding photo-induced reaction of Cr(CO)₆ with 1 gives 3a even at room temperature.

The benzyl complexes **3a** and **3c** are clearly formed by thermal isomerization of **2a** and **2c**, respectively.

Table 1 Spectroscopic data of the di(1-cyclohepta-2,4,6-trienyl)sulfane complexes 2a-c

	S(C ₇ H ₇) ₂ (1) [3]	$Cr(CO)_5[S(C_7H_7)_2]$ (2a) (orange)	$Mo(CO)_5[S(C_7H_7)_2]$ (2b) (dark-yellow)	$W(CO)_5[S(C_7H_7)_2]$ (2c) (light-yellow)
¹ H NMR (CDCl ₃)				
δ(H ¹)	3.61t (2H)	3.89t (2H)	3.92t (2H)	4.02t (2H)
$\delta(H^2, H^7)$	5.48m (4H)	5.52dd (4H)	5.55m (4H)	5.54m (4H)
$\delta(H^3, H^6)$	6.22dt (4H)	6.38m (4H)	6.38m (4H)	6.41m (4H)
$\delta(\mathrm{H}^4,\mathrm{H}^5)$	6.58t (4H)	6.68s (4H)	6.70t (4H)	6.69t (4H)
¹³ C NMR (CDCl ₃)				
δ(C ¹)	41.6	47.6	48.0	49.7
$\delta(C^2, C^7)$	124.7	121.3	121.9	121.8
$\delta(C^3, C^6)$	126.4	128.7	128.6	128.9
$\delta(C^4, C^5)$	131.2	132.0	131.8	131.9
$\delta(CO)$ (cis) ^{a)}		215.2	204.7	197.3 [129.0] ^{b)}
$\delta(CO)$ (trans)		221.3	211.5	199.5 [155.8] ^{b)}
IR: $v(CO) [cm^{-1}]^{c}$		2075(w), 1951(s),	2075(w),1954(s),	2073(w), 1945(s),
(pentane)		1941(m), 1928(m)	1945(s), 1933(s)	1937(s), 1931(sh)

^{a)} The complexes **2a-c** consistently show two ¹³C NMR signals for the 5 CO ligands, the stronger peak corresponding to the 4 CO ligands *cis* to the sulfur ligand appears at higher field, cf. Cr(CO)₆ 213.9, Mo(CO)₆ 201.0, W(CO)₆ 191.1.

^{b)} Coupling constant, ¹*J*(¹⁸³W, ¹³C) [Hz].

c) Intensities: s strong, m medium, w weak, sh shoulder.

	$\begin{array}{l} Cr(CO)_5[S(CH_2Ph)(C_7H_7)]\\ (\textbf{3a}) \end{array}$	$\begin{array}{l} W(CO)_5[S(CH_2Ph)(C_7H_7)]\\ \textbf{(3c)} \end{array}$
¹ H NMR (CDCl ₃)		
δ(H ¹)	4.16t (1H)	4.36t (1H)
$\delta(H^2, H^7)$	5.69dd (2H)	5.72dd (2H)
$\delta(\mathrm{H}^3, \mathrm{H}^6)$	6.43m (2H)	6.50m (2H)
$\delta(\mathrm{H}^4, \mathrm{H}^5)$	6.71dd (2H)	6.74dd (2H)
$\delta(CH_2)$	3.88s (2H)	4.08s (2H)
δ(Ph)	7.18-7.30m (5H)	7.20-7.31m (5H)
¹³ C NMR (CDCl ₃)		
$\delta(C^1)$	51.0	53.2
$\delta(C^2, C^7)$	121.6	121.9
$\delta(C^3, C^6)$	129.5	129.6
$\delta(C^4, C^5)$	132.0	132.1
$\delta(CH_2)$	43.3	45.5
$S(\mathbf{D}\mathbf{h}) = a$	128.2(p), 128.7(m),	128.3(p), 128.8(m),
0(FII)	129.6(o), 134.6(i)	129.7(o), 134.4(i)
δ(CO) (cis)	214.9	197.0 [129.3] ^{b)}
$\delta(CO)$ (trans)	221.3	199.9
IR: n(CO) [cm ⁻¹] ^{c)}	2068(w),	2073(w),
(pentane)	1945(s) / 1939(s) / 1930(m) ^d	1941(s) / 1935(s) / 1929(s) d

Table 2Spectroscopic data of the (1-cyclohepta-2,4,6-trienyl)-benzyl-sulfane complexes 3a and 3c

^{a)} The tentative assignments of the o- and m-carbon signals correspond to that in the ¹³C NMR spectrum of dibenzyl sulfide, cf. http://www.aist.go.jp ^{b)} Coupling constant, ¹*J*(¹⁸³W, ¹³C) [Hz].

^{c)} Intensities: s strong, m medium, w weak; cf. $Cr(CO)_6$ 1987 cm⁻¹, $W(CO)_6$ 1984 cm⁻¹.

d) Broad absorption.

The characteristic spectroscopic data of the pentacarbonyl complexes 2a-c and 3a,c at room temperature are collected in Tables 1 and 2. Compared with the uncoordinated sulfane, $S(C_7H_7)_2$ (1), the ¹H and ¹³C NMR patterns of the freely pending cyclohepta-2,4,6-trienyl substituents appear to be essentially unchanged, only the signals of the protons H¹ and of the carbon atoms C¹ (connected with the sulfur atom) are slightly shifted to higher frequencies, the effect being more pronounced in the cases of 3a,c than of 2a-c. The assignment of the benzyl and cyclohepta-2.4.6-trienvl ¹³C NMR signals of **3a.c** (Fig. 1) is based on 2D ¹³C/¹H HETCOR experiments. The pentacarbonylmetal structure is evident from the two ¹³C carbonyl NMR signals in the range of $\delta = 195-225$; the signal of lower intensity (due to the CO group trans to the sulfane ligand) is observed at higher frequency relative to the main signal (due to the four CO groups *cis* to the sulfane). At a first glance, the NMR spectra of the complexes of type 2 and 3, measured at room temperature, seem to indicate a rigid S-M coordination and the absence of fast fluxional processes. However, if pyramidal inversion of the sulfur atom is slow, all pairs of olefinic CH units in 2 should be diastereotopic, and in 3, the benzylic CH_2 hydrogen atoms should also be diastereotopic as well as the olefinic CH units. Since these features are not observed, it must be concluded that inversion of the coordinated sulfur atom occurs fast when compared with the NMR time scale. Furthermore, when the ¹H NMR spectrum of 2c was measured at elevated temperatures (Fig. 2), the ¹H resonances became broad, and this indicates another dynamic process related to sigmatropic shifts at the cycloheptatrienyl ring. At low temperature, the pyramidal inversion is slowed down and most of the expected splittings in the ¹H and ¹³C NMR spectra are observed, as shown for the example of 2c in Figure 2. The ¹³C NMR spectra of 2c (Fig. 3), measured at room temperature and below, are also in support of either fast or slow inversion at the sulfur atom. At low temperature, the benzylic ¹H(CH₂) NMR signal of **3c** is split, showing the characteristic pattern of an AB spin system $({}^{2}J({}^{1}H, {}^{1}H) =$ 12.0 Hz), and from the coalescense of the signals at 230 K, the activation energy of the barrier to inversion of the sulfur atom can be evaluated [6] as $\Delta G^{\#} = 46.5 \pm 1 \text{ kJmol}^{-1}$. This value is in the range described in numerous studies carried out by other groups, in particular by *Abel* et al. [7-11].

Fig. 1 ¹³C NMR spectrum of $Cr(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3a) at room temperature.

Fig. 2 250 MHz ¹H NMR spectra of W(CO)₅[S(C_7H_7)₂] (**2c**) at various temperatures. **A** (220 K): The ¹H NMR signals for H^{2,7} start to split, and the signals for H^{3,6} are split due to chemical non-equivalence. **B** (room temperature): The ¹H NMR spectrum looks deceptively simple. **C** (323 K): Broadening of all ¹H NMR signals is observed indicating dynamic processes; the sharp signals are the result of decomposition and can arise from the formation of C_7H_7 - C_7H_7 .

zaac.wiley-vch.de

Fig. 3 125.8 MHz ${}^{13}C{}^{1}H$ NMR spectra of W(CO)₅[S(C₇H₇)₂] (2c) at room temperature (A) and at 230 K (B). The spectrum in A looks deceptively simple and ¹⁸³W satellites are visible for the $^{13}C(CO)$ NMR signals, as marked in the expansion. In **B**, the ^{13}C NMR signals for carbon atoms C^{2,7}, C^{3,6} are split and that for C^{4,5} is broad at low temperature because of chemical non-equivalence, when the pyramidal inversion of the sulfur atom becomes slow.

The [1,7]-sigmatropic rearrangement [12-14] indicated by the high-temperature NMR spectrum of 2c (Fig. 2) is clearly visualized by the results of two-dimensional (2D) ¹H/¹H EXSY NMR experiments [15], (Fig. 4).

The first and the second step of the [1,7]-sigmatropic movement of the sulfur-containing group around the C_7H_7 ring can be observed. The appearance of the cross peaks (Fig. 4) in the contour plot (with the same phase as the diagonal peaks), depending in their intensities on the respective mixing times, indicates the exchange, and the rate constant for the [1,7]-sigmatropic shift can be evaluated [16] by integration of the cross peaks as $k = 4.5 \pm 0.5 \text{ s}^{-1}$. Interestingly, in the free ligand 1, this process takes place much more slowly, since 1D magnetization transfer ¹H/¹H experiments did not show effects of exchange. The exchange is also slow in $PhS(C_7H_7)$, the S-phenyl derivative of 1, for which a value of $k = 6.5 \text{ s}^{-1}$ has been determined at 100 °C [17].

The IR spectra of 2a-c and 3a,c (in pentane solution) show the typical pentacarbonyl metal structure with 4 absorptions (Table 1 and 2), and the molecular size of the isomeric chromium complexes 2a and 3a was also confirmed by observation of the respective molecular ion (m/e = 406) in the field-desorption mass spectra (FD-MS).

Fig. 4 Contour plot of the 250 MHz 2D ¹H/¹H EXSY spectrum, measured for $W(CO)_5[S(C_7H_7)_2]$ (2c) at room temperature using a mixing time of 0.2 s. The off-diagonal cross peaks indicate the exchange via [1,7]-sigmatropic rearrangements, the more intensive ones corresponding to fast [1,7]-migration of the sulfur around the seven-membered ring. The marked off-diagonal cross peaks with lower intensities arise from two subsequent migrations of the same type. A mixing time of 0.1 s leads to suppression of these cross peaks, whereas a mixing time of 0.5 s shows additional cross peaks for the third and further rearrangements.

Whereas the photo-generated intermediates $[M(CO)_5](thf)$ (M = Cr, W) react with $S(C_7H_7)_2$ (1) in THF solution to give pentacarbonylmetal complexes (2c and 3a,c), the corresponding molybdenum precursor [Mo(CO)₅]-(thf) leads immediately to the tetracarbonyl chelate complex, cis-Mo(CO)₄[S(C₇H₇)(η^2 -C₇H₇)] (4b), which is also accessible via the norbornadiene intermediate Mo(CO)4- $(\eta^4 - C_7 H_8)$ [18].

The analogous tungsten complex, W(CO)₄[S(C₇H₇)- $(\eta^2 - C_7 H_7)$] (4c), was obtained (together with a minor amount of 2c) from the reaction of the mixture of acetonitrile precursors, $W(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3), with $S(C_7H_7)_2$ (1). Attempts to prepare the tetracarbonyl chelate complex of chromium (4a) were not successful. Both $[Cr(CO)_5](thf)$ and $Cr(CO)_4(\eta^4-C_7H_8)$ [18] gave **3a**, and irradiation of 2a resulted in photo-induced decomposition instead of CO substitution.

	$Mo(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (4b)	W(CO) ₄ [S(C ₇ H ₇)(η^2 ·	$-C_{7}H_{7}$] (4c)
	25 °C	25 °C	-20 °C
¹ H NMR (CDCl ₃)			
δ(H ¹)	3.89t [7.9] (1H)	3.92t (1H)	4.01t (1H)
δ(H ¹)	4.82t [8.1] (1H)	4.94t (1H)	4.96t (2H)
$\delta({\rm H}^{4'},{\rm H}^{5'})$	5.60m (2H)	5.38br (2H)	5.34m (2H)
3 multiplet groups	5.60m (4H)	5.59m (4H)	5.68-5.46m (4H)
	6.47m (2H)	6.48m (2H)	6.59-6.49m (2H)
	6.67m (4H)	6.68m (4H)	6.80-6.62m (4H)
¹³ C NMR (CDCl ₂)			
$\delta(C^1)$	42.6	43.7	43.2
$\delta(C^{1'})$	47.3	48.2	47.9
$\delta(C^{4'}, C^{5'})$	84.6	77.2; 76.2	76.8; 76.0
Remaining 10 signals	(partially broadened)	(partially broadened)	132.68; 132.65; 131.8; 131.0; 130.0; 129.7; 126.1; 124.8; 123.7; 120.8
δ(CO)	213.8; 213.5	203.6 [166.1] ^{a)} 203.3 [168.1]	203.8; 203.3; 202.1; 198.8
IR: v(CO) [cm ⁻¹] ^{b)} (pentane)	2034(m), 1945(s), 1931(s), 1898(s)	2032(m), 1942(s), 1927(s), 1896(s)	

Table 3 Spectroscopic data of the chelate complexes 4b and 4c

^{a)} Coupling constant, ¹*J*(¹⁸³W, ¹³C) [Hz].

^{b)} Intensities: s strong, m medium.

The spectroscopic data for the tetracarbonyl chelate complexes 4b and 4c are given in Table 3. The assignment of ¹H and ¹³C NMR signals is based on 2D ¹H/¹³C HETCOR experiments, intensity data and comparison with the related tetracarbonyl chelate complexes of the phosphane, $M(CO)_4[P(C_7H_7)_2(\eta^2-C_7H_7)]$ (M = Cr, Mo, W) [1]. In the ¹H NMR spectra of **4b** and **4c**, the expected presence of 14 protons of the sulfane ligand was confirmed, although only the pseudotriplets of H¹ and H¹ have been unequivocally assigned; the signal of proton $H^{1'}$ of the coordinated C_7H_7 substituent undergoes a larger shift to higher frequencies than that of the freely-pending substituent (H¹), if compared to the chemical shift of H¹ in the uncoordinated thioether 1 ($\delta(H^1) = 3.61$, cf. Table 1). The complex dynamic situation in the compounds 4b and 4c becomes apparent by the broadened ¹³C NMR signals (at room temperature) of the sulfane ligand and by the observation of only two $^{13}C(CO)$ signals in equal intensity which, in the case of 4c, are accompanied by ¹⁸³W satellites due to ¹⁸³W-¹³C spinspin coupling. In addition to the dynamic processes described for the complexes 2 and 3 (vide supra) it is conceivable that a third process is also involved, namely the exchange between the η^2 -coordinated and the pending C₇H₇ groups. This was not investigated in detail. However, at -20 °C, the ¹³C NMR spectrum of 4c shows 18 sharp signals for all individual carbon atoms, i.e. 14 signals for the sulfane ligand and 4 ¹³C(CO) signals of equal intensity. The ¹H and ¹³C NMR signals of the coordinated double bond (H^{4',5'} and C^{4',5'}) are shifted to low frequencies as a result of π -complexation, as compared with the corresponding signals of freely pending C_7H_7 rings in both 4b,c and in 1. The IR spectra of 4b and 4c (in pentane solution) reveal the characteristic *cis*-tetracarbonylmetal pattern with 4 v(CO)absorptions (Table 3).

In the series of carbonylmolybdenum complexes, an attempt was made to prepare a tricarbonyl complex containing a η^6 -coordinated sulfane ligand, i.e. the unknown sulfane complexes $Mo(CO)_3[(\eta^6-C_7H_7)S(C_7H_7)]$ or $S[(\eta^6-C_7H_7)Mo(CO)_3]_2$, related to the phosphane compound $P[(\eta^6-C_7H_7)Mo(CO)_3]_3$ [19].

However, if either $Mo(CO)_6$ or (mesitylene) $Mo(CO)_3$ were heated in refluxing THF solution in the presence of $S(C_7H_7)_2$ (1), loss of sulfur and formation of the ditropyl complex **5b** was observed. The mixture of *endo*-hydrogen and *exo*-hydrogen (H¹ and H^{1'}, resp.) isomers of **5b** can be separated by thin-layer chromatography (TLC). The *endo*-

form had been obtained previously [20] from $Mo(CO)_6$ and ditropyl.

Studies on the dinuclear, ditropyl-bridged complexes, $[Mo(CO)_3]_2[\mu-(\eta^6-C_7H_7)_2]$ (*endo* and *exo* isomers) are also reported in the literature [20,21].

X-Ray Crystal Structure Analyses

The molecular structures of the two pentacarbonylmetal sulfane complexes $Cr(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3a) and $W(CO)_5[S(C_7H_7)_2]$ (2c) are presented in Figures 5 and 6. Bond distances are given in Table 4, bond angles and a few characteristic dihedral angles are collected in Table 5.

Fig. 5 Molecular structure (50% probability ellipsoids) of $Cr(CO)_{5}[S(CH_{2}Ph)(C_{7}H_{7})]$ (3a)

In both 3a and 2c the pseudo-octahedral coordination sphere of the metal contains a monodentate sulfane donor ligand. The distance between the metal and the CO ligand trans to sulfur (M-C(15)) is reduced by 5-7 pm as compared with the average bond lengths between the metal and the four cis-carbonyl ligands. This structural "trans-influence" of the sulfur-coordinated ligand is generally observed in pentacarbonylchromium complexes, unless the ligand itself is a π -acceptor (like, e.g., SO₂ [22]). For comparison, Table 6 gives the metal carbonyl distances in $[Cr(CO)_5]$ - and [W(CO)₅] complexes with sulfur-containing ligands, together with the metal-sulfur bond lengths. In line with the special role of the trans-carbonyl group, the shortened M-C(15) bond length (184.0(7) pm in 3a, 197.3(4) pm in **2c**) is associated with a significantly lengthened C(15) - O(1)bond (116.7(7) pm in **3a**, 116.3(5) pm in **2c**), as compared with the C–O bond distances of the four *cis*-carbonyl ligands (av. 113.7(7) pm in 3a, av. 113.8(5) pm in 2c), and the angle M-C(15)-O(1) (178.4(6)° in **3a**, 178.6(4)° in **2c**) is

Fig. 6 Molecular structure (50% probability ellipsoids) of $W(CO)_5[S(C_7H_7)_2]$ (2c)

Table 4 Bond distances /pm in the pentacarbonylmetal sulfane complexes 3a (M = Cr) and 2c (M = W)

	$\frac{Cr(CO)_5[S(CH_2Ph)(C_7H_7)]}{(3a)}$	$W(CO)_{5}[S(C_{7}H_{7})_{2}]$ (2c)
M-S	242.68(16)	257.32(10)
M-C(15)	184.0(7)	197.3(4)
M-C(16)	189.6(7)	204.7(4)
M-C(17)	189.3(7)	203.8(4)
M-C(18)	188.4(7)	204.0(4)
M-C(19)	190.6(7)	203.3(5)
S-C(1)	186.3(5)	182.6(4)
S-C(8)	183.1(6)	187.3(4)
O(1)-C(15)	116.7(7)	116.3(5)
O(2)-C(16)	112.9(7)	113.6(5)
O(3)-C(17)	113.9(7)	114.1(5)
O(4)-C(18)	115.0(7)	113.8(5)
O(5)-C(19)	113.1(7)	113.6(6)
C(1)-C(2)	147.7(9)	149.5(6)
C(1)-C(7)	146.8(9)	150.0(5)
C(2)-C(3)	132.6(12)	133.5(6)
C(3)-C(4)	137.1(16)	142.5(8)
C(4)-C(5)	134.9(17)	133.3(8)
C(5)-C(6)	145.8(16)	145.6(8)
C(6)-C(7)	128.4(11)	133.3(6)
C(8)-C(9)	150.6(7) ^{a)}	131.5(7)
C(8)-C(14)		150.2(6)
C(9)-C(10)	137.6(8) ^{a)}	149.9(6)
C(9)-C(14)	136.5(8) ^{a)}	
C(10)-C(11)	138.8(9) ^{a)}	140.9(8)
C(11)-C(12)	136.0(10) ^{a)}	131.6(8)
C(12)-C(13)	136.5(10) ^{a)}	142.4(9)
C(13)-C(14)	138.8(9) ^{a)}	135.2(8)

a) Benzyl substituent.

2444	© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinh	ieim

^{b)} cf. Fig. 7. The numbering (α_1 , β_1 and α_8 , β_8) refers to the cyclohepta-2,4,6-

slightly larger than the average value for the four cis-car-

bonyl ligands (av. 175.5° in 3a, 177.0° in 2c). The four cis-

carbonyl ligands and the metal are essentially coplanar; the

dihedral angles, e.g. C(16)MC(17)/C(18)MC(19) (3.4° in 3a,

trienyl ring containing the carbon atoms C(1) or C(8), respectively.

a) Benzyl substituent.

 4.3° in **2c**), are small.

Table 5 Angles /° in the pentacarbonylmetal sulfane complexes 3a (M = Cr) and <math>2c (M = W)

Table 6 Metal-sulfur and metal-carbonyl bond distances in [Cr(CO)₅]- and [W(CO)₅] complexes with sulfur-containing ligands

	$\begin{array}{l} Cr(CO)_5[S(CH_2Ph)(C_7H_7)]\\ \textbf{(3a)} \end{array}$	$W(CO)_{5}[S(C_{7}H_{7})_{2}]$ (2c)
C(15)-M-C(16)	89.2(3)	87.92(16)
C(15)-M-C(17)	89.0(3)	87.65(16)
C(15)-M-C(18)	87 5(3)	88 80(16)
C(15) - M - C(19)	90.4(3)	89.80(17)
C(16)-M-C(17)	90.6(3)	94.53(18)
C(16)-M-C(18)	176 3(3)	172 84(16)
C(16) M C(10)	80.0(3)	88 61(18)
C(10)-M- $C(19)$	00.0(2)	00.01(10)
C(17)-M- $C(18)$	90.9(3)	91.09(10)
C(17)-M-C(19)	1/9.2(3)	1/5.88(15)
C(18)-M-C(19)	88.5(3)	85.02(17)
C(15)-M-S	175.5(2)	177.55(11)
C(16)-M-S	87.84(19)	94.23(11)
C(17)-M-S	87.6(2)	91.00(11)
C(18)-M-S	95.6(2)	89.20(11)
C(19)-M-S	93.0(2)	91.44(12)
C(1)-S-M	112.8(2)	112.71(12)
C(8)-S-M	111.2(2)	108.35(13)
C(1)-S-C(8)	98.4(3)	98.31(18)
S-C(1)-C(2)	111 1(4)	115 0(3)
S = C(1) = C(2)	110.0(4)	111 1(3)
C(2)-C(1)-C(7)	110.0(6)	108.7(3)
C(1)-C(2)-C(3)	123.9(8)	110.7(3)
C(2)-C(3)-C(4)	125.5(8)	125 1(5)
C(2) - C(3) - C(4)	127.5(10) 128 5(12)	125.1(5) 125.0(5)
C(4) = C(5) = C(6)	120.5(12)	125.9(5) 126 $A(4)$
C(4) - C(3) - C(6)	121.0(11)	120.4(4)
C(5)-C(0)-C(7)	126.3(9)	124.4(3) 110.7(4)
C(0)-C(1)-C(1)	123.3(7)	119.7(4)
S-C(8)-C(9)	110.2(4)	111.3(3)
S-C(8)-C(14)	109.0(3)	
C(9)-C(8)-C(14)	111.0(4)	10000
C(8)-C(9)-C(10)	120.4(6) ^{a)}	126.0(4)
C(8)-C(9)-C(14)	120.4(5) ^{a)}	
C(10)-C(9)-C(14)	119.2(6) ^{a)}	
C(9)-C(10)-C(11)	119.9(6) ^{a)}	127.3(4)
C(10)-C(11)-C(12)	119.9(7) ^{a)}	127.1(6)
C(11)-C(12)-C(13)	121.1(7) ^{a)}	126.7(6)
C(12)-C(13)-C(14)	118.6(7) ^{a)}	127.3(5)
C(13)-C(14)-C(9)	121.3(7) ^{a)}	
C(13)-C(14)-C(8)	124.2(5)	
M-C(15)-O(1)	178.4(6)	178.6(4)
M-C(16)-O(2)	176 1(6)	175 1(4)
M-C(17)-O(3)	176.7(6)	1774(4)
$M_{-}C(18)_{-}O(4)$	177 5(6)	174.4(3)
$M_{-}C(10)_{-}O(5)$	177.7(6)	1/1.1(3)
WFC(17)-0(5)	175.1(4)	
Dihedral angles b)		
a angles	a = 15.3 (ax)	a. 56 ((ea)
u	$u_1 + 3.3 (ax)$	$u_1 = 50.4 (eq)$
8	8 22 6	$u_8 + 2.8 (ax)$
р	p ₁ 22.0	p ₁ 20.8
C(1)CC(0)/MC	145 1	p ₈ 21.3
C(1)SC(8)/MS	145.1	14/.5
C(10)MC(17)/C(18)MC(19)	3.4	4.5

Cr(CO) ₅ [L]	Cr-S	Cr-CO (trans)	Cr-CO (cis)	Ref.
$\overline{L = SO_2(A)}$	219.2(6)	187.3(17)	av. 189.7(13)	[22]
(\mathbf{B}) $\mathbf{S}(-\mathbf{O})\mathbf{C}\mathbf{H} \mathbf{C}\mathbf{H} \mathbf{a}$	218.5(0)	190.0(17) 185.8(5)	av. $190.0(13)$	[23]
$S = CM_{e}^{b}$	233.1 237.7(4)	183.6(5)	av. 190.9(3)	[23]
$S = C(Ph)E_2$	237.7(4) 241.2(1)	165.5	av. 109.0	[24]
S = C(S) Pat	241.2(1) 238.0(4)	178(2)	av 186(2)	[25]
$S = N_{-}NMe_{-}$	238.9(4) 238.6(1)	170(2) 184 6(2)	av. 100(2)	[20]
$S = N_N Ph$	235.0(1) 235.7(2)	184.8(7)	av. 190.0(9)	[27]
S(Ph)N(CH, Ph) (A)	233.7(2) 240.9(2)	181.2(7)	av. $190.0(9)$	[28]
(B)	239.6(2)	181.2(7) 181.6(10)	av. 186 3(11)	[20]
S(Ph)NCv ₂	239.0(2) 244 5(1)	183.0(4)	av 188 5(5)	
5(11)1(Cy2	244.3(1) 244.1(2)	183.0(4) 184 4(4)	av. $188.8(4)$	[29]
S(CH_Ph)(C_H_)	242 68(16)	184.0(7)	av 189 5(7)	[A]
$S(CH_2Ph)(Et)$	245 8(2)	181.0(7) 1859(7)	av 187 9(10)	[30]
S[CMealaCO ^{c)}	243.0(2) 242 41(5)	185.7(2)	av 191 2(1)	[31]
$S = C[OCMe_{a}]_{a}^{d}$	243.8(1)	183.7(2) 184 1(4)	av 1912(1)	[32]
$S(H)(^{t}Bu)$	243.9(2)	182 8(8)	av 192 3(8)	[33]
$S=PMe_2$	2510(2)	181 5(8)	av $192.9(0)$	[34]
$S = C[N(Me)CH_{2}L^{e})$	251.0(2)	182.7(10)	av 188 5(12)	[35]
S(SnMe ₂) ₂	252 2(3)	180(1)	av 190(2)	[36]
cf.	202.2(0)	100(1)	ui. 190(2)	[50]
${Cr(CO)_{5}[SH]}^{-}$ ${N_{2}(2,2,1-crupt)}^{+}$	247.3(2)	189.8(5)	av. 190.5(5)	[37]
${Cr(CO)_{5}[S^{t}Bu]}^{-}$	247.9(1)	182.4(4)	av. 188.1(6)	[38]
${\rm PPN}^+$				
$\{[Cr(CO)_5]_2[S^tBu]\}^-$	250.9(1)	183.4(5)	av. 189.2(5)	[38]
$\{PPN\}^+$	251.8(1)	182.2(6)	av. 188.9(5)	
W(CO) ₅ [L]	W-S	W-CO (trans)	W-CO (cis)	Ref.
$I = S = C(H) Ph^{f}$	247.0(3)	200(1)		[30]
L = S - C(H) F H	247.9(3)	200(1)		[39]
S = C(1 + C(1 + 1) - C(OEt)) + 1	250.8(3) 252.5(2)	107(1)	203(1)	[40]
	252.5(2)	17/(1)	av. 205(1)	[11]
S = CC(Ph)C(Ph)SS	252.8(6)			[42]
$S[N(SiMe_3)BMe]_2NH^{e_2}$	253.3(2)	196.5	201.7-205.6	[43]
S=C(OH)Me	254.8(2)	200.4(18)	av. 206.3(17)	[44]
S ₃ (CHMe) ₃ ^{h)}	255.3(6)	192(3)	av. 197(3)	[45]
	255.3(7)	18/(3)	av. 202(3)	
$S(CH_2)_2N(H)C(O)CH_2^{1}$	255.1(14)	200.0(18)	av. 204.3(17)	[46]
S(CH ₂) ₂ N(H)C(S)CH ₂ ^j	255.6(8)	195(2)	av. 204.5	[47]
S(CH ₂)[C(SMe)-PPh ₂ Me]	255.5(2)	197.2(9)	av. 203.4(9)	[48]
$S = C(N(H)(CH), S)^{k}$	256(0,6)	107(2)	av. 202 5(20)	[40]
$S = C(N(H)(CH_2)_2S)^{-1}$	256 8(2)	197(2)	av. $202.3(20)$	[49]
$S = C(NH)N(H)N = CMe^{-m}$	250.8(2)	190.0(0)	av. $203.7(9)$	[50]
$(S C(S)OEt)^{-n}$	230.8(2)	197.0(8)	av. 203.7(9)	[51]
$\{\mathbf{PPh}_{i}\}^{+}$	257.1(3)	194.5(13)	av. 204.5(14)	[52]
$S(^{t}Bu)(CH_{a}S^{t}Bu)$	257 1(5)	196 5(13)	av 203 0(14)	[53]
S(C ₂ H ₂)	257 32(10)	197 3(4)	av 204 0(5)	[<u></u>]
$S_{-CH(Ph)(PM_{P-1})}^{O(PM_{P-1})}$	257.9(2)	196 1(6)	un 204.0(3)	[30]
S(^t Bu)Sb(S ^t Bu) ₂	259 6(2)	195 3(6)	av 201 9(7)	[54]
$S = C[N(Me)CH_{al}e)$	261 7(2)	195.6(6)	av 203 1(8)	[35]
$S(GeMe_2)_2$	262 2(5)	194(2)	av 204(2)	[36]
5(50003)2	(-)			[20]

[A] This work.

^(A) 1.5-Dihydrothiophene-1-oxide; ^{b)} thioacetone; ^{c)} 2,2,4,4-tetramethyl-3-thi-etanone; ^{d)} 4,4,5,5-tetramethyl-1,3-dioxolan-2-thione; ^{e)} N,N'-dimethyl-imi-dazolidine-2-thione; ^{f)} thiobenzaldehyde; ^{g)} 3,5-dimethyl-2,6-bis(trimethyl-silyl)-1-thia-2,4,6-triaza-3,5-diborinane; ^{h)} 2,4,6-trimethyl-1,3,5-trithian; ⁱ⁾ thiomorpholin-3-one; $^{j)}$ thiomorpholin-3-thione; $^{k)}$ thiazolidine-2-thione; $^{l)}$ pyridine-2(1H)thione; ^{m)} acetone-thiosemicarbazone; ⁿ⁾ xanthate; ^{o)} (α-trimethylphosphonio)benzyl thiolate.

According to Table 6, Cr-S distances between 218 and 253 pm have been reported for [Cr(CO)₅] complexes with various sulfur-containing ligands. The Cr-S bond length determined for Cr(CO)₅[S(CH₂Ph)(C₇H₇)] (3a) (242.68(16) pm) falls into the typical range (240-246 pm) of [Cr(CO)₅]

compounds with amino sulfanes, S(Ph)NR₂ (R = CH₂Ph [28], C₆H₁₁ [29]), thioalcohols (^tBuSH [33]) and thioethers (S(CH₂Ph)Et [30]), cf. Table 6. In a similar manner, the W–S bond length in W(CO)₅[S(C₇H₇)₂] (**2c**) (257.32(10) pm) is almost identical with that in the thioether complex, W(CO)₅[S(^tBu)(CH₂S^tBu)] (257.1(5) pm [53]). In general, the W–S distances in [W(CO)₅] complexes of sulfur-containing ligands are observed in the range of 247–262 pm, cf. Table 6.

The 1-cyclohepta-2,4,6-trienyl substituent in the crystals of **3a** carries the sulfur atom in an axial position. In **2c** only one C_7H_7 substituent has the axial conformation, the other assumes the (more spherical) equatorial conformation with larger dihedral angles α and β , as defined in Figure 7. In the uncoordinated sulfane **1**, both C_7H_7 substituents are axial [3]. It can be assumed that the axial or equatorial conformation of the 1-cyclohepta-2,4,6-trienyl substituents in the crystal are determined by the steric situation in the lattice. There is only a very small difference in energy (0.9 kJmol⁻¹) between the axial and equatorial isomers of C_7H_7 -SH, with the axial isomers being slightly more stable, according to calculations on the B3LYP/6-311+G(d,p) level of theory [Gaussian 03 program package].

Fig. 7 Conformation of the 1-cyclohepta-2,4,6-trienyl substituent

The isostructural *cis*-tetracarbonyl complexes $M(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (M = Mo (4b) and W (4c)) crystallize in the monoclinic space group P2₁/c. The unit cell which contains 4 molecules is slightly (*ca.* 1%) smaller in the case of 4c, i.e. the tungsten-containing complex molecules 4c are marginally more compact than their molybdenum analogues 4b. The molecular geometry of the tungsten complex 4c with the numbering scheme is presented in Fig. 8; the bond distances and angles are collected in Tables 7 and 8, respectively.

The pseudo-octahedral coordination sphere of **4b**,**c** contains two types of CO ligands, on the one hand the CO groups *trans* to the sulfur (C(17)–O(3)) and to the coordinated double bond (C(15)–O(1)), on the other hand the CO groups *cis* to the ligand positions (C(16)–O(2) and C(18)–O(4)). The distance between the metal and the "*trans*" carbonyl ligands is significantly shortened as a result of the structural "trans-influence", and the angle M–C–O is close to linearity (*ca.* 179°). The two "*cis*" carbonyl ligands (M–C *ca.* 202 pm, M–C–O *ca.* 174°) include an angle C(16)–M–C(18) of 169.4(5)° (**4b**) or 169.5(2)° (**4c**). The three CO ligands in the equatorial plane (which is defined by the metal and the carbon atoms C(4),

Fig. 8 Molecular structure (50% probability ellipsoids) of $W(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (4c)

Table	7 Bond	distances /	/pm in	$M(CO)_4[S($	$(C_7H_7)(\eta^2 \cdot$	$-C_7H_7)$
(M =	Mo (4b)	and W (4c	:))			

	M = Mo (4b)	$\mathbf{M}=\mathbf{W}\left(\mathbf{4c}\right)$
M-S	253.8(3)	252.85(11)
M-C(4)	250.2(10)	246.0(5)
M-C(5)	248.6(10)	247.0(5)
M-C(15)	196.1(13)	199.1(6)
M-C(16)	203.2(14)	202.8(5)
M-C(17)	195.6(12)	195.7(5)
M-C(18)	201.6(13)	202.1(5)
O(1)-C(15)	115.7(12)	113.0(7)
O(2)-C(16)	115.1(13)	113.4(6)
O(3)-C(17)	115.2(12)	116.3(6)
O(4)-C(18)	114.3(13)	114.8(7)
S-C(1)	186.2(10)	185.2(5)
S-C(8)	186.5(10)	186.0(5)
C(1)-C(2)	149.0(15)	148.8(7)
C(1)-C(7)	148.8(14)	151.2(7)
C(2)-C(3)	132.1(15)	130.6(7)
C(3)-C(4)	143.5(15)	146.7(7)
C(4)-C(5)	138.8(15)	138.6(8)
C(5)-C(6)	143.4(15)	145.8(8)
C(6)-C(7)	133.4(15)	131.7(8)
C(8)-C(9)	149.5(16)	147.5(7)
C(8)-C(14)	148.9(14)	148.2(7)
C(9)-C(10)	126.0(18)	133.8(10)
C(10)-C(11)	145.0(2)	142.3(11)
C(11)-C(12)	134.0(2)	134.1(11)
C(12)-C(13)	143.0(19)	143.8(10)
C(13)-C(14)	132.8(16)	131.7(8)

C(5), C(15), C(16), C(18)) are slightly pushed upwards by the sulfane ligand towards the *trans*-carbonyl, C(17)-O(3).

Compared with the free molecule $S(C_7H_7)_2$ (1), the bidentate sulfane ligand in **4b**,c has undergone only small

Table 8 Angles /° in $M(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (M = Mo (4b) and W (4c))

	$\mathbf{M} = \mathbf{Mo} \; (\mathbf{4b})$	$\mathbf{M}=\mathbf{W}\left(\mathbf{4c}\right)$
C(4)-M-S	84.8(3)	86.22(13)
C(5)-M-S	85.9(3)	84.63(13)
C(4)-M-C(5)	32.3(4)	32.66(18)
C(4)-M-C(15)	165.3(5)	161.1(2)
C(4)-M-C(16)	78.4(4)	76.8(2)
C(4)-M-C(17)	90.5(4)	89.66(19)
C(4)-M-C(18)	109.5(4)	111.4(2)
C(5) - M - C(15)	162.2(5)	100.0(2) 100.4(2)
C(5) - M - C(10)	110.0(4) 00.7(4)	109.4(2) 80.0(2)
C(5)-M-C(18)	77.2(4)	78.9(2)
C(15)-M-C(16)	87 2(5)	84 5(2)
C(15)-M-C(17)	91.2(5)	923(2)
C(15)-M-C(18)	85 2(5)	87.6(2)
C(16)-M-C(17)	85.0(4)	88.7(2)
C(16)-M-C(18)	169.4(5)	169.5(2)
C(17)-M-C(18)	87.9(4)	84.82(19)
C(15)-M-S	93.1(3)	92.80(17)
C(16)-M-S	93.1(3)	94.01(15)
C(17)-M-S	175.2(3)	174.43(16)
C(18)-M-S	94.6(3)	93.19(14)
C(1)-S-C(8)	99.6(5)	99.1(2)
C(1)-S-M	106.8(4)	107.86(16)
C(8)-S-M	109.1(3)	109.05(16)
S-C(1)-C(2)	107.4(7)	112.6(3)
S-C(1)-C(7)	112.2(7)	106.7(3)
C(2)-C(1)-C(7)	113.4(9)	112.1(4)
C(1)-C(2)-C(3)	124.0(11)	124.8(5)
C(2)-C(3)-C(4)	127.8(12)	127.1(5)
C(3)-C(4)-C(5)	123.8(12)	125.0(5)
M-C(4)-C(5)	/3.2(6)	/4.1(3)
M-C(4)-C(5)	114.7(7) 127.5(11)	114.1(5) 125.1(5)
$M_{-}C(5)_{-}C(4)$	74.5(6)	73.3(3)
M-C(5)-C(6)	113 6(7)	1147(3)
C(5)-C(6)-C(7)	126.5(11)	127.9(5)
C(1)-C(7)-C(6)	123.5(11)	123.3(5)
S-C(8)-C(9)	111.1(8)	112.3(4)
S-C(8)-C(14)	108.5(8)	108.8(3)
C(9)-C(8)-C(14)	109.7(9)	111.0(4)
C(8)-C(9)-C(10)	128.8(14)	125.6(6)
C(9)-C(10)-C(11)	125.9(14)	125.9(6)
C(10)-C(11)-C(12)	125.3(14)	126.5(7)
C(11)-C(12)-C(13)	126.9(15)	126.3(7)
C(12)-C(13)-C(14)	126.2(13)	126.9(6)
C(8)-C(14)-C(13)	125.9(11)	125.3(5)
M-C(15)-O(1)	179.1(12)	179.5(7)
M-C(16)-O(2)	173.7(12)	174.5(5)
M-C(17)-O(3)	179.1(11)	178.1(5)
M-C(18)-O(4)	174.7(11)	174.0(5)
Dihedral angles ^{a)}	15 6 (a)	46.1 ()
α ₁ θ	45.0 (ax)	40.1 (ax)
P1	23.2 41.7 (orr)	23.0 44.6 (am)
us Br	41.7 (ax) 22.8	21 8
P8	22.0	21.0
C(1)SC(8)/MS	151.4	150.8
C(4)MC(5)/MC(15,16,18)	4.3	4.8
O(1)C(15)MC(4,5)/MS	85./	85.5
O(1)O(15)MO(4,5)/MO(17)O(3)	90	88.0

^{a)} cf. Fig. 7. The numbering $(\alpha_1, \beta_1 \text{ and } \alpha_8, \beta_8)$ refers to the cyclohepta-2,4,6-trienyl ring containing the carbon atoms C(1) or C(8), respectively.

distortions. Both C_7H_7 ring substituents retain the axial conformation as in 1, although the coordinated C_7H_7 sub-

stituent (C(1)–C(7)) is marginally more bent (cf. Fig. 7 and Table 8). The axial conformation is required for π -complexation *via* the C(4),C(5) double bond, which is lengthened by 5–6 pm as a result of π -interaction with the metal (C(4),C(5) 133.0(3) pm in 1, 138.8(15) and 138.6(8) pm in **4b** and **4c**, respectively). The distances S–C(1) and S–C(8) and the angle C(1)–S–C(8) are nearly unchanged if compared with uncoordinated S(C₇H₇)₂ (1) (S–C(1) 184.43(18) pm, C(1)–S–C(8) 100.71(12)° [3]). The distance W–S is shorter in the tetracarbonyl **4c** than in the (precursor) pentacarbonyl **2c** (252.85(11) versus 257.32(10) pm), but the dihedral angles between the W–S bond and the C(1)WC(8) plane are very similar (147.5° in **2c**, 150.8° in **4c**).

Experimental

The syntheses and all manipulations were routinely carried out under argon; the solvents (THF, CH₃CN, CH₂Cl₂) were dried and saturated with argon. Standard procedures were used to prepare the starting complexes, $M(CO)_{6-x}(CH_3CN)_x$ (M = Cr, Mo, W; x = 1, 2, 3) [4,5], (norbornadiene) $M(CO)_4$ (M = Cr, Mo) [18] and (mesitylene) $Mo(CO)_3$ [55]. The ligand $S(C_7H_7)_2$ (1) was obtained [3] from tropylium bromide, C_7H_7Br [56], and H₂S.

Photo-induced decarbonylation of the hexacarbonyls $M(CO)_6$ in dilute THF solution to give the labile, solvent-stabilized pentacarbonyls, $[M(CO)_5](thf)$, was accomplished using the high-pressure mercury arc Hanovia (700 W).

Instrumentation: IR: Perkin Elmer 983 G (pentane). ¹H and ¹³C NMR: Bruker ARX 250 (CDCl₃, reference signal δ (¹H) 7.24 (residual protons) and δ (¹³C) 77.0). FD-MS: Varian, MAT 311A.

X-Ray crystallography: Siemens P4 (Mo-K_{α} radiation, $\lambda = 71.073$ pm, graphite monochromator). Structure solution and refinement with the program package SHELXTL-PLUS V.5.1. The crystallographic data and the structure refinement details are collected in Table 9.

Syntheses

$Cr(CO)_{5}[S(C_{7}H_{7})_{2}]$ (2a) and $Mo(CO)_{5}[S(C_{7}H_{7})_{2}]$ (2b)

A tetrahydrofuran (THF) solution (10 ml) containing 214 mg (1 mmol) $S(C_7H_7)_2$ (1) was slowly added to an orange THF solution (50 ml) which contained ca. 1 mmol $M(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3), previously prepared by refluxing 1 mmol $M(CO)_6$ (M = Cr or Mo) in acetonitrile until 1.1 equivalents of CO had evolved. The reaction mixture was stirred at room temperature overnight. Then the solvent THF was removed under vacuum, the residue dissolved in pentane and filtered through cellulose filter flocks. The pentane filtrate was concentrated and cooled to -28 °C in a refrigerator, where slow crystallization occured.

 $Cr(CO)_5[S(C_7H_7)_2]$, orange crystals, yield 155 mg (38.2 %), m.p. (dec.) above 77 °C, FD-MS: m/e 406 (M^+).

 $Mo(CO)_5[S(C_7H_7)_2],$ dark-yellow crystals, yield 175 mg (38.9 %), m.p. (dec.) above 70 °C.

$W(CO)_5[S(C_7H_7)_2]$ (2c) and $W(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3c)

A solution of 352 mg (1 mmol) $W(CO)_6$ in 100 ml of THF was irradiated for 7 h with a high-pressure mercury arc (Hanovia, 700W), until the intense v(CO) band of the educt (1974 cm⁻¹) had

	$W(CO)_{5}[S(C_{7}H_{7})_{2}]$	$Cr(CO)_{5}[S(PhCH_{2})(C_{7}H_{7})]$	$M(CO)_4[S(C_7H_7)(\eta^2 -$	C ₇ H ₇)]
	(2c)	(3a)	$\mathbf{M} = \mathbf{Mo} \left(\mathbf{4b} \right)$	$\mathbf{M} = \mathbf{W} \left(\mathbf{4c} \right)$
Empirical formula	C ₁₉ H ₁₄ WO ₅ S	C ₁₉ H ₁₄ CrO ₅ S	C ₁₈ H ₁₄ MoO ₄ S	C ₁₈ H ₁₄ WO ₄ S
Molecular mass / (g·mole ⁻¹)	538.21	406.36	422.29	510.20
Temperature / K	296(2)	293(2)	293(2)	293(2)
Crystal system	triclinic	monoclinic	monoclinic	monoclinic
Space group	$P\overline{1}$	C2/c	<i>P</i> 2 ₁ /c	P21/c
Unit cell dimensions:			-	-
a / pm	920.49(16)	1885.66(15)	1602.0(2)	1596.44(19)
b/pm	983.4(2)	1638.79(12)	942.3(3)	938.41(6)
c/pm	1200.27(15)	1459.06(11)	1195.5(2)	1193.44(10)
α/°	69.868(13)	90	90	90
β/°	70.009(10)	121.061(5)	102.011(9)	102.316(7)
γ/°	89.151(15)	90	90	90
Volume / (10^6 pm^3)	952.1(3)	3862.3(5)	1765.2(6)	1746.8(3)
Z	2	8	4	4
Density (calc.) / (Mg·m ⁻³)	1.877	1.301	1.589	1.940
Absorption coefficient / mm ⁻¹	6.201	0.716	0.879	6.750
F(000)	516	1552	848	976
Crystal dimensions / mm	$0.22 \times 0.17 \times 0.12$	$0.18 \times 0.15 \times 0.12$	$0.15 \times 0.14 \times 0.04$	$0.25 \times 0.18 \times 0.10$
Theta range / θ	1.94 to 25.00°	2.49 to 25.00°	2.52 to 24.99°	2.53 to 25.00°
Index ranges	-10 <h<1, -10<k<10,<="" td=""><td>-1<h<22, -1<k<19,<="" td=""><td>-17<h<17, -1<k<11,<="" td=""><td>-18<h<18, -11<k<1,<="" td=""></h<18,></td></h<17,></td></h<22,></td></h<1,>	-1 <h<22, -1<k<19,<="" td=""><td>-17<h<17, -1<k<11,<="" td=""><td>-18<h<18, -11<k<1,<="" td=""></h<18,></td></h<17,></td></h<22,>	-17 <h<17, -1<k<11,<="" td=""><td>-18<h<18, -11<k<1,<="" td=""></h<18,></td></h<17,>	-18 <h<18, -11<k<1,<="" td=""></h<18,>
	-14<1<13	-17<1<15	-1<1<12	-14<1<1
Reflections collected	3609	3949	3074	3987
Independent reflections	3043 [R(int) = 0.0311]	3342 [R(int) = 0.0366]	2314 [R(int) = 0.0673]	3056 [R(int) = 0.0400]
Completeness to 0	91.0 %	98.6 %	74.6 %	99.5 %
Absorption correction	Empirical	Empirical	Empirical	Empirical
Max. and min. transmission	0.6969 and 0.4165	0.5917 and 0.5266	0.3507 and 0.2716	0.3379 and 0.2227
Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2	Full-matrix least-squares on F2	Full-matrix least-squares on F2
Data / restraints / parameters	3043 / 0 / 236	3342/0/235	2314/0/217	3056/0/218
Goodness-of-fit on F2	1.079	0.963	0.998	1.052
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0184,	R1 = 0.0594,	R1 = 0.0632,	R1 = 0.0251,
	wR2 = 0.0468	wR2 = 0.1382	wR2 = 0.1296	wR2 = 0.0659
R indices (all data)	R1 = 0.0201,	R1 = 0.1187,	R1 = 0.1253,	R1 = 0.0293,
	wR2 = 0.0478	wR2 = 0.1745	wR2 = 0.1587	wR2 = 0.0685
Extinction coefficient	0.0097(4)			0.0029(2)
Largest diff. peak and hole /				
$(10^{-6} \mathrm{e} \cdot \mathrm{pm}^{-3})$	0.781 and -0.803	0.421 and -0.314	1.074 and -0.816	1.617 and -1.148

Table 7 Crystanographic data and structure remember det	deta	eta
--	------	-----

become weak. Then 214 mg (1 mmol) $S(C_7H_7)_2$ (1) were added to the yellow THF solution and the reaction mixture stirred for 1 day at room temperature. The orange-brown THF solution was concentrated and purified by column chromatography on silica (elution with pentane/THF (10:1)). The product **2c** was obtained as light-yellow crystals, m.p. 55 °C (beginning decomposition). Yield 310 mg (57.6 %).

If the reaction mixture containing $[W(CO)_5](thf)$ and **1** is stirred for 1 day at 40 °C (instead at room temperature) and worked up in an analogous manner, the product is **3c**. Yellow crystals, m.p. (dec.) 55 °C. Yield 268 mg (49.8 %).

$Cr(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3a)

a) The THF solution (100 ml) of 220 mg (1 mmol) $Cr(CO)_6$ was irradiated until the v(CO) absorption in the IR spectra (1980 cm⁻¹) had almost disappeared (ca. 6 h). Then 214 mg (1 mmol) $S(C_7H_7)_2$ (1) were added and the dark orange-red solution of $[Cr(CO)_5]$ (thf) was stirred at 25 °C for 2 days. The solvent THF was evaporated and the concentrated solution (ca. 1–2 ml) given on top of a chromatography column containing silica in pentane. Elution with pentane/THF (10:1) produced a solution from which yellow-green crystals of **3a** were obtained after concentration and cooling to –28 °C. M.p. 65 °C (beginning decomposition). Yield 187 mg (46.1 %). FD-MS: m/e 406 (M⁺).

b) 214 mg (1 mmol) $S(C_7H_7)_2$ (1) were added to the solution of 256 mg (1 mmol) $Cr(CO)_4(\eta^4$ -*nor*- $C_7H_8)$ in 30 ml of THF, and the reaction solution stirred for 2 days at ambient temperature. The

solvent was removed under vacuum, the residue dissolved in pentane and the solution filtered over filter flocks. The filtrate was concentrated and cooled to -28 °C. Yellow-green crystals, yield 165 mg (40.6 %).

c) A solution of 203 mg (0.5 mmol) 2a in 20 ml of THF was stirred at 60 °C for 5 h, then concentrated to 1–2 ml and subjected by column chromatography. Elution with pentane/THF (10:1) and crystallization gave yellow-green 3a, yield 115 mg (56.7 %).

$W(CO)_5[S(CH_2Ph)(C_7H_7)]$ (3c)

A solution of 269 mg (0.5 mmol) $W(CO)_5[S(C_7H_7)_2]$ (2c) in 20 ml of THF was kept at 50 °C for 5 h. The isomerized complex 3c was isolated by concentrating the dark orange solution and chromatographic purification. Yellow crystals, yield 142 mg (52.8 %).

$Mo(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (4b)

a) A solution of 264 mg (1 mmol) Mo(CO)₆ in 100 ml of THF was irradiated with the UV lamp, until the strong v(CO) band (1980 cm⁻¹) had nearly disappeared (3–5 h), and then stirred in the presence of 214 mg (1 mmol) $S(C_7H_7)_2$ (1) for 20 h at 25 °C. The solvent THF was removed under high vacuum, the residue dissolved in diethyl ether and the solution filtered over filter flocks. The filtrate was concentrated and cooled to -28 °C. Yellow crystals of **4b** were slowly formed, m.p. 80 °C (beginning decomp.), total decomp. at 95 °C. Yield 146 mg (34.6 %). FD-MS: m/e 424 (M⁺).

b) A THF solution (30 ml) containing both 300 mg (1 mmol) $Mo(CO)_4(\eta^4$ -nor- C_7H_8) and 214 mg (1 mmol) $S(C_7H_7)_2$ (1) was

stirred for 2 days at room temperature. Then the solvent was evaporated (together with *nor*- C_7H_8) under high vacuum and the residue dissolved in diethyl ether. Filtration over cellulose filter flocks and subsequent concentration to 1–2 ml gave a clear yellow solution from which yellow crystals were formed over night at -28 °C. Yield 175 mg (41.3 %).

$W(CO)_4[S(C_7H_7)(\eta^2-C_7H_7)]$ (4c)

A THF solution (10 ml) containing 214 mg (1 mmol) $S(C_7H_7)_2$ (1) was slowly added to an orange-red THF solution (50 ml) of $W(CO)_{6-x}(CH_3CN)_x$ (x = 1, 2, 3). The combined solution was stirred for 1 day. The dark-brown mixture was concentrated to 1-2 ml and then separated by column chromatography over silica (in pentane). An orange zone was eluted using pentane/THF (10:1), from which yellow-orange crystals could be obtained, m.p. 105 °C (decomp. 105–112 °C). Yield 215 mg (42.2 %). FD-MS: m/e 510 (M⁺).

$Mo(CO)_3[(\eta^6-C_7H_7)-C_7H_7]$ (5b)

An equimolar mixture of $Mo(CO)_6$ (264 mg, 1 mmol) and $S(C_7H_7)_2$ (1) (214 mg, 1 mmol) in 50 ml of THF was heated under reflux for 1 day. The solvent THF was evaporated and replaced by diethyl ether, Et₂O. The etheral solution was concentrated to 2 ml and chromatographed over silica. Elution with pentane/THF (10:1) and crystallization gave a mixture of orange crystals, m.p. 131 °C (cf. 117–119 °C [7]). FD-MS: m/e 364 (M⁺); IR (pentane): v(CO) 1997(s), 1934(s), 1910(s) cm⁻¹.

Separation by TLC gave 85 mg (23.4 %) **5b***endo* and 37 mg (10.2 %) **5b***exo.*

5b-endo: ¹H NMR (CDCl₃): free ring: δ (H) = 0.79m (H¹, endo), 5.04m (H², H⁷), 6.11m (H³, H⁶), 6.53t (H⁴, H⁵); coordinated ring: δ (H') = 3.27m (H^{1'}, endo), 3.98t (H^{2'}, H^{7'}), 4.92m (H^{3'}, H^{6'}), 5.92m (H^{4'}, H^{5'}).-¹³C NMR (CDCl₃): free ring: δ (C) = 49.1 (C¹), 122.4 (C², C⁷), 126.3 (C³, C⁶), 130.7 (C⁴, C⁵); coordinated ring: δ (C') = 39.9 (C^{1'}), 68.1 (C^{2'}, C⁷), 100.7 (C^{3'}, C^{6'}), 97.0 (C^{4'}, C^{5'}).

5b-*exo*: ¹H NMR (CDCl₃): free ring: δ (H) = 2.07m (H¹, *exo*), 5.16m (H², H⁷), 6.25m (H³, H⁶), 6.70t (H⁴, H⁵); coordinated ring: δ (H') = 2.42m (H^{1'}, *exo*), 3.41t (H^{2'}, H^{7'}), 4.97m (H^{3'}, H^{6'}), 6.01m (H^{4'}, H^{5'}).-¹³C NMR (CDCl₃): free ring: δ (C) = 43.0 (C¹), 123.3 (C², C⁷), 126.2 (C³, C⁶), 131.2 (C⁴, C⁵); coordinated ring: δ (C') = 39.4 (C^{1'}), 62.6 (C^{2'}, C⁷), 100.3 (C^{3'}, C^{6'}), 97.4 (C^{4'}, C^{5'}).

Crystal structure analyses

All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms are in calculated positions. All hydrogen atoms were refined applying the riding model with fixed isotropic temperature factors. Crystallographic data (excluding structure factors) for the structures described in the present paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications, no. CCDC-241940 (2c), CCDC-241938 (3a), CCDC-248937 (4b) and CCDC-241939 (4c). Copies of the data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: int. Code+(1223) 336-033; e-mail: deposit@chemcrys.cam.ac.uk).

Acknowledgements. Support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

 M. Herberhold, K. Bauer, W. Milius, J. Organomet. Chem. 1997, 545, 267.

- [2] M. Herberhold, J. Liu, W. Milius, Z. Anorg. Allg. Chem. 2004, 630, 1163.
- [3] M. Herberhold, W. Milius, J. Liu, Z. Naturforsch. 2004, 60b, 673.
- [4] B. L. Ross, J. G. Grasselli, W. M. Ritchey, H. D. Kaesz, *Inorg. Chem.* 1963, 2, 1023.
- [5] cf. W. A. Herrmann, Editor, in Herrmann/Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry, Vol. 1 (W. A. Herrmann, A. Salzer, Literature, Laboratory Techniques and Common Starting Materials); Georg Thieme Verlag, Stuttgart-New York, 1996, p. 120.
- [6] J. Sandström, Dynamic NMR Spectroscopy, Academic Press, New York, 1982, p. 96.
- [7] E. W. Abel, K. G. Orrell, H. Rahoo, V. Šik, J. Organomet. Chem. 1992, 441, 255.
- [8] E. W. Abel, K. G. Orrell, K. B. Qureshi, V. Šik, *Polyhedron* 1990, 9, 703.
- [9] E. W. Abel, D. E. Budgen, I. Moss, K. G. Orrell, V. Sik, J. Organomet. Chem. 1989, 362, 105.
- [10] E. W. Abel, I. Moss, K. G. Orrell, V. Šik, J. Organomet. Chem. 1987, 326, 187.
- [11] E. W. Abel, S. K. Bhargava, P. K. Mittal, K. G. Orrell, V. Šik, J. Chem. Soc. Dalton Trans. 1985, 1561.
- [12] V. I. Minkin, I. E. Mikhailov, G. A. Dushenko, A. Zschunke, *Russ. Chem. Rev.* 2003, 72, 867.
- [13] B. E. Mann, Chem. Soc. Rev. 1986, 15, 167.
- [14] J. J. Gajewski, Acc. Chem. Res. 1980, 13, 142.
- [15] J. Jeener, B. H. Meier, P. Bachmann, R. R. Ernst, J. Chem. Phys. 1979, 71, 4546.
- [16] C. L. Perrin, T. J. Dwyer, Chem. Rev. 1990, 90, 935.
- [17] G. A. Dushenko, I. E. Mikhailov, A. Zschunke, N. Hakam, C. Mügge, V. I. Minkin, *Mendeleev Commun.* 1997, 50; see also A. W. Zwaard, C. Erkelens, H. Kloosterziel, *Recueil* 1983, 102, 285.
- [18] W. A. Herrmann, Editor, in Herrmann/Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry, Vol. 7 (W. A. Herrmann, Transition metals Part 1); Georg Thieme Verlag, Stuttgart-New York, 1997, p. 223.
- [19] M. Herberhold, K. Bauer, W. Milius, Z. Naturforsch. 1999, 54b, 63.
- [20] H. Adams, N. A. Bailey, D. G. Willett, M. J. Winter, J. Organomet. Chem. 1987, 333, 61.
- [21] E. W. Abel, M. A. Bennett, R. Burton, G. Wilkinson, J. Chem. Soc. 1958, 4559.
- [22] C. Burschka, F.-E. Baumann, W. A. Schenk, Z. Anorg. Allg. Chem. 1983, 502,191.
- [23] A. L. Spek, Cryst. Struct. Commun. 1977, 6, 829.
- [24] B. A. Karcher, R. A. Jacobsen, J. Organomet. Chem. 1977, 137, 387.
- [25] J. C. Barnes, W. Bell, C. Glidewell, R. A. Howie, J. Organomet. Chem. 1990, 385, 369.
- [26] C. Bianchini, C. A. Ghilardi, A. Meli, S. Midollini, A. Orlandini, *Organometallics* 1982, 1, 778.
- [27] H. W. Roesky, R. Emmert, W. Isenberg, M. Schmidt, G. M. Sheldrick, J. Chem. Soc. 1983, 183.
- [28] M. L. Rodríguez, C. Ruiz-Pérez, I. Brito, C. Diaz, J. Cuevas, G. González, V. Manríquez, J. Organomet. Chem. 1989, 377, 235.
- [29] M. L. Rodriguez, I. Brito, C. Diaz, G. González, V. Manríquez, J. Organomet. Chem. 1992, 425, 49.
- [30] H. G. Raubenheimer, J. C. A. Boeyens, S. Lotz, J. Organomet. Chem. 1976, 112, 145.
- [31] K. H. Jogun, J. J. Stezowski, Acta Cryst. 1979, B35, 2310.

- [32] J. Daub, J. Kappler, K. H. Jogun, J. J. Stezowski, H. Binder, J. Organomet. Chem. 1982, 240, 239.
- [33] M. Y. Darensbourg, E. M. Longridge, V. Payne, J. Reibenspies, C. G. Riordan, J. J. Springs, J. C. Calabrese, *Inorg. Chem.* 1990, 29, 2721.
- [34] E. N. Baker, B. R. Reay, J. Chem. Soc. Dalton Trans. 1973, 2205.
- [35] Th. C. W. Mak, K. S. Jasim, C. Chieh, *Inorg. Chim. Acta* 1985, 99, 31.
- [36] J. Pickardt, H. Schumann, C. F. Campana, L. F. Dahl, J. Organomet. Chem. 1981, 216, 245.
- [37] D. J. Darensbourg, A. Rokicki, R. Kudaroski, Organometallics 1982, 1, 1161.
- [38] J. Springs, C. P. Janzen, M. Y. Darensbourg, J. C. Calabrese, P. J. Krusic, J.-N. Verpeaux, C. Amatore, J. Am. Chem. Soc. 1990, 112, 5789.
- [39] H. Fischer, K. H. Fluck, C. Troll, Chem. Ber. 1992, 125, 2675.
- [40] H. G. Raubenheimer, G. J. Kruger, L. Linford, C. F. Marais, R. Otte, J. T. Z. Hattingh, A. Lombard, J. Chem. Soc. Dalton Trans. 1989, 1565.
- [41] G. Schmid, R. Greese, R. Boese, Z. Naturforsch. 1982, 37b, 620.
- [42] H. G. Raubenheimer, G. J. Kruger, C. F. Marais, J. Chem. Soc. Chem. Commun. 1984, 634.
- [43] C. Habben, A. Meller, M. Noltemeyer, G. Sheldrick, Z. Naturforsch. 1986, 41b, 799.

- [44] P. Bildstein, P. Denifl, J. Organomet. Chem. 1993, 453, 53.
- [45] E. W. Abel, G. D. King, K. G. Orrell, G. M. Pring, V. Sik, T. S. Cameron, *Polyhedron* 1983, 2, 1117.
- [46] M. Cannas, G. Carta, D. De Filippo, G. Marongiu, E. F. Trogu, *Inorg. Chim. Acta* 1974, 10, 145.
- [47] M. Cannas, G. Carta, A. Cristini, G. Marongiu, Acta Crystallogr. 1975, B31, 2909.
- [48] R. A. Pickering, R. A. Jacobson, R. J. Angelici, J. Am. Chem. Soc. 1981, 103,817.
- [49] M. Cannas, G. Carta, G. Marongiu, E. F. Trogu, Acta Crystallogr. 1974, B30, 2252.
- [50] J. A. Broomhead, R. Greenwood, W. Pienkowski, M. Sterns, *Austr. J. Chem.* **1986**, *39*, 1895.
- [51] J. Valdés-Martínez, A. Sierra-Romero, C. Alvarez-Toledano, R. A. Toscano, H. García-Tapia, J. Organomet. Chem. 1988, 352, 321.
- [52] A. E. Sánchez-Peláez, M. F. Perpinán, A. Gutierrez-Puebla, A. Monge, C. Ruiz-Valero, J. Organomet. Chem. 1990, 384, 79.
- [53] E. W. Abel, K. G. Orrell, H. Rahoo, V. Šik, M. A. Mazid, M. B. Hursthouse, *J. Organomet. Chem.* **1992**, *437*, 191.
- [54] A. M. Arif, D. J. Chandler, R. A. Jones, J. Coord. Chem. 1987, 16, 213.
- [55] R. J. Angelici, J. Chem. Edu. 1968, 46, 119.
- [56] W. von E. Doering, H. L. Knox, J. Am. Chem. Soc. 1957, 79, 352.