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Configurational Isomerism in Trithiatetrazocines; Preparation and Crystal Structures 
of exo- and endo-3-Triphenylarsinimino-7-phenyl-l,3,5,2,4,6,8-trithiatetrazocine, 
PhCN4S3NAsPh3 
Rene T. Boere,a A. Wallace Cordes,b Scott L. Craig,b James B. Graham,b Richard T. Oakley,*a and 
J. Ann James Privettb 
a Guelph Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry and 
Biochemistry, University of Guelph, Guelph, Ontario N 7G 2W7, Canada 
b Department of Chemistry, University of Arkansas, Fa yetteville, Arkansas 7270 1, U.S.A. 

The reactions of triphenylphosphine and triphenylarsine with the bicyclic thiazyl heterocycle PhCN5S3 produce the 
corresponding 3-imino-7-phenyl-l,3,5,2,4,6,8-trithiatetrazocines PhCN4S3NEPh3 (E = P or As); the exo- and endo- 
isomers of PhCN4S3NAsPh3 have been characterized by X-ray crystallography. 

The synthesis and structural properties of heterocyclic 
thiazene derivatives are subjects of current interest. As a 
continuation of our recent work on the preparation and 
interconversion of dithiatriazine derivatives172 we are examin- 
ing the interaction of these compounds with nucleophiles. We 
have found that the bicyclic derivative (1) reacts with 
triphenylphosphine and triphenylarsine to produce the tri- 
thiatetrazocine derivatives (2) (Scheme 1). These reactions 
not only represent an extremely efficient synthetic route to the 
1,3,5,2,4,6&trithiatetrazocine ring system,3--5 but also pro- 
vide the first characterized example of configurational isomer- 
ism in sulphur-nitrogen ring systems. 

The reaction of triphenylphosphine (7.82 mmol) with (1) 
(7.82 mmol) in toluene (80 ml) affords an orange solution 
which slowly fades during 24 h to pale yellow and produces a 
yellow crystalline precipitate of PhCN4S3NPPh3? [m.p.l94- 
196 "C, 6(31P) 21.4 p.p.m.1 in an overall yield of 91% (7.15 
mmol) ; virtually no triphenylphosphine sulphide can be 
detected by t.1.c. or 31P n.m.r. spectroscopy. A similar 
reaction occurs when triphenylarsine (0.98 mmol) is warmed 
with (1) (0.98 mmol) in acetonitrile (10 ml); a yellow 
crystalline precipitate of PhCN4S3NAsPh3 (0.85 mmol, 87%, 
decomp. 163-165 "C) is immediately formed. The same 
material is produced when the reaction is performed at room 
temperature in toluene. However, a second product, an 
orange-red crystalline material (decomp. 158-159 "C) , h,,,, 
(CH2C1,) 422 nm, E 1 x l o 3  dm3 mol-1 cm-1, with the same 
elemental composition (save for a mole of toluene solvate) as 
the first, is also obtained, albeit in low (4%) yield. The two 
products (yellow and orange) can be separated manually. 
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Scheme 1 

+ The elemental composition of each of the compounds reported was 
confirmed by chemical analysis. 

In order to establish the structural identity of the com- 
pounds generated in the latter reaction we have carried out a 
single-crystal X-ray analysis of both products.$ The results 
establish that the red and yellow solids are, respectively, the 
em-  and endo-isomers of 3-triphenylarsinimino-7-phenyl- 
173,5,2,4,6,8-trithiatetrazocine (2a) and (2b) (E = As). The 
yellow phosphorus compound has also been characterized as 
the endo-isomer (2b) (E = P).h 

ORTEP drawings of both (2a) and (2b) (E = As) are shown 
in Figure 1. The small differences observed between the 
equivalent bonds in the two isomers (see Table 1) mirror 
almost exactly the differences between the two halves of 
e~o-endo-Ph~PNs(NsN)~SNPPh~.7 The intramolecular 
dimensions are generally similar to those reported for the 
related trithiatetrazocines Me2NCN4S3C13 and ButCN4S3C1,4 
both of which exhibit endo-geometries with short transannular 

Table 1. Selected structural parameters for exo- and endo-3- 
triphenylarsinimino-7-phenyl-l,3,5,2,4,6,8-trithiatetrazocine. 

Distance 
(A) endo ex0 Angle(") endo 

S(l)-N(l) 1.612(3) 1.576(6) N(1)-S(1)-N(2) 108.1(2) 
S(l)-N(2) 1.651(4) 1.703(6) N(l)-S(l)-N(5) 106.7(2) 
S(l)-N(5) 1.647(4) 1.683(6) N(2)-S(l)-N(5) 100.8(2) 
S(2)-N(2) 1.591(4) 1.574(6) N(2)-S(2)-N(3) 115.6(2) 
S(2)-N(3) 1.631(4) 1.649(6) N(4)-S(3)-N(5) 114.6(2) 
S(3)-N(4) 1.630(4) 1.655(6) As-N(I)-S(l) 115.9(1) 
S(3)-N(5) 1.589(4) 1.574(6) S(l)-N(2)4(2) 118.6(2) 
C(l)-N(3) 1.342(5) 1.340(9) S(2)-N(3)-C(l) 117.4(3) 
C(l)-N(4) 1.321(5) 1.319(8) S(3)-N(4)-C(1) 118.5(3) 
As-N(1) 1.755(3) 1.769(5) S(l)-N(5)-S(3) 118.4(2) 

As-C( av.) 1.91 1(9) 1.91 (1) N( 3)-C( 1)-N(4) 125.6(4) 
S( 2)-S( 3) 2.4 19(2) 2.420( 3) N-As-C( av. ) 1 10( 5 )  

C-As-C( av.) 109( 2) 

ex0 

104.9(3) 
105.7( 3) 
99.2(3) 

114.0(3) 
114.0(3) 
120.7( 3) 
115.4(3) 
1 17.0(5) 
11845) 
116.9(3) 
126.5 (7) 
111(8) 
108( 1) 

$ Crystal data (both isomers). Data were collected on an Enraf- 
Nonius CAD-4 automated diffractometer with graphite- 
monochromated Mo-K, radiation ( h  = 0.71073 A) using w-28 scans 
(€I,,, 25"), and were corrected for absorption. The structures were 
solved by Patterson and Fourier methods and refined by full-matrix 
least-squares with weights based on counting statistics. endo- 
C25H20A~N5S0, M = 561.7, monoclinic, space group P2,ic, a = 
13.841(2), b = 9.499(2), c = 19.655(2) A, p = 104.54(2)", Z = 4,  U = 
2501 A', D, = 1.49 g (3131-3, p = 16.2 cm-1. 367 Parameters were 
refined using 2646 independent reflections (I >3a1) to give R = 0.033 
and R, = 0.040. exo-C2sHZ(,AsNSS3. C7H8, M = 653.7, triclinic, space 

p = 8 4 . 9 3 ( 1 ) , y = 8 2 . 4 9 ( 2 ) " , Z = 2 , U = 1 5 2 4 A 3 , D c = 1 . 4 2 g c m ~ ~ , ~  
= 13.4 cm-1. 307 Parameters were refined using 3088 unique 
reflections (I >3al) to give R = 0.073 and R, = 0.096. Atomic 
co-ordinates, bond lengths and angles, and thermal parameters, have 
been deposited at the Cambridge Crystallographic Data Centre. See 
Notice to Authors, Issue No .  -1, 1986. 

group pi, u = 9.133(1), b = 11.700(3), c = i4.439(3) A, (Y = 89.87(2), 
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Figure 1. ORTEP drawings (30% probability ellipsoids) of (a) endo- 
and (b) exo-3-triphenylarsinimino-7-phenyl-l,3,5,2,4,6,8-trithia- 
tetrazocine, showing atom numbering schemes. The (slightly dis- 
ordered) molecule of toluence in the exo-structure is not shown. 

S-S contacts. The exocyclic S-N and N-As distances can be 
compared to those found in Ph3AsNS3N3.8 

When solutions of (2a) (E = As) are dissolved in aceto- 
nitrile at room temperature the red colour of the solution 
slowly fades, and a yellow precipitate of (2b) (identified by i.r. 
analysis) is formed. This irreversible conversion of the exo- 
into the endo-isomer establishes that the latter is the more 
thermodynamically stable. Moreover, that the isomerization 
occurs rapidly at room temperature suggests a low activation 
energy. However, the nature of the transition state is by no 

'N 
/ 

Ph,E 

Scheme 2 

means obvious. The inversion barriers in thiadiazole oxides 
are notably high,9 and would be increased in (2) if the 
five-membered SNSNS ring were inflexible.10 If the trans- 
annular S-S interaction is weak, ring opening followed by ring 
inversion (Scheme 2) rather than sulphur inversion may 
provide a low energy pathway for the conversion ex0 + endo. 
Further synthetic, kinetic, and theoretical studies are required 
to elucidate these points. 
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