Synthesis, characterization, and X-ray structures of three iridium(III)-hydrido-cyclometallated-imine complexes, including the first reported hydrido- $(\eta^1$ -imine)-Ir complex

Fabio Lorenzini, Paolo Marcazzan, Brian O. Patrick, and Brian R. James

Abstract: Reactions of *cis*,*trans*,*cis*-[Ir(H)₂(PPh₃)₂(solv)₂]PF₆ (solv = MeOH or Me₂CO) with the imines HN=CPh₂, (*o*-HOC₆H₄)C(Me)=NCH₂Ph, and PhC(H)=N(*p*-F-C₆H₄) in MeOH or acetone under Ar give the complexes [IrH{NH=C(Ph)(o-C₆H₄)}(NH=CPh₂)(PPh₃)₂]PF₆ (**3**), [IrH{PhCH₂N=C(Me)(o-C₆H₃OH)}(solv)(PPh₃)₂]PF₆, where solv = MeOH (**4**) or Me₂CO (**4a**), and [IrH{N(*p*-F-C₆H₄)=CH(o-C₆H₄)}(Me₂CO)(PPh₃)₂]PF₆ (**5a**), which have been isolated and characterized. The imine (C₆F₅)C(H)=NPh is unreactive toward the Ir precursors. The X-ray structures of **3**, **4**·2MeOH, and **5a**·1/2Me₂CO show an η^2 -*N*,*C*-imine moiety coordinated via the N atom and an orthometallated-C atom. Complex **3**, which contains both an orthometallated imine and an η^1 -imine, is the first structurally characterized hydrido-(η^1 -imine)-Ir complex. Comparisons are made with data for the corresponding Rh systems.

Key words: iridium, hydride complexes, imines, fluoroimines, phosphine complexes, orthometallation, crystallography, NMR spectroscopy.

Résumé : Les réactions du *cis,trans,cis*-[Ir(H)₂(PPh₃)(solv)₂]PF₆ (solv = MeOH ou Me₂CO) avec les imines HN=CPh₂, (*o*-HOC₆H₄)C(Me)=NCH₂Ph et PhC(H)=N(*p*-F-C₆H₄), en solution dans le MeOH ou l'acétone, sous une atmosphère d'argon, conduit à la formation des complexes [IrH{NH=C(Ph)(*o*-C₆H₄)}(NH=CPh₂)(PPh₃)₂]PF₆ (**3**), [IrH{PhCH₂N=C(Me)(*o*-C₆H₃OH)}(solv)(PPh₃)₂]PF₆ dans lequel solv = MeOH (**4**) ou Me₂CO (**4a**) et [IrH{N(*p*-F-C₆H₄)=CH(*o*-C₆H₄)}(Me₂CO)(PPh₃)₂]PF₆ (**5a**) qui ont été isolés et caractérisés. L'imine (C₆F₅)CH=NPh n'est pas réactive vis-à-vis les précurseurs Ir. Les structures des composés **3**, **4**·2MeOH et **5a**·1/2Me₂CO telles que déterminées par diffraction des rayons X ont permis de montrer la présence d'une portion η^2 -*N*,*C*-imine coordinée par le biais de l'atome d'azote et d'un atome de carbone orthométallé. Le complexe **3** qui comporte une imine orthométallée ainsi qu'une η^1 -imine est le premier complexe hydrido-(η^1 -imine)-Ir à être caractérisée d'un point de vue structural. On a effectué des comparaisons avec des données pour les systèmes correspondants du rhodium.

Mots-clés : iridium, complexes d'hydrure, imines, fluoroimines, complexes de phosphine, organométallation, cristallographie, spectroscopie RMN.

[Traduit par la Rédaction]

Introduction

Since 2003, we have published 10 papers (1), including one review (2), on the hydrogenation of imines catalyzed by the Rh- and Ir-bis(triphenylphosphine) precursor complexes $[M(cod)(PPh_3)_2]PF_6$ (M = Rh, Ir; cod = 1,5-cyclooctadiene). Much diverse imine-coordination chemistry has been unveiled, important parameters being the structure and physical nature (solid or liquid) of the imine, the imine:metal stoichiometry, the presence of trace water, the nature of the solvent, use of an inert or an H₂ atmosphere, and catalyst

Received 5 November 2007. Accepted 10 December 2007. Published on the NRC Research Press Web site at canjchem.nrc.ca on 15 February 2008.

F. Lorenzini, P. Marcazzan, B.O. Patrick, and B.R. James.¹ Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.

¹Corresponding author (e-mail: brj@chem.ubc.ca).

poisoning by the amine product. The studies on the Ir systems, because of their lack of catalytic activity, have been more limited than those on the Rh systems. With imines containing an aryl moiety at the imine-C atom, the Ir precursor has generally formed (at 1:1 imine/Ir stoichiometries) monohydrido-Ir^{III} species via orthometallation at an ortho-C atom of an assumed $[trans-Ir(PPh_3)_2(\eta^1-imine)(solv)]^+$ intermediate, where solv = MeOH or Me₂CO (3); this 'standard' chemistry is illustrated in Scheme 1. With use of excess of the imine PhCH₂N=CHPh, the presence of trace water results in Ir-promoted hydrolysis of the imine and the generated benzylamine simply replaces the coordinated solvent of the orthometallated species (3). This new paper reports on the reactions of the Ir precursor with three imines, $HN=CPh_2$ (Im¹), (*o*-HOC₆H₄)C(Me)=NCH₂Ph (Im²), and PhC(H)= $N(p-F-C_6H_4)$ (Im³) (see Scheme 2), and notes the non-reactivity of $(C_6F_5)C(H)=NPh$ (Im⁴). The imines Im¹ and Im² were chosen for comparison with their known reactivity toward the corresponding Rh precursor species (1), while the fluoro-substituted imines were used in the hope

Scheme 1. Formation of Ir^{III}-cyclometallated-imine complexes (R, R' = aryl or alkyl). $[Ir(cod)(PPh_3)_2]^+$ under H₂ is known to generate *cis,trans,cis*-[Ir(H)₂(PPh_3)₂(solv)₂]⁺ (solv = Me₂CO or MeOH (refs. 3, 4)).

Scheme 2. Reactions of *cis*,*trans*,*cis*-[Ir(H)₂(PPh₃)₂(solv)₂]PF₆ (solv = MeOH (2) or Me₂CO (2a)) with the imines Im¹, Im², and Im³ to form the complexes [IrH{NH=C(Ph)(o-C₆H₄)}(η ¹-NH=CPh₂)(PPh₃)₂]PF₆ (3), [IrH{PhCH₂N=C(Me)(o-C₆H₃OH)}(solv)(PPh₃)₂]PF₆ (solv = MeOH (4) or Me₂CO (4a)), and [IrH{N(p-C₆H₄-F)=CH(o-C₆H₄)}(solv)(PPh₃)₂]PF₆ (solv = MeOH (5) or Me₂CO (5a)). Im⁴ showed no reactivity.

that the product might be a monometallic η^2 -C=N (π -bonded) species because electron-withdrawing substituents appear to favour side-on bonding of imines (5). Such species have not been detected in metal complex-catalyzed hydrogenation of imines and whether they play a mechanistic role (as do π -bonded olefins in catalyzed olefin hydrogenations) is an important, unanswered question (6). We find, in fact, that Im¹, Im², and Im³ all form hydrido-orthometallated species akin to those shown in Scheme 1, although in the Im¹ product the solvent has been replaced by a second η^1 -bonded Im¹. The product from the Im¹ reaction corresponds to that found earlier for the Rh system (1b); however, the structure presented is the first reported for a hydrido- η^1 -imine complex of Ir. The product from the Im^2 reaction is different from that of the corresponding Rh system, which does not give an orthometallated product (1a). Comparisons between the Ir and Rh reactions with Im³ and Im⁴ systems are also mentioned.

Experimental

All manipulations and synthetic procedures were performed at room temperature (rt, ~20 °C) under an atmosphere of dry Ar or extra-dry H₂ (from Praxair, Edmonton, Alta.) as stated, using standard Schlenk techniques. The liquid imine HN=CPh₂ was a Sigma-Aldrich product, while the solid imines $(o-HOC_6H_4)C(Me)=NCH_2Ph$, PhC(H)=N(p-F-C₆H₄), and (C₆F₅)C(H)=NPh were synthesized previously in this laboratory (7*a*); recent papers by other groups have also described the syntheses of the solid imines, which involve condensation of the ketones or aldehydes with the appropriate amine (7*b*, 7*c*).

The $[Ir(cod)(PPh_3)_2]PF_6$ complex (1) was prepared according to a literature procedure (8) using IrCl₃·3H₂O purchased from Colonial Metals Inc. Acetone and MeOH (Fisher Scientific) were dried over K2CO3 and Mg/I2, respectively, and distilled under N₂. Acetone- d_6 , CD₂Cl₂, and CD₃OD (Cambridge Isotope Laboratory) were used as received for measuring ³¹P{¹H}, ¹³C{¹H}, and ¹H NMR spectra at rt on a Bruker AV400 spectrometer. When necessary, atom assignments were made by means of ${}^{1}H{}^{-13}C{}^{1}H{}$ (HSQC and HMBC) and ¹H-³¹P{¹H} (HSQC and HMBC) NMR correlation spectroscopies. Residual protonated species in the deuterated solvents were used as internal references (δ : 2.05 q for acetone- d_6 ; δ : 5.32 t for CD₂Cl₂; and δ : 3.31 q and 4.87 s for CD₃OD). All shifts are reported in ppm (s = singlet, d = doublet, t = triplet, q = quintet, spt = septet, m = multiplet, br = broad), relative to external SiMe₄ or 85% aq. H₃PO₄, with J values in Hz. Solid samples of the synthesized complexes were stored at rt under Ar; elemental analyses were performed on a Carlo Erba 1108 analyzer. ESI-MS were acquired in the positive ion mode on a Bruker Esquire LC ion-trap mass spectrometer equipped with an electrospray ion source; solvents used were acetone/MeOH or CH₂Cl₂/MeOH, and the sample solution of concentration \sim 25–50 µmol/L was infused into the ion source by a syringe pump at a flow-rate of 700 µL/h. MALDI-MS were obtained on a Bruker Biflex IV MALDI-TOF spectrometer equipped with a nitrogen laser. The samples were dissolved in acetone/MeOH or CH₂Cl₂/MeOH and dithranol was used as matrix. The sample solutions (~1 mg/mL) and the matrix (20 mg/mL) were mixed in a ratio of 1:1 to 1:10, and 1 μ L of the mixture was deposited onto the sample target; these spectra were acquired in the positive reflection mode with delay extraction by averaging 100 laser shots, and were calibrated externally using peptides. MS data are reported as m/zvalues. IR spectra were measured with a Thermo Nicolet FT-IR Nexus spectrometer using either a KBr pellet or a solution, as stated.

$[IrH{NH=C(Ph)(o-C_6H_4)}(HN=CPh_2)(PPh_3)_2]PF_6 (3)$

A red suspension of $[Ir(cod)(PPh_3)_2]PF_6$ (1) (61 mg, 0.063 mmol) in MeOH (1.8 mL) was reacted with 1 atm H₂ at rt to generate immediately a brown solution containing cis,trans,cis-[Ir(H)₂(PPh₃)₂(MeOH)₂]PF₆ (2) (3, 4). HN=CPh₂ (Im^{1}) (22.0 µL, 0.127 mmol) in MeOH (0.5 mL) was then added under H₂. Stirring the mixture at rt for 90 min resulted in precipitation of a yellow solid that was collected, washed with Et_2O (3 × 5 mL), and dried in vacuo (63 mg, 82%) yield). IR (KBr, cm⁻¹): 3429 (v_{N-H}), 2132 (v_{Ir-H}), 1589, 1560 $(v_{C=N})$. IR (CH₂Cl₂, cm⁻¹): 3340 (v_{N-H}), 2195 (v_{Ir-H}), 1583, 1568 ($v_{C=N}$). ¹H NMR (CD₂Cl₂) (see Scheme 2 for atom-labeling) δ: -15.80 (t, 1H, ²J_{HP} = 14.1, IrH), 10.21 (s, $HN=C(o-C_6H_4))$, 9.98 (s, $HN=CPh_2$), 7.58 (t, 1H, ${}^{3}J_{HHi} \sim$ 7.6, H_j), 7.43 (d, 1H, ${}^{3}J_{HH} = 7.3$, H_d), 7.39–7.06 (m, 38H, PC₆ H_5 , H_i , H_m , H_n), 6.86 (d, 2H, ${}^{3}J_{HH} = 7.7$, H_1 or H_0), 6.75 (t, 1H, ${}^{3}J_{HHa} \sim {}^{3}J_{HHc} \cong 7.3$, H_b), 6.65 (t, 1H, ${}^{3}J_{HHo} \sim {}^{3}J_{HHd} \sim {}^{3}J_{HHd} \sim {}^{3}J_{HHa}$ (c, III, $J_{\text{HHa}} = J_{\text{HHc}} = J_{\text{0.5}}, I_{\text{b}}, 0.05 \text{ (c, III, } J_{\text{HHb}} = J_{\text{HHd}}$ 7.2, H_c), 6.56 (d, 1H, ${}^{3}J_{\text{HH}} = 7.5, H_a$), 6.37 (d, 2H, ${}^{3}J_{\text{HH}} = 7.6, H_h$), 6.28 (d, 2H, ${}^{3}J_{\text{HH}} = 7.5, H_1 \text{ or } H_o$). ${}^{13}\text{C}{}^{1}\text{H}$ NMR (CD₂Cl₂) δ : 189.40 (s, NH= $C(o-C_6H_4)$), 179.32 (s, $HN=CPh_2$), 151.59 (s, C_f), 147.32 (s, C_e), 142.04 (s, C_d), 137.97 (s, C_k or C_p), 137.01 (s, C_k or C_p), 134.69 and 131.88-127.93 (m, PC_6H_5 , C_i , C_m , C_n), 133.82 (s, C_a), 131.18 (s, C_c), 129.86 (s, C_j), 129.43 (s, C_1 or C_o), 128.65 (s, C_h), 128.64 (s, C_1 or C_o), 121.23 (s, C_b); the C_g signal could not be assigned. ³¹P{¹H} NMR (CD₂Cl₂) δ : 16.93 (s, *P*Ph), -143.70 (spt, ${}^{1}J_{PF} = 712.0$, PF_{6}). ESI-MS: 1080 [M⁺], 899 $[M^+-NH=C(Ph)(o-C_6H_4)]$. Anal. calcd. for $C_{62}H_{52}N_2F_6P_3Ir$: C 60.83, H 4.28, N 2.29; found: C 60.87, H 4.30, N 2.18.

Yellow, X-ray quality tablet crystals of **3** were grown at rt by diffusion of Et_2O into a CH_2Cl_2 solution (1.5 mL) of the complex (25 mg, 20.4 mmol).

$[IrH{PhCH₂N=C(Me)(o-C_6H_3OH)}(solv)(PPh_3)_2]PF_6;$ solv = MeOH (4), Me₂CO (4a)

A red suspension of **1** (60 mg, 0.062 mmol) in acetone (1.0 mL) was reacted with 1 atm H₂ at rt to form a brown solution of *cis,trans,cis*-[Ir(H)₂(PPh₃)₂(Me₂CO)₂]PF₆ (**2a**).² Addition under Ar of $(o-HOC_6H_4)C(Me)=NCH_2Ph$ (**Im**²)

(16 mg, 0.069 mmol) in acetone (1.0 mL) and subsequent stirring of the mixture at rt for 1 h generated a yellow solution. Addition of Et₂O (20.0 mL) precipitated a yellow powder that was collected, washed with Et_2O (2 × 10 mL), and dried in vacuo; the product is 4a (51 mg, 72% yield). IR (KBr, cm⁻¹): 3057 (v_{O-H}), 2195 (v_{Ir-H}), 1587, 1579 ($v_{C=N}$). IR (acetone, cm⁻¹): 2034 (v_{Ir-H}), 1581 ($v_{C=N}$). ¹H NMR (acetone d_6) (see Scheme 2 for atom-labeling) δ : -15.48 (t, 1H, $^2J_{\rm HP}$ = 17.6, IrH), 8.94 (br s, 1H, OH), 7.51 (m, 5H, CH₂C₆H₅), 7.39 (m, 15H, PC₆ H_5), 7.27 (t, 1H, ${}^{3}J_{HHa} \sim {}^{3}J_{HHc} \sim 7.3$, H_b), 7.04 (m, 15H, PC₆ H_5), 6.49 (d, 1H, ${}^{3}J_{HHb} \sim 7.2$, H_c), 6.28 (d, 1H, ${}^{3}J_{HHb} \sim 7.4$, H_a), 5.50 (br s, 2H, NCH₂), 2.09 (br s, 3H, CH_3), 2.09 (br m, 6H, $(CH_3)_2$ CO). ¹³C{¹H} NMR (acetone- d_6) δ : 183.26 (s, C(H)=N), 159.20 (s, C_d), 136.52 (s, C-OH), 134.25 (m, PC₆H₅), 133.31 (s, C_a), 132.71 (m, $CH_2C_6H_5$), 128.59 (m, PC_6H_5), 127.94 (s, C_b), 110.83 (s, $C_{\rm c}$), 56.99 (s, CH_2Ph) 20.66 (s, CH_3); the $C_{\rm e}$ signal could not be assigned. ³¹P{¹H} NMR (acetone- d_6) δ : 17.91 (s, *PPh*), -142.64 (spt, ${}^{1}J_{PF} = 707.3$, PF_{6}). MALDI-MS: 942 [M-PF₆-Me₂CO]⁺, 679 [M - H-PF₆-Me₂CO-PPh₃]⁺.

X-ray quality, yellow prism crystals of 4·2MeOH, as well as a yellow precipitate of 4, were obtained at ~273 K from a saturated MeOH (2.0 mL) solution of 4a; 4 was washed with Et₂O and dried in vacuo. Anal. calcd. for $C_{52}H_{49}N_4O_2F_6P_3Ir$ (4): C 55.81, H 4.41, N, 1.25; found: C 55.89, H 4.94, N 1.22.

$[IrH{N(p-F-C_6H_4)=CH(o-C_6H_4)}(Me_2CO)(PPh_3)_2]PF_6$ (5a)

A red solution of 1 (25 mg, 0.026 mmol) in acetone- d_6 (or acetone) (1.0 mL) was treated as above with H_2 to form a solution of **2a**. Addition under Ar of PhC(H)=N(p-F-C₆H₄) (Im³) (6 mg, 0.030 mmol) in acetone- d_6 (or acetone) (0.5 mL) at rt resulted in a yellow solution into which slow diffusion of Et₂O generated overnight a yellow, crystalline powder (5a) and X-ray quality, yellow plate crystals of $5a \cdot 1/2Me_2CO$. The powder (5a) was collected, washed with Et_2O (3 × 5 mL), and dried in vacuo (24 mg, 83% yield). IR (KBr, cm⁻¹): 2206 (v_{Ir-H}), 1599 ($v_{C=N}$). IR (CH₂Cl₂, cm⁻¹): 2217 (v_{Ir-H}), 1599, 1587 ($v_{C=N}$). ¹H NMR (acetone- d_6) (see Scheme 2 for atom-labeling) δ : -16.98 (t, 1H, ²J_{HP} = 15.8, IrH), 8.15 (br s, 1H, C(H)=N), 7.49 (m, 6H, C_6H_4F , H_a , H_d), 7.40–7.30, 7.19–7.09 (m, 30H, PC_6H_5), 6.87 (br t, 1H, H_b or $H_{\rm c}$), 6.55 (dt, 1H, ${}^{3}J_{\rm HH} \sim 7.6$, ${}^{4}J_{\rm HH} \sim 1.2$, $H_{\rm b}$ or $H_{\rm c}$). ${}^{13}{\rm C}\{{}^{\rm T}{\rm H}\}$ NMR (acetone- d_6) δ : 175.07 (s, C(H)=N), 146.88 (s, C_e), 131.43 (m, PC_6H_5), 129.42 (s, C_b or C_c), 128.84 (m, C_6H_4F , $C_{\rm a}$, $C_{\rm d}$), 126.69 (m, P $C_{\rm 6}$ H₅), 119.39 (s, $C_{\rm b}$ or $C_{\rm c}$). ³¹P{¹H} NMR (acetone- d_6) δ : 17.69 (s, PPh), -142.64 (spt, ${}^{1}J_{PF}$ = 707.3, PF₆). MALDI-MS: 917 [M-H-PF₆-Me₂CO]⁺. Anal. calcd. for C₅₂H₄₈NOF₇P₃Ir: C 55.71, H 4.32, N 1.25; found: C 55.37, H 4.18, N, 1.25.

Attempted reactions with $(C_6F_5)C(H)=NPh$ (Im⁴)

Solutions of 2 and 2a (and the corresponding species with solv = CD_3OD and acetone- d_6 , see Scheme 2) were made in the appropriate solvents as described above, but using a smaller quantity of 1 (15 mg, 0.016 mmol) in 0.5 mL of the respective solvents. No rt reactions over several hours were seen on addition of Im^4 (5 mg, 0.017 mmol), the NMR spec-

²All the complexes labelled with an 'a' have coordinated acetone.

256

Crystal	3	4·2MeOH	5a ·1/2Me ₂ CO	
Empirical formula	$C_{62}H_{52}N_2F_6P_3Ir$	$C_{54}H_{57}N_4O_4F_6P_3Ir$	C _{53.5} H ₄₉ NO _{1.5} F ₇ P ₃ Ir	
Formula weight	1224.17	1183.12	1148	
Crystal system	Orthorhombic	Monoclinic	Monoclinic	
Space group	$Pna2_1$ (no. 33)	$P2_1/n$ (no. 14)	$P2_1/c$ (no. 14)	
Crystal size (mm ³)	$0.10 \times 0.18 \times 0.35$	$0.12 \times 0.20 \times 0.50$	$0.05 \times 0.20 \times 0.40$	
a (Å)	27.947(1)	12.1301(5)	23.6030(10)	
b (Å)	18.5418(7)	13.4827(7)	14.8451(7)	
c (Å)	12.0971(5)	31.115(2)	28.2107(14)	
α (°)	90.0	90.00	90.00	
β (°)	90.0	95.718(2)	92.489(2)	
γ (°)	90.0	90.00	90.00	
Volume (Å ³)	6268.6(4)	5063.4(4)	9875.4(8)	
Ζ	4	4	8	
$D_{calcd.}$ (mg m ⁻³)	1.297	1.552	1.544	
Abs. μ (mm ⁻¹)	2.260	2.800	2.868	
<i>F</i> (000)	2456.00	2384.00	4592.00	
Reflections collected	40 584	64 532	129 567	
Unique reflections [R(int)]	13 043 [0.051]	12 067 [0.051]	15 224 [0.097]	
No. of variables	673	643	1212	
GoF on F^2	1.05	1.03	1.20	
Final <i>R</i> indices $(I > 2\sigma(I))$	$R_1 0.064,^a w R_2 0.126^b$	$R_1 0.048,^a w R_2 0.065^b$	$R_1 0.111,^a w R_2 0.195^b$	
Max. diff. peak/hole (e Å ⁻³)	3.84, -2.87	0.99, -1.12	3.87, -5.27	

Table 1. Crystal data for complexes 3, 4.2MeOH, and 5a.1/2Me₂CO.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$ ${}^{b}wR_{2} = [\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})^{2}]^{1/2}.$

tra revealing the presence of only **2** or **2a**. ¹H NMR (CD₃OD) δ : -29.46 (t, 1H, ²*J*_{HP} = 17.1, Ir*H*). ³¹P{¹H} NMR (CD₃OD) δ : 27.16 (s, *P*Ph), -143.32 (spt, ¹*J*_{PF} = 707.5, *P*F₆). ¹H NMR (acetone-*d*₆) δ : -27.68 (t, 1H, ²*J*_{HP} = 15.9, Ir*H*). ³¹P{¹H} NMR (acetone-*d*₆) δ : 28.89 (s, *P*Ph), -142.62 (spt, ¹*J*_{PF} = 707.4, *P*F₆). These NMR data are in accord with literature values (3, 4).

X-ray crystallographic analyses of 3, 4·2MeOH, and $5a{\cdot}1/2Me_2CO$

Measurements were made at 173(1) K on a Bruker X8 APEX diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å); data were collected and integrated using the Bruker SAINT software package (9) and were corrected for absorption effects using the multi-scan technique (SADABS) (10) with minimum and maximum transmission coefficients of 0.551 and 0.798, respectively, for 3, 0.434 and 0.715 for 4.2MeOH, and 0.549 and 0.866 for 5a·1/2Me₂CO. The data were corrected for Lorentz and polarization effects, and the structures were solved by direct methods (11). For 3, one phenyl ring appears to be disordered over 2 sites; the 2 rings were thus refined using mild restraints with the major fragment refined anisotropically and the minor fragment isotropically. Located in difference maps and refined isotropically were the imine-H of the orthometallated imine of 3, and the hydride and the H-atoms of the OH groups of the coordinated MeOH and the C_6H_3 ring of 4. The hydrides of 3 and 5a were not located and were thus not included in the models. All other H-atoms of the complexes were placed in calculated positions and were not refined. Some of the crystallographic data are given in Table 1, while selected bond lengths and angles are given in Table 2.

Results and discussion

The new complexes [IrH{NH=C(Ph)(o-C₆H₄)}(HN=CPh₂)-(PPh₃)₂]PF₆ (**3**), [IrH{PhCH₂N=C(Me)(o-C₆H₃OH)}(solv)-(PPh₃)₂]PF₆, where solv = MeOH (**4**) or Me₂CO (**4a**), and [IrH{N(p-F-C₆H₄)=CH(o-C₆H₄)}(Me₂CO)(PPh₃)₂]PF₆ (**5a**), were obtained by reaction of *cis,trans,cis*-[Ir(H)₂(PPh₃)₂ (solv)₂]PF₆ (solv = MeOH (**2**) or Me₂CO (**2a**)) with the imine, with co-production of H₂ (Scheme 2); the complexes are of the well-documented hydrido-orthometallated-imine type (Scheme 1). Such complexes have been characterized for many metals (certainly for all the platinum metals; see following and ref. 12), and continue to attract attention because of their wide range of applicability in areas that include asymmetric synthesis, functionalization of C–H bonds, C-C coupling reactions, and biological systems (13).

Complex **3** was readily obtained in 82% yield from reaction in MeOH of **2** with 2 equiv. of benzophenone imine (HN=CPh₂, **Im**¹), and was fully characterized by X-ray analysis, elemental analysis, and NMR, IR, and MS data. Our group recently isolated the analogous Rh complex with essentially the same structure (see later), but the Rh species was formed more slowly via *cis*-[Rh(PPh₃)₂(η ¹-NH=CPh₂)₂]PF₆ in which one imine ligand subsequently undergoes orthometallation (1*b*). No intermediates were detected in the Ir system, the stronger Ir-H bond (vs. Rh-H) presumably promoting the metallation step (14).

The reaction of **2** with $(o-\text{HOC}_6\text{H}_4)\text{C}(\text{Me})=\text{NCH}_2\text{Ph}(\text{Im}^2)$ in MeOH resulted in a mixture of products that could not be separated. However, a successful isolation of complex **4** was achieved by carrying out a 1:1 reaction of **2a** with Im^2 in acetone and then recrystallizing the resulting isolated acetone analogue (**4a**) from MeOH. Complex **4a**, obtained in

Table 2. Selected bond lengths and angles for 3, $4 \cdot 2$ MeOH, and $5a \cdot 1/2$ Me₂CO.

3		4·2MeOH		$5a \cdot 1/2Me_2CO^a$	
Bond lengths (Å)					
Ir(1) - C(1)	2.018(7)	Ir(1) - C(1)	1.998(3)	Ir(2)—C(53)	2.082(15)
Ir(1) - N(1)	2.138(6)	Ir(1) - H(1)	1.27(4)	Ir(2) - N(2)	2.157(12)
Ir(1) - N(2)	2.132(6)	Ir(1) - N(1)	2.151(3)	Ir(2)—O(2)	2.154(10)
Ir(1) - P(1)	2.3308(19)	Ir(1)—O(2)	2.237(2)	Ir(2)—P(3)	2.332(4)
Ir(1) - P(2)	2.331(2)	Ir(1) - P(1)	2.3320(8)	Ir(2)— $P(4)$	2.316(4)
N(1)—C(7)	1.296(9)	Ir(1) - P(2)	2.3310(8)	C(59)—N(2)	1.294(18)
C(14)—N(2)	1.265(9)	C(7)—N(1)	1.299(4)		
Bond angles (°)					
C(1)-Ir(1)-N(1)	78.7(3)	C(1)-Ir(1)-H(1)	95.9(16)	C(53)-Ir(2)-N(2)	79.3(5)
C(1)-Ir(1)-N(2)	177.1(3)	C(1)-Ir(1)-N(1)	78.27(11)	C(53)-Ir(2)-O(2)	170.4(5)
C(1)-Ir(1)-P(1)	87.3(2)	C(1)-Ir(1)-O(2)	178.07(10)	C(53)-Ir(2)-P(3)	87.3(4)
C(1)-Ir(1)-P(2)	89.6(2)	C(1)-Ir(1)-P(1)	88.04(8)	C(53)-Ir(2)-P(4)	88.3(4)
N(1)-Ir(1)-N(2)	98.6(2)	C(1)-Ir(1)-P(2)	88.95(8)	N(2)-Ir(2)-O(2)	91.1(4)
N(1)-Ir(1)-P(1)	92.21(16)	H(1)- $Ir(1)$ - $N(1)$	173.8(16)	N(2)-Ir(2)-P(3)	94.6(3)
N(1)-Ir(1)-P(2)	92.40(17)	H(1)-Ir(1)-O(2)	84.6(16)	N(2)-Ir(2)-P(4)	97.2(3)
N(2)-Ir(1)-P(1)	91.70(16)	H(1)-Ir(1)-P(1)	88.6(15)	O(2)-Ir(2)-P(3)	94.5(3)
N(2)-Ir(1)-P(2)	91.58(16)	H(1)- $Ir(1)$ - $P(2)$	76.7(15)	O(2)-Ir(2)-P(4)	92.0(3)
P(1)-Ir(1)-P(2)	173.88(7)	N(1)-Ir(1)-O(2)	101.26(10)	P(3)-Ir(2)-P(4)	166.37(14)
C(14)-N(2)-Ir(1)	134.7(5)	N(1)-Ir(1)-P(1)	93.26(7)	Ir(2)-O(2)-C(102)	137.6(13)
C(7)-N(1)-H(1n)	127(4)	N(1)-Ir(1)-P(2)	100.84(7)		
Ir(1)-N(1)-H(1n)	118(4)	O(2)-Ir(1)-P(1)	90.12(6)		
		O(2)-Ir(1)-P(2)	92.98(6)		
		P(1)-Ir(1)-P(2)	164.67(3)		
		C(34)-O(2)-Ir(1)	122.7(2)		

^aData for one of the two molecules in the asymmetric unit.

72% yield, was well characterized by NMR, MS, and IR data, but a satisfactory elemental analysis could not be obtained, possibly because of the variable acetone solvate content; complex **4** as a yellow powder gave a good elemental analysis for a non-solvated species, while the crystal contained two MeOH solvates per molecule as determined by X-ray analysis (see later).

Of note, the rate of formation of **4a** appears to be dependent on the water content of the solvent (acetone or methanol); in the synthetic work carried out in dried solvents, reaction was complete in ~1 h, but the reaction of **2a** with **Im**², as monitored by ³¹P{¹H} NMR spectroscopy in nondried acetone-*d*₆, took ~13 d for completion (Fig. S1, δ_{p} : 28.89 for **2a** and 17.91 for **4a**).² Presumably, water competes with the solvent for a coordination site in **2a** and (or) **4a** and somehow impedes the reaction, although there was no direct evidence for the presence of any aquo species.

Reaction of **2a** with PhC(H)=N(p-F-C₆H₄) (**Im**³) at ~1:1 stoichiometry in acetone led to the isolation of **5a** in 83% yield as a mixture of a yellow powder and crystals after slow diffusion of Et₂O into the solution of **5a**; higher yields were obtained when a 2:1 ratio of **Im**³/Ir was used. Elemental analysis of the powder corresponded to unsolvated **5a**, while X-ray analysis of the crystal revealed one-half an acetone

solvate per molecule (see below). NMR, MS, and IR data were in accord with the solid state structure. The formation of 5a is apparently a reversible process as evidenced by monitoring under H_2 an acetone- d_6 solution of isolated **5a** by ³¹P{¹H} NMR spectroscopy (Fig. S2)³: the δ_P 17.69 resonance of 5a decays over a week and is partially replaced by the δ_P 28.89 signal of the Ir-dihydride (2a, where solv = acetone- d_6). Of note, no formation of 5 (the MeOH/CD₃OD analogue of 5a) was evident when 2 (solv = CD_3OD) was reacted with ~1 mol equiv. of Im^3 in CD₃OD at rt; in situ ³¹P{¹H} NMR spectra over several hours revealed only the $\delta_{\rm P}$ 27.16 resonance of **2**, although over the period of a week this was replaced completely by broad singlets at $\delta_{\rm P}$ 21.00 and 19.68 due to unidentified species (at an Im³:Ir ratio of 2, ~15% of 5 was formed over a week as evidenced by a resonance at $\delta_{\rm P}$ 17.66). The complications detected by the NMR experiments may again be symptomatic of water impurity in the deuterated solvents and stresses the need for dry solvents in the synthetic procedures.

As monitored by ${}^{31}P{}^{1}H$ NMR spectroscopy, there was no reaction at rt of **2** or **2a** with (C₆F₅)C(H)=NPh (**Im**⁴) in the respective solvents at imine:Ir ratios up to 2.

The X-ray structures of the cations of 3, $4 \cdot 2$ MeOH, and $5a \cdot 1/2$ Me₂CO are shown in Figs. 1–3, and some geometrical

²Supplementary data for this article are available on the journal Web site (canjchem.nrc.ca) or may be purchased from the Depository of Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Ottawa, ON K1A 0R6, Canada. DUD 3710. For more information on obtaining material refer to cisti-icist.nrc-cnrc.gc.ca/irm/unpub_e.shtml. CCDC numbers 670430–670432 contain the crystallographic data for this manuscript. These data can be obtained, free of charge, via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Fig. 1. Structure of the $[IrH{NH=C(Ph)(o-C_6H_4)}(HN=CPh_2)(PPh_3)_2]^+$ cation of **3**, with 50% probability ellipsoids.

Fig. 2. Structure of the $[IrH{PhCH_2N=C(Me)(o-C_6H_3OH)}-(MeOH)(PPh_3)_2]^+$ cation of **4**, with 50% probability ellipsoids.

parameters are listed in Table 2. Complexes **3** and **4**·2MeOH crystallize with one molecule in the asymmetric unit, while **5a**·1/2Me₂CO crystallizes as two almost identical, crystallographically independent molecules with one molecule of free acetone in the asymmetric unit. The structures of the three distorted octahedral Ir^{III} cations exhibit similar features, all having five coordination sites occupied by the same arrangement of ligands: an η^2 -imine moiety coordinated via the imine-N atom and the orthometallated-C atom (C_{ortho}), a hydride trans to the N-atom, and *trans*-PPh₃ ligands cis to the hydride (cf. Scheme 1), and, while **4** and **5a** respectively have MeOH or Me₂CO coordinated trans to C_{ortho}, **3** has a second imine, η^1 -coordinated. The hydride attached to the heavy metal centre was successfully located by X-ray analysis only for **4**, but ¹H NMR data (a high-field triplet at $\delta_{\rm H}$ –17 to –15 with ²J_{HP} ~ 14–18 Hz, and IR data

Fig. 3. Structure of one of the two almost identical molecules of the $[IrH{N(p-C_6H_4-F)=CH(o-C_6H_4)}(Me_2CO)(PPh_3)_2]^+$ cation of **5a**, with 50% probability ellipsoids.

showing v_{Ir-H} 2034–2217 cm⁻¹) unequivocally establish its presence in all three complexes. (Solid state and solution IR data for $v_{C=N}$ for 3–5, v_{N-H} for 3, and v_{O-H} for 4 are also noted). The hydride resonances are very similar to those we found earlier for an analogue of 5a synthesized in the same manner but using PhC(H)=NCH₂Ph (3). The imine-NH proton singlets for 3, at δ 9.98 (for the η^1 -imine) and 10.21 (for the η^2 -imine), are close to the values reported for the same imine (Im^1) similarly coordinated at Ru^{II} and Os^{II} (15) but are ~3 ppm to lower field than those of the Rh analogue $[RhH{NH=C(Ph)(o-C_6H_4)}(HN=CPh_2)(PPh_3)_2]PF_6$ (1b).Measurements of 2D HSQC, HMBC ³¹P{¹H}/¹H, and 2D HSQC, HMBC ¹³C{¹H}/¹H NMR spectra have allowed for assignment of all the ¹H NMR resonances of **3**, **4**, and **5a**. The ${}^{31}P{}^{1}H$ NMR spectra of **3**, **4a**, and **5a** each show a sharp singlet in the δ 18–17 region for the *trans*-phosphines, and a septet at $\delta \sim -143$ for the PF₆⁻ anion. Mass spectral data for complex 3 show the mass fragment of the intact cation, while the highest fragments seen for 4a and 5a correspond to $[IrH{N(CH_2Ph)=C(Me)(o-C_6H_3OH)}(PPh_3)_2]^+$ and $[Ir{N(p-F-C_6H_4)=CH(o-C_6H_4)}(PPh_3)_2]^+$, respectively.

The five-membered planar metallocycle ring within the complexes is essentially coplanar with the η^1 -N atom of the second imine in **3**, the O-C of the MeOH in **4**·2MeOH, and the O-C-C₂ unit of the Me₂CO in **5a**. The N-Ir-C angle of the metallocycle of all three structures (79.3°–78.3°) is very similar to those found in other cyclometallated imine complexes of Ir^{III} (3) and also, for example, of Rh^{III} (16) and Os^{II} (17). The *trans*-PPh₃ ligands are bent slightly towards the hydride as indicated by P-Ir-P angles of 164.7° to 173.9° and other angles at the Ir centre (Table 2); all such hydridobis(phosphine)-orthometallated-imine complexes of Ir (3) and Rh (1*b*, 16) systems display such bending. The Ir-O-C angles of the coordinated MeOH in **4** and coordinated acetone in **5a** are 122.7° and 137.6°, respectively.

The Ir—P, Ir—N, and Ir— C_{ortho} bond lengths (and the C=N bond lengths for the η^2 -*C*,*N*-imine) for the three complexes are in the range found previously for the closely re-

lated orthometallated-imine species [IrH{PhCH₂N=CH(o-C₆H₄)}(PPh₃)₂L]PF₆, where L = Me₂CO or PhCH₂NH₂ (3). The geometry of the orthometallated benzophenone ligand of **3** is also very similar to that of the same ligand within the Rh analogue of **3** (1*b*) and within complexes of Ru^{II} (15*d*) and Os^{II} (17). The C=N bond length of the η^1 -NH=CPh₂ of **3** is about 0.2 Å shorter than that of the corresponding Rh complex (1*b*) and those found in other Rh^I- and Rh^{III}-(η^1 -imine) complexes (18).

As far as we are aware, complex **3** is the first structurally characterized $Ir(\eta^{1}\text{-imine})$ complex, where the imine is a 'standard one', i.e., containing only alkyl, aryl, or hydrogen substituents at the imine-C and -N atoms; however, other such $Ir(\eta^{1}\text{-imine})$ complexes have been isolated, including benzophenone systems (19). Complex **3** is also a relatively rare example of a hydrido- $\eta^{1}\text{-imine}$ species; except for the Rh analogue of **3** mentioned above (1*b*), all the other examples are $\eta^{1}\text{-benzophenone}$ derivatives of Ru or Os (15). There is, of course, a vast literature on Ir complexes with 'non-standard' $\eta^{1}\text{-N=C}$ < moieties within a range of ligands such as imine-ethers, iminols, and amidines (20), diimines (21), pyrazoles (22), imidazoles (22), oxazolines (23), oxazolones (24), anthranil (25), and creatinine (26).

The ketimine Im^2 , containing an *o*-OH substituent in the imine-C phenyl group, forms complex 4, a typical hydridoorthometallated species akin to those we report here and elsewhere (3); however, this is the first type of such a complex derived from this ketimine. In complexes of Cu^{II} (27), Ru^{II} (28), and V^{IV} (29), the ketimine is chelated via the Natom and the alkoxy-O atom from the hydroxy group. In recent work, on an analogous study of this imine with cis,trans,cis-[Rh(H)₂(PPh₃)₂(MeOH)₂]PF₆ (or cis-[Rh(PPh₃)₂ (MeOH)₂]PF₆), we isolated an unique type of zwitterionic complex, namely $[Rh{\eta^{4}-(C_{6}H_{4}O)^{(-)}C(Me)=N^{(+)}(H)CH_{2}Ph} (PPh_3)_2]PF_6$, in which the ketimine is coordinated via the C₄ part of the o-hydroxy-arene moiety in a quinoid form; this tautomer is generated via proton transfer from the O-atom to the N-atom within the molecular, benzenoid form. Presumably, the strength of the Ir-H bond again promotes the orthometallation.

Complex **5a** formed from Im^3 is again a typical hydridoorthometallated species, but we are unaware of any other such structures with this fluorinated imine. Of note, however, a recent structure with this imine, Ni[iPr₂P(CH₂)₂PiPr₂]-[PhC(H)=N(p-F-C₆H₄)], reveals the π -bonded Im³ (5), and indeed this report prompted us to investigate the reactivity of this particular imine toward Ir. The strength of the Ir-H bond again likely favours formation of 5a. Of major interest, in a cursory study we have found that the reaction of Im³ with the Rh analogue of 2a forms only a trace of a hydridoorthometallated species, and the major product has yet to be identified.³ The fluoro-aldimine $(C_6F_5)C(H)=NPh$ (Im⁴) was unreactive toward 2, 2a, or the corresponding Rh species; the reactivity of Im^4 toward the Ni precursor used for the Im³ reaction, $[Ni{^{i}Pr_2P(CH_2)_2P^{i}Pr_2}]_2(\mu-H)_2$, was not reported (5). We continue studies with variation of the fluoroimine and the phosphine ligand in the hope of achieving an appropriate electronic and steric environment for formation of a π -bonded imine-Ir or -Rh complex.

Our previous studies have shown that isolated Ircyclometallated-imine complexes are stable toward H₂ in acetone or MeOH solution at ambient conditions and are not effective for catalytic hydrogenation of the imine (3, 30), and this has been confirmed recently by the Zaragosa group (31). The new complexes **3–5** are similarly inactive. In general, cyclometallated-imine Rh complexes can become active catalysts in MeOH, when they undergo partial reductive elimination of the cyclometallated imine (the reverse of orthometallation — cf. the intermediate shown in Scheme 1) to generate a solvated η^1 -imine species that does react with H₂ (2, 16*a*). The Rh analogues of **3** (1*b*) and **5a**⁴ are inactive toward H₂, while the Rh analogue of **4** (or **4a**) is unknown (see earlier), and the Ir and Rh complexes derived from Im³ in MeOH are not characterized.

Conclusions

Following our earlier work on the reactions between imines and $cis, trans, cis-[Rh(H)_2(PPh_3)_2(solv)_2]^+$ (solv = MeOH or Me₂CO), this article describes reactions of the imines with the corresponding Ir precursor species. The selected imines are HN=CPh₂, (o-HOC₆H₄)C(Me)=NCH₂Ph, and $PhC(H)=N(p-F-C_6H_4)$, the last one being chosen with the aim of possibly favouring formation of an η^2 -C=N (π bonded) species. However, in each case, the product is a hydrido species containing an η^2 -N,C-imine moiety coordinated via the N atom and an orthometallated-C atom. With benzophenone imine, the product contains also a second imine that is $\eta^l\text{-}N$ coordinated, the product proving to be the first reported, structurally characterized hydrido-(n¹-imine)-Ir complex. The Ir complexes are inactive as precursor hydrogenation catalysts for the imines. Comparisons are made with the products formed in the corresponding Rh systems and significant differences are noted.

Acknowledgment

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support via a Discovery Grant.

References

- (a) P. Marcazzan, B.O. Patrick, and B.R. James. J. Mol. Catal. A: Chem. 257, 26 (2006), and refs. cited therein; (b) M.B. Ezhova, B.O. Patrick, and B.R. James. Organometallics, 24, 3753 (2005), and refs. cited therein.
- P. Marcazzan and B.R. James. *In* Educ. in Adv. Chem. *Edited* by B. Marciniec. Vol. 10. Wydawnictwo-Poznańskie, Poznań-Wroclaw, Poland. 2006. p. 121, and refs. cited therein.
- P. Marcazzan, B.O. Patrick, and B.R. James. Russ. Chem. Bull. Int. Ed. 52, 2715 (2003).
- (a) R.H. Crabtree, P.C. Demou, D. Eden, J.M. Mihelcic, C.A. Parnell, J.M. Quirk, and G.E. Morris. J. Am. Chem. Soc. 104, 6994 (1982); (b) R.R. Schrock and J.A. Osborn. J. Am. Chem. Soc. 98, 4450 (1976).
- 5. A.L. Iglesias, M. Muñoz-Hernández, and J.J. García. J. Organomet. Chem. **692**, 3498 (2007), and refs. cited therein.

³F. Lorenzini and B.R. James. Unpublished data.

- (a) P. Marcazzan, C. Abu-Gnim, K.N. Seneviratne, and B.R. James. Inorg. Chem. 43, 4820 (2004); (b) B.R. James. Catal. Today, 37, 209 (1997).
- (a) D.E. Fogg. Ph.D. thesis. Department of Chemistry, University of British Columbia, Vancouver. 1994; (b) J. Wagler. Organometallics, 26, 155 (2007); (c) H. Neuvonen, K. Neuvonen, and F. Fülöp. J. Org. Chem. 71, 3141 (2006).
- (a) R.H. Crabtree and G.E. Morris. J. Organomet. Chem. 135, 395 (1977); (b) L.M. Haines and E. Singleton. J. Chem. Soc. Dalton Trans. 1891 (1972).
- SAINT. Version 7.03A [computer program]. Bruker AXS Inc., Madison, Wis. 1997.
- SADABS. Version 2.10 [computer program]. Bruker AXS Inc., Madison, Wis. 2003.
- A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, and R. Spagna. J. Appl. Crystallogr. 32, 115 (1999).
- (a) J. Albert, L. D'Andrea, J. Granell, R. Tavera, M. Font-Bardía, and X. Solans. J. Organomet. Chem. 692, 3070 (2007), and refs. cited therein; (b) H.-F. Klein, S. Camadanli, R. Beck, D. Leukel, and U. Flörke. Angew. Chem. Int. Ed. 44, 975 (2005), and refs. cited therein; (c) K.R. Flower, V.J. Howard, R.G. Pritchard, and J.E. Warren. Organometallics, 21, 1184 (2002), and refs. cited therein.
- (a) K. Godula and D. Sames. Science (Washington, D.C.), 312, 67 (2006); (b) J. Dupont, C.S. Consorti, and J. Spencer. Chem. Rev. 105, 2527 (2005); (c) F. Kakiuchi and S. Murai. Acc. Chem. Res. 35, 826 (2002).
- 14. G.W. Parshall. Acc. Chem. Res. 3, 139 (1970).
- (*a*) S. Aime, E. Diana, R. Gobetto, M. Milanesio, E. Valls, and D. Viterbo. Organometallics, **21**, 50 (2002); (*b*) G. Barea, M.A. Esteruelas, A. Lledós, A.M. López, and J.I. Tolosa. Inorg. Chem. **37**, 5033 (1998); (*c*) M.J. Albéniz, M.L. Buil, M.A. Esteruelas, and A.M. López. J. Organomet. Chem. **545– 546**, 495 (1997); (*d*) C. Bohanna, M.A. Esteruelas, A.M. López, and L.A. Oro. J. Organomet. Chem. **526**, 73 (1996).
- (a) P. Marcazzan, B.O. Patrick, and B.R. James. Organometallics, 24, 1445 (2005); (b) M.B. Ezhova, B.O. Patrick, K.N. Sereviratne, B.R. James, F.J. Waller, and M.E. Ford. Inorg. Chem. 44, 1482 (2005); (c) M.B. Ezhova, B.O. Patrick, B.R. James, M.E. Ford, and F.J. Waller. Russ. Chem. Bull. Int.

Ed. **52**, 2707 (2003); (*d*) L.-Y. Huang, U.R. Aulwurm, F.W. Heinemann, F. Knoch, and H. Kisch. Chem. Eur. J. **4**, 1641 (1998).

- M.A. Esteruelas, E. Gutiérrez-Puebla, A.M. López, E. Oñate, and J.I. Tolosa. Organometallics, 19, 275 (2000), and refs. cited therein.
- (a) J. Vicente, M.-T. Chicote, R. Guerrero, I. Vicente-Hernández, M.M. Alvarez-Falcón, P.G. Jones, and D. Bautista. Organometallics, 24, 4506 (2005), and refs. cited therein;
 (b) A.G. Becalski, W.R. Cullen, M.D. Fryzuk, B.R. James, G.-J. Kang, and S.J. Rettig. Inorg. Chem. 30, 5002 (1991).
- H. Werner, M. Müller, and P. Steinert. Z. Anorg. Allg. Chem. 629, 1337 (2003).
- C.S. Chin, D. Chong, B. Lee, H. Jeong, G. Won, Y. Do, and Y.J. Park. Organometallics, 19, 638 (2000).
- 21. D. Herebian and W.S. Sheldrick. J. Chem. Soc. Dalton Trans. 966 (2002).
- G. Albertin, S. Antoniutti, J. Castro, S. Garcia-Fontán, and E. Gurabardhi. J. Organomet. Chem. 691, 1012 (2006), and refs. cited therein.
- M.B. Ezhova, B.O. Patrick, B.R. James, F.J. Waller, and M.E. Ford. J. Mol. Catal. A: Chem. 224, 71 (2004), and refs. cited therein.
- W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, and W. Beck. Eur. J. Inorg. Chem. 485 (1998).
- 25. X. Li, C.D. Incarvito, T. Vogel, and R.H. Crabtree. Organometallics, 24, 3066 (2005).
- J.M. O'Connor, K. Hiibner, A.L. Rheingold, and L.M. Liable-Sands. Polyhedron, 16, 2029 (1997).
- R.M. Kirchner, G.D. Andreetti, D. Barnhart, F.D. Thomas, D. Welsh, and E.C. Lingafelter. Inorg. Chim. Acta, 7, 17 (1973).
- K.D. Keerthi, B.K. Santra, and G.K. Lahiri. Polyhedron, 17, 1387 (1998).
- N. Choudhary, D.L. Hughes, U. Kleinkes, L.F. Larkworthy, G.J. Leigh, M. Maiwald, C.J. Marmion, J.R. Sanders, G.W. Smith, and C. Sudbrake. Polyhedron, 16, 1517 (1997).
- 30. P. Marcazzan. Ph.D. thesis. Department of Chemistry, University of British Columbia, Vancouver, BC. 2002.
- M. Martín, E. Sola, S. Tejero, J.L. Andrés, and L.A. Oro. Chem. Eur. J. 12, 4043 (2006).