Aminals in the synthesis of 1,3-substituted propargylamines and 3H-2-vinylidene-3-aminobenzofuran derivatives

L. Yu. Ukhin,^{a*} V. N. Komissarov,^a S. V. Lindeman,^b V. N. Khrustalev,^b and Yu. T. Struchkov^b

^aInstitute of Physical and Organic Chemistry, Rostov State University, 194/3 prosp. Stachki, 344771 Rostov-on-Don, Russian Federation. Fax: +7 (863) 228 5667

^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova. 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085

Aminals of aromatic o-hydroxyaldehydes react when heated with terminal acetylenes to form, depending on the reaction conditions and the nature of the starting compounds, 1,3-substituted propargylamines or 3H-2-vinylidene-3-aminobenzofuran derivatives, the structures of which were established by X-ray diffraction.

Key words: aminals of *o*-hydroxyaldehydes; substituted propargylamines; 3*H*-2-vinylidene-3-aminobenzofuran derivatives; X-ray diffraction.

Previously¹ we have demonstrated that aminals of aromatic aldehydes react with terminal acetylenes in the presence of CuI to form 1,3-substituted propargylamines.

In this work, we studied the reaction of terminal acetylenes with aminals of aromatic o-hydroxyaldehydes; we demonstrated that these reactions, depending on the reaction conditions and the nature of the starting compounds, may result in 1,3-substituted propargylamines or the products of their cyclization, 3H-2-vinylidene-3aminobenzofuran derivatives.

Salicylaldehyde aminals (1a,b) react with phenylacetylene in boiling acetonitrile in the presence of CuI to give propargylamines (2a,b) (Scheme 1).

Under the same conditions, morpholinal of 5-nitrosalicylaldehyde 1c gives 3H-2-benzylidene-3-morpholino-5-nitrobenzofuran (3c) (Scheme 2).

Aminals of salicylic and 5-nitrosalicylic aldehydes react with propargyl alcohol, its phenyl ether, and dimethylethynylcarbinol to form benzofuran derivatives (3a,b,d,e) (Scheme 3).

When heated without the solvent and CuI, aminals **1a**—c react with phenylacetylene to form only propargylamines of structure 2, and the reaction proceeds considerably faster (2-5 min) than the reaction with 2,6-di*tert*-butylphenol (0.5-1 h).²

In another experiment, we demonstrated that boiling 1-phenyl-3-(2-hydroxy-5-nitrophenyl)-3-morpholinopropyne (2c) with CH_3CN in the presence of CuI results

Scheme 1

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 455-460, March, 1994. 1066-5285/94/4303-0413 \$12.50 © 1994 Plenum Publishing Corporation

3a: $R = NO_2$, $R^1 = CH_2OH$, X = O **3b:** R = H, $R^1 = CH_2OPh$, X = O **3d:** $R = NO_2$, $R^1 = C(CH_3)_2OH$, X = O**3e:** R = H, $R^1 = C(CH_3)_2OH$, $X = CH_2$

in gradual cyclization of **2c** to benzofuran **3c**. When small amounts of morpholine are added, this conversion becomes fast and quantitative. It is therefore concluded that the soluble morpholine complex with CuI is the active agent, inducing cyclization, whereas the presence of copper iodide or its complex is a necessary, but sometimes not sufficient condition for the cyclization of propargylamines. The acidity of phenolic hydroxyl is of considerable importance: when propargyl alcohol, its ether, or dimethylethynylcarbinol are used, the acidity of the salicylic derivative is sufficient, whereas in the case of phenylacetylene, cyclic products are formed only with aminals of 5-nitrosalicylaldehyde. The aminomethylation of acetylene is apparently possible only at a

Fig. 1. The overall view of molecule 2b.

of copper iodide, remains intact. A characteristic feature of the prepared propargylamines is the absence of stretching bands of the triple C=C bond and of the hydroxyl group in the IR spectra, and of the signal of the hydroxyl group in the ¹H NMR spectrum. The latter is so much broadened that, under normal conditions, it is observed only when integrated in the 10–13 ppm region.

tions performed both in the presence and in the absence

The structure of the propargylamines was established by X-ray diffraction of compound 2b. The overall view of the molecule is shown in Fig. 1. Bond lengths and bond angles for molecule 2b are close to the normal values.³ The four-atom fragment with the triple $C(8) \equiv C(9)$ bond is virtually linear (the angles C(7)C(8)C(9) and C(8)C(9)C(11) are 179.7(3) and $177.5(3)^{\circ}$, respectively). The morpholine cycle has a nearly ideal chair conformation (the endocyclic angles are $56.8(3) - 59.3(3)^{\circ}$). The bulky 1-(2-hydroxyphenyl)3-phenylpropyl substituent is in an equatorial position with respect to the morpholine heterocycle; its orientation, which is characterized by the C(2)-C(7)-N(21)-C(22) torsion angle of 68.5°, is determined by the closure of the intramolecular hydrogen bond O(1)-H···N(21) (O···N is 2.720(4), N···H is 1.75(4) Å, the O-H···N angle is $153(3)^{\circ}$). The presence of the hydrogen bond is evidently responsible for anomalies of the spectra of 2b and its analogs.

The benzofuran derivatives 3 are stable in acidic media and are inert relative to strong acylating agents. They react with acetyl perchlorate (HClO₄ solution in acetic anhydride) and with perchloric acid to form stable and readily crystallizing perchlorates. Their structures

Fig. 2. The asymmetric part of the crystal structure $3c \cdot HClO_4$.

415

were established by X-ray diffraction of one of these salts, namely, 3H-2-benzylidene-3-morpholino-5-nitrobenzofuran perchlorate (**3c**). The asymmetrical part of the crystal structure is shown in Fig. 2. The bond lengths and bond angles of the molecule of perchlorate **3c** have normal values³ within relatively poor accuracy (due to the poor quality of the crystals). The benzovinylidenefuran fragment of the cation is essentially planar (none of the atoms deviates by more than 0.03(2) Å from its mean plane). There is no twisting about the double bond (the C(3)-C(2)=C(10)-C(11) torsion angle is $180.0(8)^\circ$).

The morpholine substituent has a nearly ideal chair conformation (the endocyclic torsion angles are $53.0(9) - 63.3(9)^{\circ}$). The mutual orientation of the morpholine substituent (the N(1')-C(3) bond is equatorial) and the major portion of the molecule is characterized by the torsion angles C(2)-C(3)-N(1')-C(6') and C(4)-C(3)-N(1')-C(2') of 179.7(8) and 60.4(8)°, respectively. The orientation of the nitro group with respect to the central bicyclic nucleus and the orientation of the phenyl substituent with respect to the plane of the C(2)=C(10) double bond are characterized by angles of 10.3(9) and $6.6(9)^{\circ}$, respectively. The hydrogen atom, which is involved in the N(1')-H···O(4) hydrogen bond with the ClO_4^- anion (N(1') \cdots O(4) is 2.88(2), $H \cdots O(4)$ is 2.1(2) Å, the N(1')- $H \cdots O(4)$ angle is $176(4)^{\circ}$), is in an axial position at the N(1') ammonium nitrogen atom. Evidently, the C(3)—H group also forms a weak hydrogen bond with ClO_4^- (C(3)...O(1) is 3.31(2), $H \cdots O(1)$ is 2.5(2), C(3)—H is 1.0(1) Å, the C(3)-H···O(1) angle is 145(4)°). In the crystal, the solvate methanol molecule has no contacts that could be interpreted in terms of hydrogen bonds. Apparently, its disorder and partial occupancy result from this fact.

Indirect evidence for the presence of hydrogen bonds can be obtained from the IR spectrum of perchlorate **3c**: the lowering of the symmetry of the ClO_4^- anion gives rise to the splitting of its characteristic absorption band in the region of 1100 cm⁻¹ into several components, as was described for covalently bonded perchlorates.⁴

In the IR spectra of vinylidenebenzofurans 3a-e, bands with moderate intensity are always present in the region of 1700 cm⁻¹, these bands can be assigned to the stretching vibrations of the exocyclic double bond conjugated with the furan oxygen atom. It is known,^{5,6} that the vinyl ether fragments in 4*H*-benzopyranes are characterized by unusually large values of the doublebond frequencies.

Experimental

IR spectra were recorded on a Specord IR-75 instrument in vaseline oil. The ¹H NMR spectra were recorded on a Varian XL-100 spectrometer (compounds **2d**, **3d**,e) using HMDS as the internal standard and on a Varian XL-300 spectrometer (compounds **2a,c**, **3a–c**).

Salicylaldehyde aminals 1a,b were prepared according to procedures described previously.²

2-Hydroxy-5-nitrophenyl-di(morpholino)methane (5-nitrosalicylaldehyde morpholinal, 1c). 5-Nitrosalicylaldehyde (10 g) was dissolved with heating in isopropyl alcohol (30 mL). Morpholine (10 mL) was added to the hot solution, and the mixture was held for 1 h. After rubbing slightly with a stick, fast crystallization was initiated. Then heptane (10 mL) was added to the solidified substance, the product was filtered off, washed with a 1:1 2-propanol-heptane mixture, then with heptane, and dried. The yield of 1c was 18.6 g (96 %). Nearly colorless crystals were obtained after recrystallization from toluene. The compound has no exact melting point: the compound begins to change above 122 °C and at 142-148 °C turns to an orange material. Found (%): C, 55.00; H, 6.20; N, 12.35. C₁₅H₂₁N₃O₅. Calculated (%): C, 55.73; H, 6.50; N, 13.00. IR, v/cm⁻¹: 1614, 1581 (arom.), 1523, 1341 (NO₂). 3-(2-Hydroxyphenyl)-1-phenyl-3-piperidinoprop-1-yne

3-(2-Hydroxyphenyl)-1-phenyl-3-piperidinoprop-1-yne (2a).

a. A solution of aminal **1a** (2.74 g, 10 mmol), CuI (1.9 g, 10 mmol), and phenylacetylene (1.3 mL, 10.5 mmol) in MeCN (20 mL) was boiled for 30 min, the mixture was cooled, and an oil with a yellow precipitate was obtained after treatment with water and concentrated NH₄OH. The product was extracted with hot 2-propanol, the solution was filtered off, and then treatment with water gave a colorless precipitate; the precipitate was recrystallized from MeOH. The yield of **2a** was 0.7 g (24 %), m.p. 72–75 °C. Found (%): C, 82.58; H, 7.10; N, 5.10. C₂₀H₂₁NO. Calculated (%): C, 82.47; H, 7.22; N, 4.81.

b. A solution of aminal **1a** (1 g) in phenylacetylene (1 mL) was boiled for 5 min, placed into a Petri dish, and evaporated with a syringe with heating and petroleum ether and then MeOH were added. After cooling and triturating, the product was recrystallized from MeOH, washed on a filter with cold MeOH, and dried. The yield of **2a** was 0.55 g (52 %), m.p. 72–75 °C. Found (%): C, 82,89; H, 7.47; N, 4.98. $C_{20}H_{21}NO$. Calculated (%): C, 82,47; H, 7.22; N, 4.81. IR, ν/cm^{-1} : 1607, 1587, 1581 (arom.), 1274, 1250 ($\nu(C-O)$, δ (O–H)), 754, 688 (the monosubstituted benzene ring). The ¹H NMR (CDCl₃, δ): 1.30–1.75 (m, 6 H, CH₂); 2.70 (m, 4 H, CH₂N); 5.10 (s, 1 H, CH); 6.80–7.60 (m, 9 H, arom.); 9.70–13.50 (s, 1 H, OH).

3-(2-Hydroxyphenyl)-3-morpholino-1-phenyl-prop-1-yne (2b).

a. A mixture of salicylaldehyde morpholinal **1b** (5.56 g, 20 mmol), phenylacetylene (2.24 g, 22 mmol), and CuI (3.81 g, 10 mmol) was boiled in anhydrous MeCN (15 mL) for 30 min. The solution was cooled, then concentrated NH₄OH (20 mL) and water (70 mL) were added; the solution was extracted with CHCl₃ (2×20 mL), the extract was dried over anhydrous Na₂SO₄, and filtered off, and evaporated. The oil obtained was recrystallized from 15 mL of MeOH. The yield of **2b** was 4.7 g (75.1 %), m.p. 100–101 °C. Found (%): C, 77.20; H, 6.61; N, 5.10. C₁₉H₁₉NO₂. Calculated (%): C, 77.82; H, 6.48; N, 4.78.

b. A solution of aminal **1b** (0.5 g, 1.8 mmoles) in phenylacetylene (1 mL) was boiled for 15 min, placed into a Petri dish, and evaporated with heating while isooctane was added. The solution was extracted several times with boiling isooctane, and the extract was held overnight. The crystals obtained were separated and recrystallized from MeOH. The yield of **2b** was 0.26 g (52 %), m.p. 100–101 °C. Found (%): C, 77.71; H, 6.64; N, 4.60. $C_{19}H_{19}NO_2$. Calculated (%): C, 77.82; H, 6.48; N, 4.78. IR, v/cm⁻¹: 1607, 1580, 1567 (arom.), 1274, 1254, 1234 (v(C–O), δ (O–H)), 1107 (C–O–C), 750, 687 (the monosubstituted benzene ring). The ¹H NMR (CDCl₃, δ): 2.72 (t, 4 H, CH₂N); 3.75 (t, 4 H, CH₂O); 5.12 (s, 1 H, CH); 6.77–7.56 (m, 8 H, arom.).

3-(2-Hydroxy-5-nitrophenyl)-3-morpholino-1-phenyl-prop-1-yne (2c). A solution of aminal 1c (0.5 g, 1.5 mmol) in phenylacetylene (1 mL) was boiled for 3 min, octane (10 mL) was added, and then the solution was cooled. The rose-colored precipitate was filtered off and recrystallized twice from octane. The yield of 2c was 0.28 g (52 %), m.p. 158-165 °C. Found (%): C, 67.20; H, 5.54; N, 8.22. C₁₉H₁₈N₂O₄. Calculated (%): C, 67.45; H, 5.33; N, 8.28. IR, v/cm⁻¹: 1621, 1587 (arom.), 1527, 1514, 1341 (NO₂), 1281 (v(C-O), δ(OH)), 1114 (C-O-C), 754, 698 (the monosubstituted benzene ring). The ¹H NMR (CDCl₃, δ): 2.84 (m, 4 H, CH₂N); 3.82 (m, 4 H, CH₂O); 5.10 (s, 1 H, CH); 6.85 (d, 1 H, C(3)-H of the 2-hydroxy-5-nitrophenyl substituent); 7.37 (m, 3 H, protons of the phenyl ring); 7.47 (m, 2 H, protons of the phenyl ring); 8.15 (d, 1 H, C(4)-H of the 2-hydroxy-5-nitrophenyl substituent); 8.52 (d, 1 H, C(6)-H of the 2-hydroxy-5nitrophenyl substituent).

2-Hydroxymethylvinylidene-3-morpholino-5-nitro-3H-benzofuran (3a). A mixture of aminal 1c (1.6 g, 5 mmoles), MeCN (10 mL), propargyl alcohol (0.5 mL, 8 mmoles), and CuI (0.5 g, 5 mmoles) was boiled with stirring for 30 min, cooled, and then concentrated NH₄OH (20 mL) and water (60 mL) were added; the solution was extracted with several portions of CHCl₃, and then the solvent was evaporated. The oily precipitate was extracted repeatedly with the same portion of boiling octane, and the precipitate, obtained after cooling with ice water, was filtered off, dried on a filter, and recrystallized from heptane. The yield of 3a was 1 g (70 %). A light-yellow crystalline precipitate was formed, which was caramelized at ~20 °C to an orange material. Prior to analysis, the substance was dried under a vacuum at 100 °C. Found (%): 57.41; H, 5.35; N, 9.46. $C_{14}H_{16}N_2O_5$. Calculated (%): C, 57.53; H, 5.48; N, 9.59. IR, v/cm^{-I}: 3367 (OH), 1700 (C=C), 1621, 1601 (arom.), 1527, 1341 (NO₂). The ¹H NMR (CDCl₃, δ): 2.48 (m, 2 H, CH₂N); 2.65 (m, 2 H, CH₂N); 3.67 (m, 4 H, CH₂O); 4.45 (m, 2 H, CH₂OH); 4.88 (s, 1 H. CH); 5.30 (t, 1 H, =CH $_$); 6.98 (d, C(7)-H arom.); 8.22 (dd, 1 H, C(6)-H, arom.); 8.25 (d, 1 H, C(4)-H, arom.).

3-Morpholino-3*H***-2-phenoxymethylvinylidene-benzofuran** (3b). A mixture of aminal 1b (2.8 g, 10 mmoles), phenyl propargyl ether (1.5 mL, 12 mmoles), and CuI (1.9 g, 10 mmoles) was boiled for 30 min in MeCN (10 mL), cooled, and then concentrated NH₄OH (25 mL) and water (80 mL) were added. The oil that separated crystallized when held in a refrigerator over several days. The solid material was dissolved in CHCl₃ and passed through a column packed with Al₂O₃,

Table 1. Principal crystallographic parameters for $2b^{\star}$ and $3c\cdot \text{HClO}_4^{\star\star}$

Parameter	2b	Perchlorate 3c	
a/Å	9.274(2)	24.604(2)	
b/Å	18.353(3)	8.856(3)	
c/Å	9.382(4)	19.341(4)	
$V/Å^3$	1582.4(1.3)	4191.6(2.8)	
$d_{\rm colo}/{\rm g}~{\rm cm}^{-3}$	1.227	1.499	
β/deg	97.71(2)	95.94(2)	
Sp. group	$P2_1/c$	C2/c	
ż	4	8	

* At -95 °C. ** At 20 °C.

the solvent was evaporated, and the residue was recrystallized from MeOH, and dried *in vacuo*. The yield of **3b** was 1 g (31 %), m.p. 72–73 °C. Found (%): C, 74.59; H, 6.41; N, 4.31. $C_{20}H_{21}NO_3$. Calculated (%): C, 74.30; H, 6.50; N, 4.33. IR, v/cm⁻¹: 1694 (C=C), 755, 690 (the monosubstituted benzene ring). The ¹H NMR (CDCl₃, δ): 2.50 (m, 2 H, CH₂N); 2.62 (m, 2 H, CH₂N); 3.65 (m, 4 H, CH₂O, morpholine); 4.85 (m, 3 H, CH₂O, CHN); 5.22 (t, 1 H, CH); 6.90–7.05 (m, 5 H, arom.).

2-Benzylidene-3-morpholino-5-nitro-3H-benzofuran (3c). A mixture of morpholinal 1c (3.2 g, 10 mmoles), CuI (1.7 g, 10 mmoles), and phenylacetylene (1.1 mL, 10 mmoles) was boiled with stirring in MeCN (10 mL) for 30 min, cooled, and then concentrated NH₄OH (5 mL) and water (20 mL) were added. The sticky precipitate, which crystallized on trituration, was filtered off, extracted with boiling heptane, and the precipitate (0.5 g) obtained after evaporation was recrystallized from ethyl acetate. An additional amount of 3c (1.15 g) was obtained by extraction with boiling heptane. The total yield of 3c was 1.65 g (48.8 %), it was a yellow material, m.p. 149-155 °C. Found (%): C, 67.05; H, 5.58; N, 7.85. C₁₉H₁₈N₂O₄. Calculated (%): C, 67.46; H, 5.33; N, 8.28. IR, v/cm⁻¹: 1687 (C=C), 1614, 1601, 1580 (arom.), 1514, 1327 (NO₂). The ¹H NMR (CDCl₃, δ): 2.55 (m, 2 H, CH₂N); 2.76 (m, 2 H, CH₂N); 3.68 (t, 4 H, CH₂O); 5.07 (s, 1 H, CH); 5.98 (s, 1 H, =CH-); 7.12 (d, 1 H, C(7)-H, arom.); 7.12-7.72 (m, 5 H, Ph); 8.25 (dd, 1 H, C(6)-H, arom.); 8.32 (d, 1 H, C(4)-H, arom.).

When a solution of 3c in acetic acid was treated with an excess of the 57 % $HClO_4$ solution at ~20 °C, the respective perchlorate was obtained in a quantitative yield; the perchlorate after precipitation with ether and recrystallization from MeOH contained 0.5 solvate MeOH molecule, its m.p. was 140–145 °C.

2-Dimethylhydroxymethylvinylidene-3-morpholino-5-nitrobenzo-3*H*-furan (3d). A mixture of aminal 1c (1.6 g, 5 mmoles) and dimethylethynylcarbinol (1 mL, 10 mmoles) was heated

Table 2. Fractional atomic coordinates for nonhydrogen atoms $(\times 10^4)$ and their temperature factors $(\text{ Å}^2, \times 10^3)$ in **2b**

Atom	x	У	z	U _{eq}
O(1)	1375(2)	8560(1)	605(2)	47(1)
C(1)	1849(3)	9230(1)	1117(3)	33(1)
C(2)	921(3)	9708(1)	1715(2)	31(1)
C(3)	1473(3)	10379(1)	2238(3)	35(1)
C(4)	2891(4)	10572(2)	2128(3)	42(1)
C(5)	3789(4)	10107(2)	1498(3)	43(1)
C(6)	3269(3)	9433(2)	995(3)	38(1)
C(7)	-655(3)	9477(1)	1743(3)	31(1)
C(8)	-1524(3)	10013(1)	2419(3)	35(1)
C(9)	-2235(3)	10450(1)	2964(3)	36(1)
C(11)	-3073(3)	11000(1)	3582(3)	33(1)
C(12)	-3753(3)	10845(2)	4779(3)	41(1)
C(13)	-4538(4)	11384(2)	5372(3)	53(1)
C(14)	-4629(4)	12071(2)	4797(3)	57(1)
C(15)	-3950(4)	12230(2)	3613(3)	51(1)
C(16)	-3177(3)	11700(2)	2989(3)	40(1)
N(21)	-700(2)	8734(1)	2371(2)	32(1)
C(22)	-145(4)	8725(2)	3908(3)	40(1)
C(23)	-130(4)	7952(2)	4468(4)	50(1)
O(24)	-1557(2)	7650(1)	4263(2)	49(1)
C(25)	-2111(4)	7655(2)	2763(3)	49(1)
C(26)	-2160(3)	8415(2)	2146(3)	41(1)

Atom	x	у	z	$U_{ m eq}$
H(1(O))	51(5)	847(2)	119(5)	9(1)
H(3a)	85(3)	1070(2)	266(3)	4(1)
H(4a)	322(3)	1107(2)	246(3)	6(1)
H(5a)	481(3)	1022(1)	141(3)	3(1)
H(6a)	383(3)	910(2)	58(3)	4(1)
H(7a)	-105(3)	942(1)	82(3)	3(1)
H(12a)	-371(3)	1039(2)	517(3)	3(1)
H(13a)	-507(4)	1128(2)	618(4)	6(1)
H(14a)	-509(3)	1244(2)	521(3)	5(1)
H(15a)	-396(3)	1273(2)	325(3)	5(1)
H(16a)	-267(4)	1180(2)	218(4)	6(1)
H(22a)	-75(4)	903(2)	450(3)	5(1)
H(22b)	89(4)	892(2)	407(3)	6(1)
H(23a)	19(3)	795(2)	554(4)	5(1)
H(23b)	52(4)	767(2)	385(4)	5(1)
H(25a)	-306(4)	744(2)	275(3)	5(1)
H(25b)	-141(4)	734(2)	221(4)	8(1)
H(26a)	-252(3)	843(1)	110(3)	4(1)
H(26b)	-285(4)	873(2)	264(3)	5(1)

Table 3. Fractional atomic coordinates for hydrogen atoms (×10³) and their temperature factors (\dot{A}^2 , ×10²) in 2b

Table 4. Bond lengths in 2b

Bond	d/Å	Bond	d/Å
O(1) - C(1)	1.372(3)	C(11)-C(12)	1.389(4)
C(1) - C(2)	1.398(4)	C(11) - C(16)	1.399(4)
C(1) - C(6)	1.388(4)	C(12) - C(13)	1.387(5)
C(2) - C(3)	1.396(4)	C(13) - C(14)	1.370(5)
C(2) - C(7)	1.526(4)	C(14) - C(15)	1.379(5)
C(3) - C(4)	1.379(5)	C(15) - C(16)	1.384(5)
C(4) - C(5)	1.379(5)	N(21) - C(22)	1.464(3)
C(5) - C(6)	1.388(4)	N(21) - C(26)	1.464(4)
C(7) - C(8)	1.469(4)	C(22) - C(23)	1.511(4)
C(7) - N(21)	1.489(3)	C(23)-O(24)	1.425(4)
C(8) - C(9)	1.196(4)	O(24)-C(25)	1.432(4)
C(9) - C(11)	1.442(4)	C(25)-C(26)	1.508(4)

to boiling in MeCN (15 mL). CuI (0.5 g, 2.5 mmoles) was added, and then the mixture was boiled for 30 min. Concentrated NH₄OH (20 mL) and ice water (80 mL) were added to the cooled reaction mixture, and the mixture was stirred with a stirring rod and held in a refrigerator during several hours. The obtained precipitate was filtered off, washed with diluted NH₄OH and water, dried on a filter, and recrystallized from octane. The yield of **3d** was 0.71 g (44.7 %), m.p. 114–115 °C. Found (%): C, 59.43; H, 5.84; N, 8.40. C₁₆H₂₀N₂O₅. Calculated (%): C, 60.00; H, 6.25; N, 8.75. IR, v/cm⁻¹: 3380, 3320 (OH), 1694 (C=C), 1621, 1601 (arom.), 1527, 1341 (NO₂). The ¹H NMR (CDCl₃, δ): 1.56 (s, 6 H, CH₃); 2.60 (m, 4 H, CH₂N); 3.72 (t, 4 H, CH₂O); 4.90 (s, 1 H, CH); 5.30 (s, 1 H, =CH); 7.00 (d, 1 H, arom.); 8.20 (d, 2 H, arom.).

2-Dimethylhydroxymethylvinylidene-3-piperidino-3*H*-benzofuran (3e). A mixture of aminal 1a (2.74 g, 10 mmoles) and dimethylethynylcarbinol (1 mL, 10 mmoles) was heated to boiling in MeCN (15 mL). CuI (1.9 g, 10 mmoles) was added, the mixture was boiled for 30 min, filtered off in a hot state, and the precipitate was washed on a filter with MeCN. Then concentrated NH₄OH (20 mL) and ice water (40 mL) were added to the cooled filtrate. After being cooled with ice and

Fable 5. Bond an	gles in 2b
------------------	------------

Angle	ω/deg	Angle	ω/deg
O(1) - C(1) - C(2)	121.2(3)	C(9) - C(11) - C(16)	119.6(2)
O(1) - C(1) - C(6)	118.3(2)	C(12) - C(11) - C(16)	119.7(3)
C(2) - C(1) - C(6)	120.5(2)	C(11) - C(12) - C(13)	119.9(3)
C(1) - C(2) - C(3)	118.5(3)	C(12) - C(13) - C(14)	120.4(3)
C(1) - C(2) - C(7)	118.4(2)	C(13) - C(14) - C(15)	120.1(3)
C(3) - C(2) - C(7)	123.1(2)	C(14) - C(15) - C(16)	120.7(3)
C(2) - C(3) - C(4)	120.6(3)	C(11) - C(16) - C(15)	119.3(3)
C(3) - C(4) - C(5)	120.7(3)	C(7) - N(21) - C(22)	112.0(2)
C(4) - C(5) - C(6)	119.7(3)	C(7) - N(21) - C(26)	112.6(2)
C(1) - C(6) - C(5)	120.0(3)	C(22) - N(21) - C(26)	109.5(2)
C(2) - C(7) - C(8)	113.8(2)	N(21)-C(22)-C923)	109.8(2)
C(2)-C(7)-N(21)	109.8(2)	C(22)-C(23)-O(24)	110.7(3)
C(8) - C(7) - N(21)	113.4(2)	C(23) - O(24) - C(25)	109.5(3)
C(7) - C(8) - C(9)	179.8(3)	O(24) - C(25) - C(26)	111.8(2)
C(8)-C(9)-C(11)	177.7(3)	N(21)-C(26)-C(25)	109.5(2)
C(9)-C(11)-C(12)	120.7(2)		

Table	6 . F	Fraction	nal atom	ic cooi	dinates	for	nonh	ydrog	en a	toms
(×10 ⁴)	and	l their	temperat	ure fa	ctors (Ų,	×10 ³)	in 3 0	·H	ClO₄

Atom	x	у	z	U _{eq}
CI(1)	1081(1)	11140(3)	9261(2)	64(1)
0(1)	1188(6)	10671(11)	9951(5)	123(6)
O(2)	561(5)	11836(13)	9204(6)	116(5)
O(3)	1464(5)	12219(12)	9063(7)	124(6)
O(4)	1067(4)	9844(9)	8816(4)	70(3)
O(5)	1255(4)	3099(13)	12459(5)	89(4)
O(6)	874(4)	5273(11)	12304(4)	71(4)
O(4')	-164(3)	5973(10)	9001(4)	65(3)
O(1c)	2161(3)	5227(8)	9742(4)	26(2)
N(2)	1168(4)	4275(14)	12129(5)	53(4)
N(1')	923(3)	6956(10)	9452(5)	40(3)
C(2)	1937(4)	6575(12)	9485(5)	38(4)
C(3)	1470(4)	7015(12)	9913(5)	36(4)
C(4)	1510(4)	5859(11)	10454(5)	35(4)
C(5)	1264(4)	5683(12)	11066(6)	36(4)
C(6)	1426(4)	4450(14)	11476(5)	46(4)
C(7)	1816(5)	3461(13)	1333(7)	54(5)
C(8)	2080(5)	3668(15)	10743(8)	57(5)
C(9)	1932(4)	4859(12)	10334(5)	44(4)
C(10)	2113(4)	7335(12)	8951(6)	46(4)
C(11)	2547(4)	6976(12)	8532(6)	44(4)
C(12)	2922(4)	5811(12)	8679(6)	44(4)
C(13)	3345(6)	5570(15)	8267(9)	69(6)
C(14)	3368(5)	6467(18)	7679(9)	74(6)
C(15)	3003(6)	7559(19)	7511(7)	69(6)
C(16)	2588(5)	7856(14)	7937(6)	51(5)
C(2')	818(4)	5494(12)	9072(6)	44(4)
C(3')	280(5)	5573(17)	8613(7)	61(5)
C(5')	-73(5)	7382(18)	9302(8)	64(6)
C(6')	440(4)	7380(14)	9832(7)	51(4)
O(1s)	183(19)	9739(53)	7477(38)	129(19)
C(1s)	-83(31)	10961(66)	7663(37)	87(21)

triturated with a stick, the oil obtained was crystallized out. After recrystallization from octane, 1 g of compound **3e** (36.6 %) was obtained, m.p. 99–102 °C (from hexane). Found (%): C, 74.45; H, 8.05; N, 4.72. $C_{17}H_{23}NO_2$. Calculated (%):

Table 7. Fractional atomic coordinates for hydrogen atoms ($\times 10^3$) and their temperature factors (Å², $\times 10^2$) in **3c** · HClO₄

Atom	x	у	z	
H(1N')	98(4)	776(12)	927(6)	
H(3)	149(4)	805(12)	1011(5)	
H(5)	101(4)	633(11)	1119(5)	
H(7)	187(4)	264(12)	1164(5)	
H(8)	226(5)	315(13)	1064(7)	
H(10)	190(4)	837(11)	876(5)	
H(12)	292(4)	502(11)	920(5)	
H(13)	352(4)	467(12)	848(5)	
H(14)	366(4)	608(12)	752(5)	
H(15)	302(4)	830(11)	716(6)	
H(16)	236(4)	879(12)	793(5)	
H(2a')	110(4)	507(11)	876(5)	
H(2b')	82(4)	471(11)	959(5)	
H(3a')	28(4)	618(12)	824(6)	
H(3b')	17(4)	449(11)	840(5)	
H(5a')	-5(4)	820(12)	899(6)	
H(5b')	-37(4)	773(11)	948(5)	
H(6a')	52(4)	836(11)	1009(5)	
H(6b')	41(4)	646(11)	1027(5)	

Note. For all atoms, the fixed temperature factor of $5 \cdot 10^{-2}$ Å² was used.

Table 8. Bond lengths in $3c \cdot HClO_4$

Bond	d/Å	Bond	d/Å
Cl(1)O(1)	1.40(1)	C(4)—C(5)	1.39(2)
Cl(1) - O(2)	1.41(1)	C(4) - C(9)	1.40(2)
Cl(1) - O(3)	1.42(1)	C(5) - C(6)	1.38(2)
Cl(1) - O(4)	1.433(9)	C(6) - C(7)	1.35(2)
O(5) - N(2)	1.23(2)	C(7) - C(8)	1.38(2)
O(6) - N(2)	1.21(1)	C(8) - C(9)	1.35(2)
O(4') - C(3')	1.43(2)	C(10) - C(11)	1.44(2)
O(4') - C(5')	1.39(2)	C(11) - C(12)	1.39(1)
O(1c) - C(2)	1.38(1)	C(11)C(16)	1.40(2)
O(1c) - C(9)	1.37(1)	C(12) - C(13)	1.39(2)
C(2) - C(6)	1.48(2)	C(13)C(14)	1.39(2)
N(1') - C(3)	1.53(1)	C(14) - C(15)	1.34(2)
N(1')-C(2')	1.50(1)	C(15) - C(16)	1.40(2)
N(1') - C(6')	1.51(2)	C(2') - C(3')	1.52(2)
C(2) - C(3)	1.53(1)	C(5') - C(6')	1.54(2)
C(2) - C(10)	1.34(2)	O(1s) - C(1s)	1.33(8)
C(3) - C(4)	1.46(1)	,	

C, 74.73; H, 8.42; N, 5.13. IR, v/cm^{-1} : 3333 (OH), 1694 (C=C), 1607, 1601 (arom.). The ¹H NMR (CDCl₃, δ): 1.56 (m, 12 H, CH₂ + CH₃); 2.55 (m, 4 H, CH₂N); 4.80 (s, 1 H, CH); 5.15 (s, 1 H, =CH); 6.80-7.40 (m, 4 H, arom.).

X-ray diffraction study of compound 2b and perchlorate of 3c. The principal crystallographic parameters for structures 2b and $3c \cdot HClO_4$ are given in Table 1.

The unit-cell parameters and intensities of reflections were measured on an automated four-circle Siemens P3/PC diffractometer (Mo-K α radiation, graphite monochromator, $\theta/2\theta$ scan technique); for **2b**: T = -95 °C, $\theta_{max} = 27^{\circ}$; for **3c** perchlorate: T = 20 °C, $\theta_{max} = 28^{\circ}$.

The structures were solved by the full-matrix least-squares method with anisotropic thermal parameters for the nonhydro-

Table 9. Bond angles in $3c \cdot 11 < 10 < 4$

gen atoms. Hydrogen atoms, the initial positions of which were calculated (except for the hydroxyl hydrogen atom in 2b, which was located from a difference Fourier synthesis), were refined isotropically by the least-squares method. The difference Fourier synthesis revealed the solvate MeOH molecule, which was disordered over two sites related by a twofold axis, with the overall occupancy of 0.5. The final reliability factors for 2b were R = 0.044, $R_w = 0.076$ using 1684 independent reflections with $I > 2.5\sigma$; for $3c \cdot \text{HClO}_4 R = 0.098$, $R_w =$ 0.099 using 1677 independent reflections with I > 2.5 s.

All calculations were performed on an IBM PC/AT-286 computer using the SHELXTL program package. Atomic coordinates and temperature factors for **2b** are given in Tables 2 and 3, geometric parameters for the molecule are listed in Tables 4 and 5; data on perchlorate **3c** are given in Tables 6, 7, 8, and 9, respectively.

References

- 1. V. N. Komissarov, L. Yu. Ukhin, Zh. I. Orlova, and O. A. Tokarskaya, Zh. Org. Khim., 1987, 23, 1325 [J. Org. Chem. USSR, 1987, 23 (Engl. Transl.)].
- 2. V. N. Komissarov and L. Yu. Ukhin, Zh. Org. Khim., 1989, 25, 2594 [J. Org. Chem. USSR, 1989, 25 (Engl. Transl.)].
- 3. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
- 4. R. S. Drago, Physical Methods in Inorganic Chemistry,
- Reinhold, New York, Chapman, London, 1965.
 5. A. V. Koblik, K. F. Suzdalev, and G. N. Dorofeenko, *Khim. Geterotsikl. Soedin.*, 1982, 2, 163 [*Chem. Heterocycl.* Compd., 1982, 2 (Engl. Transl.)].
- 6. K. F. Suzdalev and A. V. Koblik, Khim. Geterotsikl. Soedin., 1989, 3, 313 [Chem. Heterocycl. Compd., 1989, 3 (Engl. Transl.)].

Received July 7, 1993