Unexpected Formation of 3,3,3-Trifluoropropyltriphenylphosphonium Bromide and Subsequent Wittig-Olefination Jörg Ullmann, Michael Hanack* Institut für Organische Chemie, Lehrstuhl II, Universität Tübingen. Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany An unusual rearrangement during the reaction of 1,1.1-trifluoroisopropyl bromide with triphenylphosphine leads to 3,3,3-trifluoropropyl-triphenylphosphonium bromide, rendering the corresponding olefins accessible. Trifluoromethyl-substituted olefins are important synthetic intermediates in the synthesis of a variety of organofluorine compounds. We recently described the synthesis of bis(trifluoromethyl)-substituted olefins, and now report the synthesis of olefins containing a 3,3,3-trifluoropropylidene unit. Only a few examples of this type of olefin have been prepared. Three principal methods have been used: - the reaction of trifluoromethyl or trifluoroethyl copper with substituted allylbromides,² or β-bromostyrene^{3,4} respectively; - the coupling of 1-iodo-2,2,2-trifluoroethane with 1-phenyl-2-tributylstannylethene, catalyzed by tetrakis(triphenylphosphine) palladium; and - the dehydroiodination of trifluoroiodoalkanes, which generally leads to isomeric olefins.⁶ 3 Buli/Et₂O $$F_3$$ C (5) F_3 C (5) F_3 C R^2 | C ₂ H ₅ | C ₂ H ₅ | | | |---|---|--|--| | $C_{\mathbf{A}}^{\mathbf{A}}\mathbf{H}_{\mathbf{Q}}^{\mathbf{G}}$ | C_4H_9 | | | | Ph | Ph | | | | CH ₂ Cl | CH ₂ Cl | | | | $-(CH_2)_5 -$ | | | | | -CH ₂ CH ₂ OCH ₂ CH ₂ - | | | | | $-CH_2CH_2N(C_3H_7)CH_2CH_2 -$ | | | | | | C ₄ H ₉
Ph
CH ₂ Cl
-(CF
-CH ₂ CH ₂ C | | | Our approach to these compounds is based on the reaction of 1,1,1-trifluoroisopropyl bromide (1) with triphenylphosphine. The reaction, considerably hindered, only takes place if both components are heated without solvent at 200°C, to form unambiguously 3,3,3-trifluoropropylphosphonium bromide (3); no traces of the isomeric 1,1,1-trifluoroisopropylphosphonium bromide (2) are found. The mechanism of this rearrangement is not yet clear, but three possibilities may be considered: - nucleophilic attack of triphenylphosphine on the methyl group of 1, hydride shift to the secondary carbon atom, and elimination of a bromide ion; or - nucleophilic attack of triphenylphosphine on the bromine atom, activated by the neighbouring electron-withdrawing trifluoromethyl group, separation of a bromotriphenylphosphonium ion, followed by a proton shift (from the methyl group to the secondary carbon atom), and addition of the bromotriphenylphosphonium ion; or dehydrobromination of 1 to 3,3,3-trifluoropropene, which adds triphenylphosphoniumbromide, formed from triphenylphosphine and hydrogen bromide. Interestingly the reaction of triphenylphosphine with either isopropyl bromide⁷ or ethyl 2-bromopropanoate⁸ yields the non-rearranged phosphonium salts. Hence, this reaction provided a novel and convenient method for the preparation of olefins containing a 3,3,3-trifluoropropylidene unit. Treatment of 3,3,3-trifluoropropyltriphenylphosphonium bromide (3) with butyllithium generates 3,3,3-trifluoropropylidenephosphorane (4), which can be reacted with aldehydes or ketones. The ylid 4 is sufficiently reactive that ketones e.g. benzophenone will also yield olefins. The prepared olefins 6 are listed in the Table. Sodium bases, e.g. sodium amide which are frequently used to convert phosphonium salts into ylids, failed to generate 4. This excludes a *cis*-selective olefination of 4 with aldehydes according Table. Physical data for Compounds 3 and 6 | Prod-
uct | Yield
(%) | Molecular
Formula ^a | IR (film) ^b v (cm ⁻¹) | 1 H-NMR (CDCl ₃)
δ , J (Hz) | 13 C-NMR (CDCl ₃) δ , J (Hz) | |-----------------|-----------------|---|---|--|---| | 3 | 78 | C ₂₁ H ₁₉ BrF ₃ P
(439.3) | 3055–2856, 1588,
1487, 1439, 1414–
1002 | 2.32-2.57 (m, 2H, CH ₂); 3.76-4.08 (m, 2H, CH ₂); 7.25-7.89 (m, 15 H, H _{arom}) | 15.8 (d, ${}^{1}J_{C-P} = 58$, CH ₂ P); 26.1 (q, ${}^{2}J_{C-F} = 32$, CH ₂ CF ₃); 115.3 (d, ${}^{1}J_{C-P} = 87$, C-1 _{arom}); 124.5 (dq, ${}^{1}J_{C-F} = 277$, ${}^{3}J_{C-P} = 16$, CF ₃); 129.5 (d, ${}^{3}J_{C-P} = 12$, C-3 _{arom}); 132.3 (d, ${}^{2}J_{C-P} = 10$, C-2 _{arom}); 134.3 (d, ${}^{4}J_{C-P} = 2$, C-4 _{arom}) | | 6a | 40° | C ₈ H ₁₃ F ₃ (166.2) | | 0.96, 0.99 (2t, 3H each, $J = 7.5$, CH ₃); 2.04 (q, 2H each, $J = 7.6$, CH ₂ CH ₃); 2.79 (dq, 2H, $J = 11.0$, $J = 7.3$, CH ₂ CF ₃); 5.08 (t, 1H, $J = 7.3$, CH) | 12.5, 12.8 (2s, CH ₂); 23.4, 29.1 (2s, CH ₂); 32.6 (q, ${}^{2}J_{C-F} = 29$, $CH_{2}CF_{3}$); 109.9 (q, ${}^{3}J_{C-F} = 3$, CH); 126.5 (q, ${}^{1}J_{C-F} = 276$, CF ₃); 149.7 (s, CH= C) | | 6b | 50 | C ₁₂ H ₂₁ F ₃ (222.3) | 2960–2863, 1667,
1468–1057 | 0.79-0.96 (m, 6H, CH ₃); 1.11-
1.46 (m, 8H, CH ₂); 1.96-2.01 (m,
4H, CH ₂); 2.79 (qd, 2H, J = 11.0,
J = 7.3, CH ₂ CF ₃); 5.12 (t, 1H, J = 7.2, CH) | 13.9 (s, CH ₃); 22.4, 22.8 (2s, CH ₂ CH ₃); 30.1, 30.2, 30.4 (3s, CH ₂), 32.8 (q, $^2J_{C-F} = 29$, CH ₂ CF ₃); 36.6 (s, CH ₂); 111.6 (q, $^3J_{C-F} = 3$, CH), 126.5 (q, $^1J_{C-F} = 276$, CF ₃); 146.9 (s, CH=C) | | 6с | 73 | C ₁₆ H ₁₃ F ₃ (262.3) | 3082–3030, 2925,
1601, 1577, 1497–
1001 | 2.98 (qd, 2 H, $J = 10.7$, $J = 7.4$, CH ₂); 6.16 (t, 1 H, $J = 7.4$, CH); 7.08-7.59 (m, 10 H, H _{arom}) | 34.8 (q, ${}^{2}J_{C-F} = 30$, CH ₂); 116.0 (q, ${}^{3}J_{C-F} = 3$, CH); 126.2 (q, ${}^{1}J_{C-F} = 277$, CF ₃); 127.4, 127.7, 127.9, 128.3, 128.5, 129.5 (6s, CH _{arom}); 138.8, 141.4, 147.8 (3s, C _{arom} and CH= \mathbb{C}) | | 6d | 40 ^d | C ₆ H ₇ Cl ₂ F ₃ (207.0) | 2963, 1442, 1064 | 2.97 (qd, 2H, <i>J</i> = 10.4, <i>J</i> = 7.4,
CH ₂ CF ₃); 4.17, 4.20 (2s, 2H
each, CH ₂ Cl); 5.76 (t, 1H, <i>J</i>
= 7.4, CH) | 32.9 (q, ${}^{2}J_{C-F} = 31$, $CH_{2}-CF_{3}$); 38.1, 46.2 (2s, $CH_{2}CI$); 122.4 (q, ${}^{3}J_{C-F} = 3$, CH); 125.3 (q, ${}^{1}J_{C-F} = 277$, CF_{3}), 138.7 (s, $CH = C$) | | 6e ^d | 8 | C ₆ H ₇ BrC ¹ F ₃ (251.5) | 2961–2859, 1726,
1441–1060 | 2.96 (qd, 2H, $J = 10.4$, $J = 7.3$, CH ₂ CF ₃); 4.05, 4.21 (2s, 2H each, CH ₂ Br and CH ₂ Cl); 5.74 (t, 1H, $J = 7.3$, CH) | 25.2 (s, CH ₂ Br); 33.0 (q, ${}^2J_{C-F} = 31$, $\underline{C}H_2 - CF_3$); 46.4 (s, CH ₂ Cl); 122.3 (q, ${}^3J_{C-F} = 4$, CH); 125.3 (q, ${}^1J_{C-F} = 277$, CF ₃); 138.9 (s, CH = \underline{C}) | | 6f | 69 | C ₉ H ₁₃ F ₃ (178.2) | 2935, 2858, 1674,
1449–985 | 1.52-1.65 (m, 6H, CH ₂); 2.11-
2.17 (m, 4H, CH ₂); 2.77 (qd, 2H,
<i>J</i> = 11.0, <i>J</i> = 7.4, CH ₂ CF ₃); 5.07 (tm, 1H, <i>J</i> = 7.4, <i>J</i> = 1.1, CH) | 26.7, 27.6, 28.5, 29.0 (4s, CH ₂); 32.1 (q, ${}^{2}J_{C-F}$ = 29, CH ₂ CF ₃); 37.2 (s, CH ₂); 108.6 (q, ${}^{3}J_{C-F}$ = 3, CH); 126.6 (q, ${}^{1}J_{C-F}$ = 276, CF ₃); 146.9 (s, CH = C) | | 6g | 74 | C ₈ H ₁₁ F ₃ O
(180.2) | 2962–2851, 1734,
1679, 1470–994 | 2.23 (t, 2H each, $J = 5.4$, CH ₂);
2.78 (qd, 2H, $J = 10.8$, $J = 7.5$,
CH ₂ CF ₃); 3.63, 3.66 (2t, 2H
each, $J = 3.6$, CH ₂ O); 5.18 (tm,
1H, $J = 7.5$, $J = 1.1$, CH) | 29.8 (s, CH ₂); 31.8 (q, ${}^2J_{C-F} = 30$, $QH_2 - CF_3$), 36.8 (s, CH ₂); 68.3, 69.2 (2s, CH ₂ O); 110.4 (q, ${}^3J_{C-F} = 3$, CH); 126.1 (q, ${}^1J_{C-F} = 277$, CF ₃); 141.7 (s, CH= Q) | | 6h | 76° | C ₁₁ H ₁₈ NF ₃ (221.3) | 2961–2876, 2804–
2778, 1722, 1707,
1679, 1470–991 | 0.84 (t, 3 H, $J = 7.2$, CH ₃); 1.27–1.68 (m, 2 H, CH ₂ CH ₃); 2.12–2.48 (m, 10 H, CH ₂); 2.74 (qd, 2 H, $J = 10.9$, $J = 7.5$, CH ₂ CF ₃); 5.10 (t, 1 H, $J = 7.5$, CH) | 11.9 (s, CH ₃); 20.2, 28.4 (2s, CH ₂); 32.0 (q, ${}^{2}J_{C-F}$ = 30, CH ₂ CF ₃); 35.9, 54.2, 54.9, 60.4 (4s, CH ₂); 109.5 (s, CH); 126.2 (q, ${}^{1}J_{C-F}$ = 276, CF ₃); 143.5 (s, CH=C) | ^a Satisfactory microanalyses obtained: $C\pm0.37$, $H\pm0.29$, N-0.25, Cl+0.26, Br+0.20 and $F\pm0.33$, except F values for **6c**, **6d**, **6g** and **6h**: -0.69. For **6a** and **6e**, no elemental analyses were performed. All MS spectra of the alkenes **6** show a M^+ peak. ^b 3, (KBr). If the eluent is not evaporated very cautiously under slightly reduced pressure, major amounts of 6a are lost. ^d Some of the allylic chlorine atoms are substituted by bromide ions, derived from phosphonium salt 3 to give a mixture of E-,Z-6e (R¹ = CH₂Cl, R² = CH₂Br). ^e The concentrated extracts of column chromatography are condensed in a trap to remove a white solid. to the "salt-free" method. Sodium hydride is the only exception. It is able to produce 4, but very slowly and in moderate amounts. This new method of obtaining olefins 6 is not limited by the reactivity of ylid 4, but by the lack of stereochemical control when aldehydes are used. Mass spectra were obtained using a Varian MAT 711 spectrometer, EI, 70eV at 200 °C. IR spectra were obtained using a Perkin-Elmer 398 (for 3) and a Bruker IFS 48 spectrometer (for 6). ¹H-NMR spectra were obtained using a Bruker WH 90 spectrometer (90 MHz). ¹³C- and ¹⁹F-NMR spectra were obtained using a Bruker WM 400 spectrometer (100 MHz and 376.91 MHz respectively). ³¹P-NMR were obtained using a Bruker WP 80 spectrometer (32.39 MHz). The ³¹P chemical shifts are reported in ppm downfield from 85% H₃PO₄, the ¹⁹F chemical shifts upfield from CCl₃F. Melting points and boiling points are uncorrected. ## 1,1,1-Trifluoroisopropyl Bromide (1): A solution of triphenylphosphine (29 g, 110.6 mmol) in toluene (80 mL) is added dropwise to a stirred solution of trifluoro-2-propanol (8 mL, 89.8 mmol) and CBr₄ (47 g, 141.7 mmol) in toluene (150 mL) under N₂. When the addition is completed, the reaction mixture is stirred for 1 h, and then distilled, to yield the product as a solution in toluene (92% conversion). The distillate is neutralized with NaHCO₃ and redistilled through a Spaltrohr column to give pure 1; yield 13.5 g (85%); bp 48.4-49.0. Spectroscopic data are in agreement with those of an authentic sample.⁹ ## 3,3,3-Trifluoropropyltriphenylphosphonium Bromide (3): Triphenylphosphine (7 g, 26.7 mmol) and 1,1,1-trifluoroisopropyl bromide (1; 2.8 mL, 25.8 mmol), sealed in a heavy wall glass tube in vacuo, are heated at 200 °C for 20 h. If the contents remain viscous, instead of solid, the glass tube is heated once more to 200 °C for the same period. The white solid, pounded to powder, washed twice with toluene to dissolve unreacted triphenylphosphine, and then with Et₂O. The solid is dried in vacuo (0.1 mbar, 25 °C) to give spectroscopically pure 3; yield 8.8 g (78 %); mp 178–182 °C (dec.). ``` ³¹P-NMR (CHCl₃/85% H₃PO_{4ext}): \delta = 25.2. ``` ¹⁹F-NMR (CDCl₃/CCl₃F): $\delta = -66.29$ (t, ${}^{3}J_{\text{F-H}} = 10.0$, CF₃). ## Alkenes 6; General Procedure: To a stirred suspension of fine pulverized 3,3,3-trifluoropropyltriphenyl-phosphonium bromide (3) (1 equiv) in Et_2O (7 mL/mmol) under N_2 is added dropwise BuLi (1 equiv, 1.6 M solution in *n*-hexane). The generation of the reddish-vellow ylid 4 is generally completed after 20-30 min ``` ³¹P-NMR (C_7H_8/85\% H_3PO_{4ext}): \delta = 17.3. ``` ¹⁹F-NMR [($$C_2H_5$$)₂O/ C_6D_{6ext} /CCl₃F_{ext}): $\delta = -68.38$ (t, $^3J_{F-H} = 11.3$, CF₃). When the formation of 4 is completed, ketone 5 (1 equiv, 5c and 5d as a saturated solution in Et_2O) is added dropwise. The colour disappears immediately, and after 12 h stirring at room temperature water is added. The mixture is stirred for another 30 min, the layers are separated, the aqueous phase is extracted twice with Et_2O , and the combined ethereal solution is dried (molecular sieve 4A) and concentrated at r.t. under aspirator pressure using a rotary evaporator. The crude product is purified by chromatography on silica gel eluting with: CCl_4 (for 6a-f), $CHCl_3$ (for 6g), or $CHCl_3$ /acetone 1:1 (for 6h). Received: 2 March 1989; revised: 22 May 1989 - (1) Hanack, M., Korhummel, C. Synthesis 1987, 944. - Kobayashi, Y., Yamamoto, K., Kumadaki, I. Tetrahedron Lett. 1979, 4071. - (3) Burdon, J., Coe, P.L., Marsh, C.R., Tatlow, J.C. J. Chem. Soc. Chem. Commun. 1967, 1259. - (4) Burdon, J., Coe, P.L., Marsh, C.R., Tatlow, J.C. J. Chem. Soc. Perkin Trans. 1 1972, 639. - Matsubara, S., Mitani, M., Utimoto, K. Tetrahedron Lett. 1987, 5857. - (6) Davies, T., Haszeldine, R. N., Tipping, A. E. J. Chem. Soc. Perkin Trans. 1 1980, 927. - (7) Fagerlund, U. H. M., Idler, D. R. J. Am. Chem. Soc. 1957, 79, 6473. - (8) Isler, O., Gutmann, H., Montavon, M., Rüegg, R., Ryser, G., Zeller, P. Helv. Chim. Acta 1957, 40, 1242. - (9) Hanack, M., Ullmann, J. J. Org. Chem. 1989, 54, 1432.