COMMUNICATION

REACTION OF NICKEL(II) β -DIKETONATES WITH HYDROXYLAMINE. SYNTHESIS OF NICKEL(II) COMPLEXES OF MONO-OXIMES OF β -DIKETONES (β -KETOOXIMES)

RONALD BENNETT, CHRISTOS BOLOS,* JOHN CHARALAMBOUS† and JASBIR S. LOTA

Department of Applied Chemistry and Life Sciences, The Polytechnic of North London, Holloway Road, London N7 8DB, U.K.

(Received 12 April 1988; accepted 22 July 1988)

Abstract—Nickel(II) acetylacetonate or benzoylacetonate on treatment with hydroxylamine at 0° C give adducts of the type Ni(β -diket)₂(NH₂OH)₂ which on heating in refluxing ethanol afford β -ketooximato complexes of the type Ni(β -ketox)₂(H₂O)₂.

Apart from a report describing briefly the preparation of the nickel(II) and copper(II) bischelates derived from benzoylacetaldehyde mono-oxime (1; $R^1 = H$, $R^2 = Ph)^1$ no studies of the synthesis, properties and structure of complexes derived from mono-oximes of β -diketones (1a) (henceforth referred to as β -ketooximes and abbreviated as β ketoxH) have been reported. This contrasts with the very extensive interest shown in complexes derived from related ligands e.g. β -diketones and β -ketoimines.² As part of our interest in oximic complexes³ we have investigated the reaction of hydroxylamine with metal β -diketonates and the potential of this reaction for the synthesis of complexes of β -ketooximes. Here we report briefly on reactions involving nickel(II) β -diketonates and on the successful synthesis of nickel(II) β -ketooximates. The synthesis of complexes of β -ketooximes by the direct reaction of β -ketooximes with metal salts is hindered because β -ketooximes (a) exist entirely or predominantly in the cyclic isoxazoline form (1b), 4 and (b) readily dehydrate to give isoxazoles.5

$$\begin{array}{c}
R^1 \\
N \\
OH \\
R^2
\end{array}$$
(1a)
$$\begin{array}{c}
R^1 \\
N \\
OH \\
\end{array}$$
(1b)

Reaction of hydroxylamine with a suspension of nickel(II) complexes of acetylacetone and benzoylacetone in ethanol at ca 0°C gave hydroxylamine adducts of the type Ni(β -diket)₂(NH₂OH)₂.

When suspensions of the adducts Ni(acac)₂ (NH₂OH)₂ and Ni(bzac)₂(NH₂OH)₂ in ethanol were heated under reflux, condensation of hydroxylamine with the keto group occurred resulting in the formation of the nickel(II) β -ketooximato chelates Ni(acacm)₂(H₂O)₂ (acacmH = 1; R¹ = R² = Me) and Ni(bzacm)₂(H₂O)₂ (bzacmH = 1; R¹ = Me, R² = Ph), respectively.

The formulation of the β -ketooximato chelates is indicated by their elemental analysis and mass spectra which exhibit intense $[Ni(\beta-\text{ketox})_2]^+$ ions. Furthermore, the complex $Ni(bzacm)_2(H_2O)_2$ on treatment with dilute hydrochloric acid afforded ca 2 moles of 3-methyl-5-phenylisoxazole per mole of the complex. The nature of the isooxazole indicates

^{*}On leave from the University of Thessaloniki, Greece.

[†] Author to whom correspondence should be addressed.

Table 1. Yields and analytical data for the new complexes

	Yield (%)	%C	%Н	%N	%Ni
Ni(acac) ₂ (NH ₂ OH) ₂	40	37.6	6.5	9.0	18.2
		(37.2)	(6.2)	(8.7)	(18.2)
Ni(bzac) ₂ (NH ₂ OH) ₂	75	53.4	5.7	6.2	13.1
		(53.5)	(5.8)	(6.2)	(13.1)
$Ni(acacM)_2(H_2O)_2$	50	37.0	6.4	9.0	17.9
		(37.2)	(6.2)	(8.7)	(18.2)
Ni(bzacM) ₂ (H ₂ O) ₂	55	53.2	6.1	6.4	12.9
		(53.5)	(5.8)	(6.2)	(13.1)

that the condensation occurred at the carbonyl group which is adjacent to the methyl group.

EXPERIMENTAL

Yields, analytical and other data are given in Table 1.

Action of hydroxylamine on $Ni(\beta-diket)_2$

Hydroxylamine (25 mmol) and Ni(β -diket)₂ (10 mmol) were stirred in anhydrous ethanol at 0°C. After 24 h Ni(β -diket)₂(NH₂OH)₂ was filtered off, washed with ethanol and dried *in vacuo*.

Preparation of Ni(β -ketox)₂(H₂O)₂

A suspension of Ni(β -diket)₂(NH₂OH)₂ (5 mmol) in anhydrous ethanol (50 cm³) was heated under reflux for 8 h. Filtration gave Ni(β -ketox)₂(H₂O)₂ which was washed with ethanol and dried *in vacuo*. Hydroxylamine (25 mmol) and Ni(β -diket)₂ (10 mmol) were stirred in anhydrous ethanol at 0°C. After 24 h Ni(β -diket)₂(NH₂OH)₂ was filtered off, washed with ethanol and dried *in vacuo*.

Acidolysis of Ni(bzacm)2(H2O)2

Ni(bzacm)₂(H₂O)₂ (1.0 g, 2.2 mmol) was stirred with hydrochloric acid (15%, 10 cm³) for 1 h. The resulting mixture was diluted with water, neutralized and extracted with diethyl ether. After drying the extract (MgSO₄), removal of the diethyl ether gave 3-methyl-5-phenyl-isoxazole (0.5 g, 85%), m.p. 65–67°C (ref. 6, 67°C). (Found: C, 75.5; H, 5.8; N, 8.8. Calc. for $C_{10}H_9NO: C$, 75.7; H, 5.7; N, 8.8%); m/z 159 (M⁺).

REFERENCES

- 1. R. Uhlemann, J. Prakt. Chem. 1963, 21, 277.
- 2. F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, pp. 139 and 166. Wiley-Interscience, New York (1980).
- J. Charalambous, K. Henrick, Y. Musa, R. G. Rees and R. N. Whiteley, *Polyhedron* 1987, 6, 1509 and refs therein.
- 4. J. Castells and A. Colombo, Chem. Comm. 1969, 1062.
- 5. R. Escale, F. Petrus and J. Verducci, Bull. Soc. Chim. France 1974, 725.
- G. Bianchi and P. Grunanger, Tetrahedron 1965, 21, 817.