

Carbohydrate Research 307 (1998) 243-251

CARBOHYDRATE RESEARCH

Synthesis of some divalent *O*- and *S*-glycosides of galabiose and globotriose

Henrik C. Hansen, Göran Magnusson*

Organic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden

Received 2 October 1997; accepted 20 December 1997

Abstract

Derivatives of galabiose (α -D-Galp-(1 \rightarrow 4)-D-Galp) and globotriose (a-D-Galp-(1 \rightarrow 4)- β -D-Galp-(1 \rightarrow 4)-D-Glp) were coupled to various 1,2- and 1,3-dihydroxymethyl- and dimercaptomethylbenzenes to give the corresponding divalent glycosides, potentially useful as inhibitors of bacterial adhesion. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: Divalent galabiosides; Divalent globotriosides, synthesis of

1. Introduction

Glycolipids containing the disaccharide moiety galabiose [Gal(α 1-4)Gal] function as receptors for pathogen adhesion to cells, which constitutes the first step of an infective process [1]. The biological background to these phenomena has been summarized in several publications from this laboratory [2]. Blocking of the carbohydrate–protein recognition by receptor analogs is a potentially useful approach towards novel antibacterial agents, similar to the recent development of anti-adhesive antiviral compounds [3].

Most carbohydrate-protein interactions are rather weak and *milli*molar concentrations of an inhibitory saccharide derivative are often required for complete inhibition. Weak interactions can be compensated by the use of multivalent inhibitors, as demonstrated by several research groups [4]. We described recently that *nano*molar concentrations of glycodendrimers carrying two to four galabiosyl residues can inhibit hemagglutination between the pig pathogen *Streptococcus suis* and red blood cells [5]. The inhibitory efficiency of the glycodendrimers depends not only on the number of saccharides present in the molecule, but also on the mode of presentation of the binding epitopes. In line with an attempt to obtain additional information about the binding phenomena, we now report the synthesis of a number of novel divalent glycosides carrying the galabiose and globotriose saccharide moieties.

2. Results and discussion

A series of commercially available divalent benzene derivatives were chosen as scaffolds for the construction of the divalent glycosides. Thus, 1,2-dimercaptomethylbenzene (Scheme 1) was glycosylated with the known [5] galabiose imidate **1**

^{*} Corresponding author. Fax: 46 46 222 8209.

^{0008-6215/98/\$19.00 © 1998} Elsevier Science Ltd. All rights reserved *PII* \$0008-6215(98)00021-4

Scheme 1. (a) $BF_3 \cdot OEt_2$, CH_2Cl_2 , $\sim 22 \circ C$, 45 min; (b) MeONa, MeOH, $\sim 22 \circ C$, 6 h; (c) CF_3SO_3Ag , CH_2Cl_2 , $\sim 22 \circ C$, 10 h; (d) Cs_2CO_3 , DMF, $\sim 22 \circ C$, 10 h.

(2.5 equiv), using boron trifluoride etherate as promoter [6], furnishing the thiogalabioside 2 (66%). De-O-acetylation of 2 with methanolic sodium methoxide gave the divalent glycoside 3 (97%).

Glycosylation of 1,3-dihydroxymethylbenzene with 1 (2.8 equiv) using silver trifluoromethanesulfonate [7] as promoter, gave 4 (58%), contaminated with 3–5% of an unknown compound. De-O-acetylation as above gave the divalent glycoside 5 (87%) as a pure compound. Attempted glycosylation with boron trifluoride etherate as promoter was unsuccessful, leading mainly to a monoglycosylated product where the benzylic hydroxymethyl group was acetylated. Similarly, when the benzoyl-protected trichloroacetimidate analog of 1 was used instead of 1, the product was monoglycosylated (the benzylic hydroxymethyl group was unprotected). Addition of a second portion of the imidate did not lead to a second glycosylation.

Alkylation of 1,3-dimercaptomethylbenzene with the known [8] 2-bromoethyl galabioside 6 (2.4 equiv) in the presence of cesium carbonate [9] furnished 7

(90%). De-O-acetylation of 7 gave the divalent glycoside 8 (93%).

The thioglycosides 10 and 14 (Scheme 2) were designed for use as negative controls of multivalency in future biological assays, since each compound carries only one galabiosyl residue. Glycosylation of benzylthiol with the trichloroacetimidate 1 (1.7 equiv.), using boron trifluoride etherate as promoter [6], gave 9 (88%), and de-Oacetylation yielded the thiogalabioside 10 (93%). Boron trifluoride etherate-induced glycosylation [10] of 1,3-dimercaptomethylbenzene with the per-O-acetylated lactose 11 (1.1 equiv) gave the monoglycosylated compound 12 (79%). Treatment of 12 with 1 (1.2 equiv) as above furnished 13, contaminated by 5% of an unknown compound. De-O-acetylation of the mixture permitted the isolation of pure 14 (57% overall yield from 12).

The *E. coli* proteins $PapG_{J96}$ and $PapG_{AD110}$ use galabiose and globotriose, respectively, for optimal recognition [11,12], and we therefore synthesized the globotriosides **23** and **25** (Scheme 3). The known [11] 2-(trimethylsilyl)ethyl (TMSEt) globotrioside **15** was *O*-acetylated with acetic anhydride in pyridine to yield the protected glycoside 16 (96%). Removal of the TMSEt group of 16 with trifluoroacetic acid in dichloromethane [13] gave the hemiacetal 17 [14] (90%), and 17 was transformed into the trichloroacetimidate **18** [14] (69%, α / β 10:1) by treatment [6] with trichloroacetonitrile and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Treatment of 18 with 2-bromoethanol and boron trifluoride etherate [6] gave the known [15] 2bromoethyl globotrioside 19 (58%). The bromine atom of 19 was substituted by an azido group, using sodium azide in N,N-dimethylformamide, to furnish the azido compound 20 (93%). De-O-acetvlation of 20 with methanolic sodium methoxide, followed by catalytic hydrogenation of the azido group, gave the primary amine 21 (72%).

The known [5] carboxylic acid 22 was treated with *N*-hydroxysuccinimide to give the corresponding crude NHS-ester, which was used for *N*acylation of the amine 21 to furnish the globotriosyl amide 23 (69%). Similarly, the NHS-ester of the known [5] bis-carboxylic acid 24 acylated the amine 21 to yield the divalent glycoside 25 (69%).

The inhibitory efficiencies of compounds 3, 5, 8, 10, 14, 21, 23, and 25 against the adhesion of

Scheme 2. (a) BF₃·OEt₂, CH₂Cl₂, \sim 22 °C, 1 h; (b) MeONa, MeOH, \sim 22 °C.

microbes and microbial proteins to natural glycolipids of the globo series, will be reported in due course.

3. Experimental

General methods.—See previous paper [2]. Compounds **1** [5], **6** [16], **11** [17], **15** [11], **22** [5], and **24** [5] were synthesized as reported in the literature.

Scheme 3. (a) Ac₂O, pyridine, ~22 °C, 12 h; (b) CF₃COOH, CH₂Cl₂, ~22 °C, 80 min; (c) Cl₃CCN, DBU, CH₂Cl₂, 0 °C, 1 h; (d) HOCH₂CH₂Br, BF₃·OEt₂, CH₂Cl₂, 22 °C, 40 min; (e) NaN₃, DMF, 15-crown-5, 75 °C, 24 h; (f) ⁱMeONa, MeOH; ⁱⁱH₂, Pd-C, EtOH, HCl, H₂O, ~22 °C, 2 h; (g) ⁱ**22**, NHS, EDC, DMF, ~22 °C, 18 h, chromatography; ⁱⁱ**21**, DMF, pyridine, 65 °C, 16 h.

Acetylated Bis-thiogalabioside 2.—To a solution of 1 (115 mg, 0.147 mmol) and 1,2-dimercaptomethylbenzene (10 mg, 0.059 mmol) in CH₂Cl₂ $(2 \,\mathrm{mL})$ was added BF₃·OEt₂ (0.037 mL, 0.294 mmol) under N₂. After 45 min at \sim 22 °C, sat aq NaHCO₃ (2mL) and CH_2Cl_2 (15mL) were added. The organic layer was dried and concentrated, and the residue was chromatographed (2:1 EtOAc-heptane) to give 2 (54 mg, 66%); $[\alpha]^{21}$ $+5^{\circ}$ (c 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 7.21–7.33 (m, 4 H, Ph), 5.57 (bd, 2 H, J 2.3 Hz, H-4'), 5.38 (dd, 2 H, J 3.4, 11.0 Hz, H-3'), 5.22 (t, 2 H, J 10.2 Hz, H-2), 5.20 (dd, 2 H, J 3.6, 11.0 Hz, H-2'), 5.01 (d, 2 H, J 3.7 Hz, H-1'), 4.80 (dd, 2 H, J 2.7, 10.4 Hz, H-3), 4.49 (bt, 2 H, J 7.4 Hz, H-5'), 4.45 (dd, 2 H, J 4.4, 11.3 Hz, H-6), 4.30 (d, 2 H, J 9.9 Hz, H-1), 3.74 (bt, 2 H, J 6.4 Hz, H-5), 2.13, 2.12, 2.06, 2.03, 1.99, and 1.98 (6 s, 42 H, Ac); ¹³C NMR (CDCl₃): δ 171.06, 171.0, 170.92, 170.88, 170.6, 170.2, 169.6, 135.8, 131.5, 128.1, 99.6, 83.0, 77.7, 76.2, 74.2, 69.0, 68.3, 67.8, 67.6, 67.56, 62.8, 61.0, 31.6, 21.3, 21.26, 21.2, 21.1; HRMS calcd for $C_{60}H_{78}O_{34}S_2Na$ (M + Na): 1429.3713, found: 1429.3690.

Bis-thiogalabioside 3.—Compound 2 was dissolved in dry MeOH and a catalytic amount of MeONa was added. After 6h, the mixture was neutralized with Duolite C436 (H⁺) resin, and concentrated. The residue was chromatographed $(5:5:1 \text{ CH}_2\text{Cl}_2\text{-MeOH}-\text{H}_2\text{O})$ to give 3 (22 mg,97%); $[\alpha]^{22}_{D} - 32^{\circ}$ (c 1.8, H₂O); ¹H NMR (D₂O): δ 7.17–7.32 (m, 4 H, Ph), 4.82 (d, 2 H, J 3.9 Hz, H-1'), 4.22 (d, 2 H, J 9.2 Hz, H-1), 4.21 (bt, 2 H, J 6.1 Hz, H-5'), 4.06 (d, 2 H, J 13.5 Hz, PhCH₂S), 4.01 (d, 2 H, J 13.5 Hz, PhCH₂S), 3.92 (d, 2 H, J 2.6 Hz, H-4), 3.89 (d, 2 H, J 2.6 Hz, H-4'), 3.78 (dd, 2 H, J 3.2, 10.5 Hz, H-3'), 3.40–3.76 (m, 16 H, H-2,3,5,6,2',6'); ${}^{13}C$ NMR (D₂O): δ 136.4, 131.3, 128.3, 100.7, 85.1, 79.1, 77.8, 74.1, 71.1, 70.0, 69.5, 69.3, 69.1, 60.8, 60.3, 31.5; HRMS calcd for C₃₂H₅₁O₂₀S₂ (M+H): 819.2415, found: 819.2405.

Acetylated Bis-galabioside 4.—To a solution of 1,3-dihydroxymethylbenzene (5 mg, 0.036 mmol), 1 (76 mg, 0.097 mmol) and CF₃SO₃Ag (25 mg, 0.097 mmol) was added dry CH₂Cl₂ (2 mL). The mixture was stirred under N₂ at ~22 °C for 10 h. Additional CF₃SO₃Ag (25 mg, 0.097 mmol) and 1 (15 mg, 0.02 mmol) were added. After 12 h, the mixture was filtered through Celite and concentrated. The residue was chromatographed (2:1 \rightarrow 3:1 \rightarrow 5:1 EtOAc-heptane) to give 4 (29 mg, 58%), contaminated by 3–5% of a co-eluting

compound. ¹H NMR (CDCl₃): δ 7.21-7.35 (m, 4 H, Ph), 5.59 (bd, 2 H, J 3.3 Hz, H-4'), 5.42 (dd, 2 H, J 3.3, 11.1 Hz, H-3'), 5.26 (dd, 2 H, J 7.8, 10.7 Hz, H-2), 5.22 (dd, 2 H, J 3.5, 11.1 Hz, H-2'), 5.03 (d, 2 H, J 3.6 Hz, H-1'), 4.93 (d, 2 H, J 12.4 Hz, PhCH₂O), 4.83 (dd, 2 H, J 2.8, 10.8 Hz, H-3), 4.64 (d, 2 H, J 12.4 Hz, PhCH₂O), 4.56 (m, 2 H, H-5'), 4.55 (d, 2 H, J 7.8 Hz, H-1), 4.49 (dd, 2 H, J 6.7, 11.2 Hz, H-6a), 4.05–4.24 (m, 8 H, H-6b,4,6'), 3.80 (bt, 2 H, J 6.8 Hz, H-5), 2.14, 2.12, 2.10, 2.08, 2.05, 2.02, and 1.99 (7 s, 42 H, Ac); ¹³C NMR (CDCl₃): δ 171.1, 171.0, 170.9, 170.86, 170.6, 170.2, 169.5, 137.5, 129.1, 127.8, 127.4, 100.2, 99.8, 77.5, 73.1, 72.4, 70.8, 69.2, 69.0, 68.3, 67.8, 67.5, 62.4, 61.0, 21.3, 21.2, 21.14, 21.1, 21.06; HRMS calcd for $C_{60}H_{78}O_{36}Na$ (M+Na): 1397.4170, found: 1397.4188.

Bis-galabioside 5.—Compound 4 $(5.5 \,\mathrm{mg})$ 0.004 mmol) was dissolved in dry MeOH (2 mL) and a catalytic amount of MeONa was added. After 12h, the mixture was neutralized with Duolite C436 (H^+) resin, and concentrated. The residue was chromatographed (Varian Mega Bond Elut C18; $1:0\rightarrow 9:1\rightarrow 8:2\rightarrow 7:3\rightarrow 6:4$ H₂O–MeOH, 5 mL each). The purified product was chromatographed (8:5:1 CH₂Cl₂-MeOH-H₂O) to give 5 $(2.7 \text{ mg}, 87\%); [\alpha]^{22}_{D} + 56^{\circ} (c \ 0.4, \text{H}_2\text{O}); ^{1}\text{H NMR}$ (D₂O): δ 7.34–7.46 (m, 4 H, Ph), 4.88 (d, 2 H, J 11.3 Hz, Ph*CH*₂O), 4.87 (d, 2 H, J 4.0 Hz, H-1'), 4.7 (2 H, PhCH₂O, disturbed by the HDO signal), 4.45 (d, 2 H, J 7.7 Hz, H-1), 4.28 (bt, 2 H, J 6.4 Hz, H-5'), 3.94 (m, 4 H, H-4,4'), 3.57–3.86 (m, 16 H, including H-3,2',3',6'), 3.49 (dd, 2 H, J 7.8, 10.0 Hz, H-2); ¹³C NMR (CDCl₃): δ 137.5, 129.2, 129.0, 102.3, 100.6, 77.5, 75.5, 72.8, 71.6, 71.3, 71.2, 69.6, 69.4, 69.1, 60.9, 60.5; HRMS calcd for $C_{32}H_{50}O_{22}Na$ (M + Na): 809.2691, found: 809.2676.

Acetylated Bis-galabioside 7.—To a mixture of compound **6** (209.5 mg, 0.28 mmol), 1,3-mercaptomethylbenzene (0.018 mL, 0.118 mmol), and dry DMF (3 mL), was added Cs₂CO₃ (103 mg, 0.316 mmol). The mixture was stirred at ~22 °C for 10 h under N₂, and H₂O (10 mL) and CH₂Cl₂ (30 mL) were added. The organic layer was dried and concentrated and the residue was chromatographed (1:1 EtOAc-heptane) to give 7 (158 mg, 90%); $[\alpha]^{21}{}_{\rm D}$ +41° (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃): δ 7.16–7.30 (m, 4 H, Ph), 5.55 (bd, 2 H, J 2.3 Hz, H-4'), 5.37 (dd, 2 H, J 3.3, 11.0 Hz, H-3'), 5.19 (dd, 2 H, J 3.8, 11.0 Hz, H-2'), 5.17 (dd, 2 H, J 8.0, 11.1 Hz, H-2), 4.99 (d, 2 H, J 3.6 Hz, H-1'), 4.80 (dd, 2 H, J 2.6, 10.8 Hz, H-3), 4.51 (bt, 2 H, J 7.0 Hz, H-5'), 4.47 (d, 2 H, J 7.8 Hz, H-1), 4.43 (dd, 2 H, J 6.8, 11.3 Hz, H-6a), 4.04–4.20 (m, 8 H, including H-4,6b,6'), 3.94–4.04 (m, 2 Н, OCH₂CH₂S), 3.78 (bt, 2 H, J 6.4 Hz, H-5), 3.73 (s, 4 H, PhCH₂), 3.56-3.66 (m, 2 H, OCH₂CH₂S), 2.57-2.72 (m, 4 H, OCH₂CH₂S), 2.12, 2.09, 2.07, 2.04, 2.02, and 1.98 (6 s, 42 H, Ac); ¹³C NMR (CDCl₃): § 171.1, 171.0, 170.9, 170.85, 170.6, 170.2, 169.6, 139.1, 129.7, 129.1, 128.1, 101.6, 99.8, 73.1, 72.4, 69.6, 69.0, 68.3, 67.8, 67.5, 62.4, 60.9, 36.9, 31.2, 21.4, 21.2, 21.14, 21.09, 21.06; HRMS calcd for $C_{64}H_{86}O_{36}S_2Na$ (M + Na): 1517.4238, found: 1517.4243.

Bis-galabioside **8**.—Compound **7** (100 mg, 0.067 mmol) was dissolved in dry MeOH and a catalytic amount of 0.5 M MeONa was added. After 10 h, the mixture was neutralized with Duolite C436 (H⁺) resin and concentrated. The residue was chromatographed (10:5:1 CH₂Cl₂-MeOH-H₂O) to give 8 (56 mg, 93%); $[\alpha]^{21}_{D}$ +72° (c 0.7, D_2O); ¹H NMR (D_2O): δ 7.15–7.29 (m, 4 H, Ph), 4.84 (d, 2 H, J 3.9 Hz, H-1'), 4.26 (d, 2 H, J 7.8 Hz, H-1), 4.23 (bt, 2 H, J 6.7 Hz, H-5'), 3.88–3.92 (m, 4 H, H-4,4'), 3.52–3.87 (m, 24 H, including H-3,5,2',3' and OCH₂CH₂S), 3.41 (dd, 2 H, J 7.7, 10.2 Hz, H-2), 2.60 (dt, 4 H, J 0.9, 6.8 Hz, OCH₂CH₂S); ¹³C NMR (D₂O): δ 139.4, 129.8, 129.5, 128.2, 103.4, 100.6, 77.4, 75.3, 72.7, 71.23, 71.15, 69.5, 69.3, 69.2, 69.1, 60.9, 60.3, 35.5, 30.6; HRMS calcd for $C_{36}H_{58}O_{22}S_2Na$ (M+Na): 929.2759, found: 929.2763.

Benzyl (2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl-1-thio- β -D-galactopyranoside (9).—To a mixture of 1 (50 mg, 0.064 mmol), benzylthiol (0.007 mL, 0.06 mmol), and CH_2Cl_2 (2 mL), was added $BF_3 \cdot OEt_2$ (0.008 mL, 0.064 mmol) under N₂. After 1 h at \sim 22 °C, sat aq NaHCO₃ (10 mL) and CH_2Cl_2 (20 mL) were added. The organic layer was dried and concentrated, and the residue was chromatographed (2:1 EtOAc-heptane) to give 9 (38 mg, 88%); $[\alpha]^{21}_{D}$ $+36^{\circ}$ (c 1.4, CHCl₃); ¹H NMR (CDCl₃): δ 7.30– 7.37 (m, 5 H, Ph), 5.58 (bd, 1 H, J 3.3 Hz, H-4'), 5.40 (dd, 1 H, J 3.3, 11.0 Hz, H-3'), 5.29 (t, 1 H, J 10.1 Hz, H-2), 5.22 (dd, 1 H, J 3.7, 11.1 Hz, H-2'), 5.03 (d, 1 H, J 3.7 Hz, H-1'), 4.82 (dd, 1 H, J 2.7, 10.3 Hz, H-3), 4.50 (bt, 1 H, J 6.5 Hz, H-5'), 4.45 (dd, 1 H, J 7.1, 11.4 Hz, H-6a), 4.31 (d, 1 H, J 9.9 Hz, H-1), 4.06–4.20 (m, 4 H, H-4,6b,6'), 3.98 (d, 1 H, J 12.9 Hz, PhCH₂), 3.87 (d, 1 H, J 12.9 Hz, PhCH₂), 3.74 (bt, 1 H, J 6.5 Hz, H-5), 2.14, 2.12, 2.11, 2.08, 2.05, 2.02, and 2.00 (7 s, 21 H, Ac); ¹³C NMR (CDCl₃): δ 171.03, 171.0, 170.9, 170.6, 170.2, 169.7, 137.5, 129.5, 129.0, 127.7, 99.5, 82.8, 77.7, 76.3, 74.3, 68.9, 68.3, 67.8, 67.6, 67.5, 62.8, 61.0, 34.0, 21.4, 21.2, 21.16, 21.1, 21.07; HRMS calcd for C₃₃H₄₂O₁₇SNa (M+Na): 765.2040, found: 765.2040.

Benzyl (α-D-galactopyranosyl)- $(1\rightarrow 4)$ -1-thio-β-D-galactopyranoside (10).—Compound 9 (45 mg, 0.06 mmol) was dissolved in dry MeOH (3 mL) and a catalytic amount of 0.5 M MeONa was added. After 10 h, the mixture was neutralized with Duolite C436 (H⁺) resin and concentrated. The residue was chromatographed (10:5:1 CH₂Cl₂–MeOH– H₂O) to give 10 (25 mg, 93%); [α]²²_D + 7° (*c* 0.3, H₂O); ¹H NMR (D₂O): δ 7.17–7.35 (m, 5 H, Ph), 4.80 (d, 1 H, *J* 3.4 Hz, H-1'), 4.19 (d, 1 H, *J* 7.7 Hz, H-1), 4.14–4.25 (m, 1 H, H-5'); ¹³C NMR (D₂O): δ 138.4, 129.1, 127.7, 100.7, 84.9, 79.2, 77.9, 74.1, 71.1, 70.06, 69.5, 69.3, 69.1, 60.8, 60.4, 34.2; HRMS calcd for C₁₉H₂₈O₁₀SNa (M+Na): 471.1301, found: 471.1316.

(3-Mercaptomethyl)benzyl (2,3,4,6-tetra-O-acetyl-- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl-*1-thio*- β -D-glucopyranoside (12).—To a mixture of octaacetyl- β -lactose 11 [17] (87 mg, 0.128 mmol), 1,3-mercaptomethylbenzene (0.018 mL, 0.118 mmol), and CH_2Cl_2 (2 mL), was added $BF_3 \cdot OEt_2$ (0.074 mL, 0.587 mmol) under N₂. After 1 h at ~22°C, sat aq NaHCO₃ (2mL) and CH₂Cl₂ (10 mL) were added. The organic layer was dried and concentrated, and the residue was chromatographed (1:1 EtOAc-heptane) to give 12 (73 mg, 79%); $[\alpha]_{D}^{21} - 43^{\circ}$ (c 0.8, CHCl₃); ¹H NMR (CDCl₃): δ 7.14–7.30 (m, 4 H, Ph), 5.34 (d, 1 H, J 3.2 Hz, H-4'), 5.13 (t, 1 H, J 9.9 Hz, H-3), 5.09 (dd, 1 H, J 7.9, 10.4 Hz, H-2'), 4.97 (t, 1 H, J 9.9 Hz, H-2), 4.95 (dd, 1 H, J 3.4, 10.4 Hz, H-3'), 4.49 (m, 1 H, H-6a), 4.47 (d, 1 H, J 7.7 Hz, H-1'), 4.26 (d, 1 H, J 10.1 Hz, H-1), 4.03–4.16 (m, 3 H, H-6b,6'), 3.89 (d, 1 H, J 12.8 Hz, PhCH₂SC), 3.86 (bt, 1 H, J 6.7 Hz, H-5'), 3.74–3.82 (m, 2 H, H-4 and PhCH₂SC), 3.73 (d, 2 H, J 7.6 Hz, PhCH₂SH), 3.54 (ddd, 1 H, J 1.6, 5.4, 9.9 Hz, H-5), 2.15, 2.14, 2.05, 2.03, 2.01, and 1.96 (6 s, 21 H, Ac), 1.78 (t, 1 H, J 7.6 Hz, SH); ¹³C NMR (CDCl₃): δ 170.8, 170.6, 170.5, 170.11, 170.10, 169.5, 142.0, 137.7, 129.4, 129.2, 128.2, 127.6, 101.5, 82.0, 77.0, 76.7, 74.2, 71.4, 71.1, 70.6, 69.5, 67.0, 62.7, 61.2, 34.1, 29.2, 21.4, 21.2, 21.14, 21.1, 20.9; HRMS calcd for $C_{34}H_{44}O_{17}S_2Na$ (M + Na): 811.1918, found: 811.1918.

Acetylated thiolactosyl-thiogalabiosyl dimer (13).—To a mixture of compound 12 (40 mg, 0.051 mmol), compound 1 (47.5 mg, 0.061 mmol), and CH_2Cl_2 (2 mL), was added $BF_3 \cdot OEt_2$ (0.015 mL, 0.12 mmol) under N₂. After 1 h at $\sim 22 \,^{\circ}\text{C}$, sat aq NaHCO₃ (2 mL) and CH₂Cl₂ (15 mL) were added. The organic layer was dried and concentrated, and the residue was chromatographed (2:1 EtOAc-heptane) to give 13 contaminated with 5% of an unknown compound (54 mg). An analytical sample of 13 was obtained by rechromatography of crude 13; $[\alpha]^{21}_{D} - 14^{\circ}$ (c 0.3, CHCl₃); ¹H NMR (CDCl₃): δ 7.15–7.30 (m, 4 H, Ph), 5.58 (bd, 1 H, J 3.2 Hz, H-4[']_{gala}), 5.40 (dd, 1 H, J 3.3, 11.0 Hz, H-3[']_{gala}), 5.36 (bd, 1 H, J 3.3 Hz, H-4'_{lac}), 5.30 (t, 1 H, J 10.1 Hz, H-2_{gala}), 5.22 (dd, 1 H, J 3.6, 11.1 Hz, H-2′_{gala}), 5.16 (t, 1 H, J 9.2 Hz, $H-3_{lac}$), 5.11 (dd, 1 H, J 7.9, 10.4 Hz, $H-2'_{lac}$), 5.03 (d, 1 H, J 3.5 Hz, H-1[']_{gala}), 4.98 (t, 1 H, J 9.9 Hz, H-2_{lac}), 4.97 (dd, 1 H, J 3.4, 10.4 Hz, H-3'_{lac}), 4.85 (dd, 1 H, J 2.7, 10.4 Hz, H-3_{gala}), 4.51 (m, 1 H, H-5'_{gala}), 4.49 (d, 1 H, J 7.9 Hz, H-1'_{lac}), 4.45 (dd, 1 H, J 7.0, 11.4 Hz, H-6a_{lac}), 4.35 (d, 1 H, J 10.1 Hz, H-1_{lac}), 4.34 (d, 1 H, J 9.8 Hz, H-1_{gala}), 4.05–4.20 (m, 7 H, including H-4_{gala}, H-6b_{lac}), 3.75–4.00 (m, 7 H, including H-4_{lac}), 3.58 (m, 1 H, H-5_{lac}), 2.165, 2.160, 2.15, 2.13, 2.12, 2.09, 2.07, 2.065, 2.05, 2.045, 2.035, 2.030, 2.00, and 1.98 (14 s, 42 H, Ac); ¹³C NMR (CDCl₃): δ 171.0, 170.9, 170.8, 170.6, 170.2, 169.5, 138.0, 137.7, 130.1, 129.2, 128.7, 128.4, 101.6, 99.6, 82.9, 82.4, 76.7, 76.3, 74.2, 71.4, 71.1, 70.6, 69.5, 68.9, 68.3, 67.7, 67.6, 67.5, 67.0, 62.6, 61.2, 61.0, 34.1, 33.7, 21.4, 21.2, 21.1, 20.9; HRMS calcd for $C_{60}H_{78}O_{34}S_2Na$ (M+Na): 1429.3714, found: 1429.3721.

Thiolactosyl-thiogalabiosyl dimer 14.—Crude 13 (42 mg) was dissolved in MeOH and MeONa (0.5 M) was added. After 6 h, the mixture was neutralized with Duolite C436 (H^+) resin and concentrated. The residue was chromatographed Mega Bond Elut Column (Varian C18; $9:1 \rightarrow 8:2 \rightarrow 7:3 \rightarrow 6:4 \rightarrow 5:5 \text{ H}_2\text{O-MeOH}, 5 \text{ mL each})$ to give pure 14 (18.4 mg, 57% overall yield from **12**); $[\alpha]_{D}^{21} - 77^{\circ}$ (*c* 1.3, H₂O); ¹H NMR (D₂O): δ 7.16–7.30 (m, 4 H, Ph), 4.80 (d, 1 H, J 3.9 Hz, H-1'_{gala}), 4.31 (d, 1 H, J 7.8 Hz, H-1'_{lac}), 4.21 (bt, 1 H, J 6.6 Hz, H-5'_{gala}), 4.15 (d, 1 H, J 9.9 Hz, H-1_{lac}), 4.12 (bd, 1 H, J 9.6 Hz, H-1_{gala}), 3.86–3.94 (m, 4 H), 3.30–3.84 (m, 22 H), 3.27 (dd, 1 H, J 9.0, 9.9 Hz, H-2_{lac}); ¹³C NMR (D₂O): δ 138.7, 138.6, 130.1, 129.4, 128.4, 103.2, 100.7, 84.4, 83.8, 79.2, 78.9, 78.5, 77.9, 76.1, 75.7, 74.1, 72.9, 72.3, 71.3,

71.1, 70.1, 69.5, 69.3, 69.1, 68.9, 61.4, 60.8, 60.6, 60.5, 33.7, 33.6; HRMS calcd for $C_{32}H_{50}O_{20}S_2Na$ (M + Na): 841.2235, found: 841.2260.

2-(Trimethylsilyl)ethyl (2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2,3,6-tri-O-acetyl- β -D - galactopyranosyl) - $(1 \rightarrow 4)$ - 2,3,6-tri-O-acetyl- β -D-glucopyranoside (16).—The TMSEt globotrioside 15 [11] (34 mg, 0.056 mmol) was dissolved in pyridine (6 mL) and Ac₂O (6 mL). The mixture was stirred at $\sim 22 \,^{\circ}$ C for 12 h, toluene (30 mL) was added, and the mixture was concentrated. The residue was chromatographed (1:1 EtOAc-heptane) to give 16 (55 mg, 96%); $[\alpha]^{21}_{D}$ + 40° (*c* 2.2, CHCl₃); ¹H NMR (CDCl₃): δ 5.60 (bd, 1 H, J 2.2 Hz, H-4"), 5.40 (dd, 1 H, J 3.3, 11.0 Hz, H-3"), 5.21 (t, 1 H, J 9.2 Hz, H-3), 5.19 (dd, 1 H, J 3.6, 11.1 Hz, H-2"), 5.11 (dd, 1 H, J 7.7, 10.8 Hz, H-2'), 4.99 (d, 1 H, J 3.6 Hz, H-1"), 4.88 (dd, 1 H, J 7.9, 9.4 Hz, H-2), 4.74 (dd, 1 H, J 2.6, 10.8, H-3'), 4.52 (d, 1 H, J 7.7 Hz, H-1'), 4.50 (d, 1 H, J 7.9 Hz, H-1), 4.41–4.53 (m, 3 H, H-5",6a,6'a), 4.07–4.21 (m, 4 H, H-6b,6'b, 6"), 4.02 (d, 1 H, J 2.1 Hz, H-4'), 3.95 (dt, 1 H, J 5.8, 10.0 Hz, CH_2CH_2O), 3.73–3.85 (m, 2 H, H-4,5'), 3.61–3,67 (m, 1 H, H-5), 3.57 (dt, 1 H, J 6.9, 9.9 Hz, CH₂CH₂O), 2.14, 2.12, 2.09, 2.08, 2.075, 2.070, 2.065, 2.06, 2.04, and 1.99 (10 s, 30 H, Ac), 0.79-1.01 (m, 2 H, CH_2SiMe_3), 0.01 (s, 9 H, $SiMe_3$); ¹³C NMR (CDCl₃): δ 171.1, 170.9, 170.5, 170.2, 170.0, 169.3, 101.6, 100.4, 100.1, 77.4, 73.8, 73.3, 72.9, 72.3, 72.2, 69.4, 69.3, 68.3, 67.9, 67.6, 67.5, 62.8, 61.7, 60.7, 21.4, 21.3, 21.2, 21.15, 21.1, 21.0, 20.9, 18.3, -1.0; HRMS calcd for C₄₃H₆₄O₂₆SiNa (M + Na): 1047.3353, found: 1047.3344.

(2,3,4,6 - Tetra - O - acetyl - α - D-galactopyranosyl) - $(1 \rightarrow 4)$ - (2,3,6-tri-O-acetyl- β -D-galactopyranose (17) $(1 \rightarrow 4)$ - 2,3,6-tri-O-acetyl- β -D-glucopyranose (17) [14].—To a solution of compound 16 (250 mg, 0.24 mmol) in CH₂Cl₂ (1.2 mL) was added CF₃COOH (2.4 mL, 0.031 mmol), and the mixture was stirred at ~22 °C under N₂. After 80 min, *n*propyl acetate (10 mL) and toluene (10 mL) were added, and the mixture was concentrated and coconcentrated twice with toluene. The residue was chromatographed (3:1 EtOAc-heptane) to give the hemiacetal 17 (204 mg, 90%); HRMS calcd for C₃₈H₅₂O₂₆Na (M+Na): 947.2645, found: 947.2652.

(2,3,4,6-Tetra-O-acetyl- α -D-galactopyranosyl)- $(1\rightarrow 4)$ -(2,3,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-glucopyranosyl trichloroacetimidate (18) [14].—Compound 17 (204 mg, 0.22 mmol) was dissolved in a mixture of dry CH₂Cl₂ (3.4 mL) and dry Cl₃CCN (0.85 mL, 8.4 mmol). The mixture was cooled to 0° C under N₂, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 0.051 mL, 0.34 mmol) was added. The mixture was stirred at 0° C for 1 h, then washed with cold H₂O, dried, and concentrated. The residue was chromatographed (2:1 EtOAc-heptane) to give 18 (163 mg, 69%) as an α/β mixture (10:1). ¹H NMR for **18** α (CDCl₃): δ 8.66 (s, 1 H, =NH), 6.49 (d, 1 H, J 3.8 Hz, H-1), 5.60 (bs, 1 H, H-4"), 5.57 (t, 1 H, J 9.5 Hz, H-3), 5.41 (dd, 1 H, J 3.4, 11.1 Hz, H-3"), 5.19 (dd, 1 H, J 3.5, 10.9 Hz, H-2"), 5.13 (dd, 1 H, J 7.8, 10.8 Hz, H-2'), 5.08 (dd, 1 H, J 3.8, 10.2 Hz, H-2), 5.00 (d, 1 H, J 3.5 Hz, H-1"), 4.75 (dd, 1 H, J 2.4, 10.8 Hz, H-3'), 4.55 (d, 1 H, J 7.8 Hz, H-1'), 4.42–4.55 (m, 3 H, H-5",6'a,6a), 4.07–4.22 (m, 5 H, H-6",6'b,5,6b), 4.03 (d, 1 H, J 2.2 Hz, H-4'), 3.88 (t, 1 H, J 9.4 Hz, H-4), 3.78 (t, 1 H, J 6.7 Hz, H-5'), 2.14, 2.11, 2.10, 2.09, 2.08, 2.07, 2.06, 2.05, 2.02, and 1.99 (10 s, 30 H, Ac); ${}^{13}C$ NMR (CDCl₃): δ 171.1, 170.9, 170.7, 170.54, 170.5, 169.9, 169.7, 169.2, 161.5, 101.7, 100.0, 93.4, 76.4, 73.4, 72.3, 71.4, 70.4, 70.2, 69.5, 69.4, 68.3, 67.6, 67.5, 62.1, 61.8, 60.7, 21.4, 21.2, 21.15, 21.1, 21.0, 20.9; HRMS calcd for $C_{40}H_{52}O_{26}Cl_3NNa$ (M+Na): 1090.1741, found: 1090.1757. ¹Η NMR for **18**β $(CDCl_3)$: δ 5.89 (d, 1 H, J 7.7 Hz, H-1), the remaining signals were obscured by the signals of the main component 18α .

2-Bromoethyl (2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,3,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (19) [15].—A mixture of compound 18 (139 mg, 0.13 mmol), 2-bromoethanol (0.015 mL, 0.21 mmol), and CH₂Cl₂ (3.5 mL) was cooled to 0° C, and BF₃·OEt₂ (0.016 mL, 0.13 mmol) was added. The mixture was stirred at $\sim 22 \,^{\circ}$ C under N₂. After 40 min, sat aq NaHCO₃ (2 mL) and CH₂Cl₂ (10 mL) were added. The organic layer was isolated, dried, and concentrated. The residue was chromatographed (3:1 EtOAc-heptane) to give 19 $(78 \text{ mg}, 58\%); [\alpha]^{22}D + 45^{\circ} (c \ 1.0, \text{CHCl}_3), \text{ lit } + 45^{\circ}$ [15]; ¹H NMR (CDCl₃): δ 5.59 (bd, 1 H, J 3.2 Hz, H-4"), 5.39 (dd, 1 H, J 3.3, 11.0 Hz, H-3"), 5.21 (t, 1 H, J 9.1 Hz, H-3), 5.18 (dd, 1 H, J 3.6, 11.0 Hz, H-2"), 5.11 (dd, 1 H, J 7.8, 10.9 Hz, H-2'), 4.99 (d, 1 H, J 3.6 Hz, H-1"), 4.92 (dd, 1 H, J 7.9, 9.4 Hz, H-2), 4.74 (dd, 1 H, J 2.6, 10.8 Hz, H-3'), 4.55 (d, 1 H, J 7.9 Hz, H-1), 4.52 (d, 1 H, J 7.8 Hz, H-1'), 4.44–4.52 (m, 2 H, H-5",6a), 4.43 (dd, 1 H, J 6.2, 11.1 Hz, H-6'a), 4.06–4.20 (m, 5 H, H-6'b,6b,6" and OCH₂CH₂Br), 4.01 (bd, 1 H, J 2.4 Hz, H-4'), 3.73–3.86 (m, 3 H, H-4,5' and OC H_2 CH₂Br), 3.64 (ddd, 1 H, *J* 1.9, 5.0, 9.8 Hz, H-5'), 3.39–3.49 (m, 2 H, CH₂Br), 2.13, 2.12, 2.08, 2.065, 2.060, 2.055, 2.05, 2.045, and 1.98 (9 s, 30 H, Ac); ¹³C NMR (CDCl₃): δ 171.1, 170.9, 170.86, 170.8, 170.5, 170.2, 170.0, 169.95, 169.3, 101.5, 101.2, 100.1, 77.3, 76.8, 73.3, 73.2, 73.1, 72.3, 71.9, 70.2, 69.4, 69.3, 68.3, 67.6, 67.5, 62.5, 61.8, 60.7, 30.2, 21.34, 21.26, 21.2, 21.12, 21.1, 21.05, 21.0, 20.9; HRMS calcd for C₄₀H₅₅O₂₆BrNa (M+Na): 1053.2063, found: 1053.2089.

2-Azidoethyl (2,3,4,6-tetra-O-acetyl-a-D-galactopyranosyl)- $(1\rightarrow 4)$ -(2,3,6-tri-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (20).—To a solution of compound 19 (75 mg, 0.073 mmol) in DMF (3 mL) were added NaN₃ (15 mg, 0.23 mmol) and 15-crown-5 (0.015 mL, 0.073 mmol), and the mixture was stirred at 75 °C. After 24 h, the mixture was cooled to $\sim 22 \,^{\circ}\text{C}$ and H₂O (5mL) and Et₂O (20mL) were added. The organic layer was isolated, dried, and concentrated. The residue was chromatographed (2:1 EtOAc-heptane) to give 20 (67 mg, 93%); $[\alpha]^{22}{}_{\rm D}$ +35° (c 1.2 , CHCl₃); ¹H NMR (CDCl₃): δ 5.58 (bd, 1 H, J 3.4 Hz, H-4"), 5.39 (dd, 1 H, J 3.4, 11.0 Hz, H-3"), 5.21 (t, 1 H, J 9.1 Hz, H-3), 5.18 (dd, 1 H, J 3.6, 11.0 Hz, H-2"), 5.11 (dd, 1 H, J 7.7, 10.8 Hz, H-2'), 4.99 (d, 1 H, J 3.6 Hz, H-1"), 4.92 (dd, 1 H, J 7.8, 9.3 Hz, H-2), 4.74 (dd, 1 H, J 2.5, 10.8 Hz, H-3'), 4.57 (d, 1 H, J 7.8 Hz, H-1), 4.53 (d, 1 H, J 7.6 Hz, H-1'), 4.45–4.54 (m, 2 H, H-5",6a), 4.43 (dd, 1 H, J 6.3, 11.1 Hz, H-6'a), 4.06–4.20 (m, 4 H, H-6",6'b,6b), 4.01 (bd, 1 H, J 2.3 Hz, H-4'), 3.98 (ddd, 1 H, J 3.6, 5.0, 8.6 Hz, OCH₂CH₂N₃), 3.82 (t, 1 H, J 9.6 Hz, H-4), 3.76 (dt, 1 H, J 6.9 Hz, H-5'), 3.61-3.73 (m, 2 H, H-5 and OCH₂CH₂N₃), 3.47 (ddd, 1 H, J 3.4, 8.2, 13.3 Hz, CH₂CH₂N₃), 3.27 (ddd, 1 H, J 3.4, 4.8, 13.3 Hz, CH₂CH₂N₃), 2.13, 2.11, 2.08, 2.075, 2.065, 2.06, 2.05, 2.04, and 1.98 (9 s, 30 H, Ac); ${}^{13}C$ NMR (CDCl₃): δ 171.1, 170.9, 170.86, 170.8, 170.5, 170.2, 170.1, 170.0, 169.3, 101.5, 100.8, 100.1, 77.3, 76.8, 73.6, 73.2, 73.1, 72.3, 72.0, 69.4, 69.3, 69.1, 68.3, 67.6, 67.5, 62.4, 61.7, 60.7, 50.9, 21.3, 21.25, 21.13, 21.1, 21.04, 21.0, 20.9; HRMS calcd for C₄₀H₅₅O₂₆N₃Na (M+Na): 1016.2971, found: 1016.2980.

2-Aminoethyl $(\alpha$ -D-galactopyranosyl)- $(1\rightarrow 4)$ -(β -D-galactopyranosyl)- $(1\rightarrow 4)$ - β -D-glucopyranoside (**21**).—Compound **20** (65 mg, 0.065 mmol) was dissolved in MeOH and a catalytic amount of MeONa (0.5 M) was added. After 12 h, the mixture was neutralized with Duolite C436 (H⁺) resin and concentrated. The residue was dissolved in a mixture of EtOH (7 mL) and 0.1 M aq HCl (0.65 mL, 0.065 mmol), and hydrogenated (H₂, 10% Pd-C, 1 atm) for 2h. The mixture was filtered through Celite, passed through a column packed with Duolite A147 (OH⁻) resin and concentrated. The residue was chromatographed (Varian Mega Bond Elut Column C18; $9:1 \rightarrow 8:2 \rightarrow 7:3$ H₂O–MeOH, 6 mL each) to give **21** (25.8 mg, 72%); $[\alpha]^{22}_{D} + 51^{\circ}$ (c 1.0, H₂O); ¹H NMR (D₂O): δ 4.86 (d, 1 H, J 3.9 Hz, H-1"), 4.39–4.44 (2 d, 2 H, J 7.8, 8.0 Hz, H-1',1), 4.26 (bt, 1 H, J 6.6 Hz, H-5"), 3.95 (bd, 1 H, J 3.2 Hz, H-4'), 3.94 (bd, 1 H, J 3.3 Hz, H-4"), 3.20-3.28 (m, 1 H, H-2), 3.10-3.20 and 2.77-2.90 (multiplets, 2 H, $CH_2NH_2/CH_2NH_3^+$); ¹³C NMR (D_2O) : δ 103.7, 102.5, 100.7, 79.1, 77.8, 75.8, 75.2, 74.8, 73.3, 72.6, 71.3, 71.2, 70.4, 69.5, 69.4, 69.0, 60.9, 60.8, 60.4; HRMS calcd for $C_{20}H_{38}O_{16}N$ (M+H): 548.2191, found: 548.2197.

2-(5-Phenyl-4-thiapentanoylamido)ethyl (α -Dgalactopyranosyl)- $(1 \rightarrow 4)$ - $(\beta$ -D-galactopyranosyl)- $(1 \rightarrow 4)$ - β -D-glucopyranoside (23).—Treatment of compound 22 with N-hydroxysuccinimide (NHS) furnished the corresponding NHS-ester, as described [5]. The NHS-ester (6 mg, 0.02 mmol) and compound **21** (10 mg, 0.018 mmol) were dissolved in 1:1 DMF-pyridine (1 mL), and the mixture was stirred at 60 °C. After 10 h, the mixture was cooled to $\sim 22^{\circ}$ C and concentrated, and the residue was chromatographed (Varian Mega Bond Elut C18; $9:1 \rightarrow 8:2 \rightarrow 7:3 \rightarrow 6:4 \rightarrow 5:5 \rightarrow 4:6$ H₂O–MeOH, 5 mL each) to give **23** (9 mg, 69%); $[\alpha]_{D}^{23} + 45^{\circ}$ (c 0.6, H₂O); ¹H NMR (D₂O): δ 7.16–7.29 (m, 5 H, Ph), 4.80 (d, 1 H, J 3.9 Hz, H-1"), 4.34 (d, 2 H, J 7.9 Hz, H-1',1), 4.20 (bt, 1 H, J 6.7 Hz, H-5"), 2.59 (t, 2 H, J 6.9 Hz, SCH₂CH₂CO), 2.38 (t, 2 H, J 6.9 Hz, SCH₂CH₂CO); ¹³C NMR (D₂O): δ 175.0, 138.7, 129.3, 129.2, 127.7, 103.6, 102.5, 100.7, 79.0, 77.7, 75.8, 75.1, 74.7, 73.2, 72.5, 71.2, 69.4, 69.2, 68.8, 60.8, 60.7, 60.3, 39.7, 35.7, 35.5, 27.0; HRMS calcd for $C_{30}H_{48}O_{17}NS$ (M+H): 726.2642, found: 726.2637.

Bis-globotrioside 25.—Treatment of compound 24 with N-hydroxysuccinimide (NHS) furnished the corresponding NHS-ester, as described [5]. A solution of compound 21 (18 mg, 0.032 mmol) in freshly distilled DMF (3 mL) was added to a solution of the crude NHS-ester (4 mg, 0.0079 mmol) in pyridine (1 mL), and the mixture was stirred at $65 \,^{\circ}$ C. After 16 h, the mixture was concentrated, and the residue was chromatographed (Varian Mega Bond Elut C18; $1:0 \rightarrow 9:1 \rightarrow 8:2 \rightarrow 7:3 \rightarrow 6:4$ →5:5 H₂O–MeOH, 6 mL each). The product was chromatographed on SiO₂ (5:5:1 CH₂Cl₂–MeOH– H₂O→1:1 MeOH–H₂O) to give **25** (7.5 mg, 69%); $[\alpha]^{23}_{D}$ +48° (*c* 0.75, H₂O); ¹H NMR (D₂O): δ 7.18– 7.33 (4 H, Ph), 4.86 (d, 2 H, *J* 3.8 Hz, H-1″), 4.41 and 4.40 (2 d, each 1 H, *J* 7.7 and 8.0 Hz, H-1″), 4.41 and 4.40 (2 d, each 1 H, *J* 7.7 and 8.0 Hz, H-1″, 1), 4.26 (bt, 2 H, *J* 6.3 Hz, H-5″), 3.92–3.97 (m, 4 H, H-4″,4′), 3.23 (bdd, 2 H, *J* 8.0, 9.2 Hz, H-2′ or H-2), 2.64 (t, 4 H, *J* 6.9 Hz, SCH₂CH₂CO), 2.43 (t, 4 H, *J* 6.9 Hz, SCH₂CH₂CO); ¹³C NMR (D₂O): δ 175.0, 139.3, 129.7, 129.6, 128.1, 103.7, 102.6, 100.7, 79.1, 77.8, 75.8, 75.2, 74.7, 73.3, 72.6, 71.3, 71.2, 69.5, 69.4, 69.0, 68.9, 60.9, 60.8, 60.5, 39.8, 35.8, 35.4, 27.0; HRMS calcd for C₅₄H₈₈O₃₄N₂ S₂Na (M+Na): 1395.4558, found: 1395.4541.

Acknowledgements

This work was supported by grants from the Swedish Natural Science Research Council and the National Institutes of Health (NIH, USA).

References

- D. Mirelman, *Microbial Lectins and Agglutinins*, Wiley Interscience, New York, 1986; D. Zopf and S. Roth, *Lancet*, 347 (1996) 1017–1021.
- [2] H.C. Hansen and G. Magnusson, *Carbohydr. Res.*, 307 (1998) 233–242; J. Kihlberg and G. Magnusson, *Pure Appl. Chem.*, 68 (1996) 2119–2128.
- [3] M. von Itzstein, W.-Y. Wu, G.B. Kok, M.S. Pegg, J.C. Dyason, B. Jin, T.V. Phan, M.L. Smythe, H.F. White, S.W. Oliver, P.M. Colman, J.N. Varghese, D.M. Ryan, J.M. Woods, R.C. Bethell, V.J. Hotham, J.M. Cameron, and C.R. Penn, *Nature*, 363 (1993) 418–423.
- [4] R.T. Lee and Y.C. Lee, Enhanced Biochemical affinities of multivariant neoglycoconjugates, in Y.C. Lee and R.T. Lee (Eds.), *Neoglycoconjugates: Preparation and Applications*, Academic Press, San Diego, 1994, pp 23–50; R. Roy, *Trends Glycosci. Glycotechnol.*, 8 (1996) 79–99; D. Zanini and R. Roy, J. Org. Chem., 61 (1996) 7348–7354; G.D. Armstrong, E. Fodor, and R. Vanmaele, J. Infect. Dis., 164 (1991) 1160–1167; L.D. Heerze, M.A. Kelm, J.A. Talbot, and G.D. Armstrong, *J. Infect. Dis.*, 169 (1994) 1291–1296; G.D. Armstrong, P.C. Rowe, P. Goodyer, E. Orrbine, T.P. Klassen, G. Wells, A. MacKenzie, H. Lior, C. Blanchard, F. Auclair, B. Thompson, D.J. Rafter, and P.N. McLaine, J. Infect. Dis., 171 (1995) 1042–1045.
- [5] H.C. Hansen, S. Haataja, J. Finne, and G. Magnusson, J. Am. Chem. Soc., 119 (1997) 6974–6979.

- [6] R.R. Schmidt and W. Kinzy, *Adv. Carbohydr. Chem. Biochem.*, 50 (1994) 21–123.
- [7] S.P. Douglas, D.M. Whitfield, and J.J. Krepinsky, J. Carbohydr. Chem., 12 (1993) 131–136.
- [8] J. Dahmén, T. Frejd, G. Magnusson, and G. Noori, *Carbohydr. Res.*, 111 (1982) C1–C4.
- [9] J. Buter and R.M. Kellogg, J. Org. Chem., 46 (1981) 4481–4485.
- [10] R.J. Ferrier and R.H. Furneaux, Methods Carbohydr. Chem., 8 (1980) 251–253; G. Magnusson, G. Noori, J. Dahmén, T. Frejd, and T. Lave, Acta Chem. Scand., B35 (1981) 213–216.
- [11] J. Kihlberg, S.J. Hultgren, S. Normark, and G. Magnusson, J. Am. Chem. Soc., 111 (1989) 6364– 6368.
- [12] R. Striker, U. Nilsson, A. Stonecipher, G. Magnusson, and S.J. Hultgren, *Mol. Microbiol.*, 16

(1995) 1021–1029; U. Nilsson, R.T. Striker, S.J. Hultgren, and G. Magnusson, *Bioorg. Med. Chem.*, 4 (1996) 1809–1817.

- [13] K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahmén, G. Noori, and K. Stenvall, J. Org. Chem., 53 (1988) 5629–5647.
- [14] K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 163 (1987) 189–208.
- [15] J. Dahmén, T. Frejd, G. Magnusson, G. Noori, and A.-S. Carlström, *Carbohydr. Res.*, 127 (1984) 15–25.
- [16] J. Dahmén, T. Frejd, G. Grönberg, T. Lave, G. Magnusson, and G. Noori, *Carbohydr. Res.*, 116 (1983) 303–307.
- [17] C.S. Hudson and J.M. Johnson, J. Am. Chem. Soc., 37 (1915) 1270–1275.