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Abstract We describe the synthesis of an ionic-liquid (IL)-supported
organotelluride catalyst and its application as a recyclable catalyst for
the aerobic oxidation of phosphite esters to phosphate esters. This
method shows high conversion rates, allows the ready isolation and pu-
rification of the resulting products, and exhibits good reusability of the
catalyst.
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Phosphate esters, which are widely used in the chemical

industry, can be obtained by the oxidation of phosphite es-

ters.1 Oxidations of phosphite esters to phosphate esters by

using a quaternary phosphonium salt2 or a borane3 have

been reported.

Organotellurium oxides are recognized as valuable oxi-

dation catalysts. In one of our previous studies, we have

achieved organotelluride-catalyzed oxidations of various

substrates under photooxidation conditions, e.g., of silanes

to silanols,4 thiols to disulfides,5 and alcohols to ketones or

aldehydes.6 Moreover, we have reported the aerobic photo-

oxidation of phosphite esters to phosphate esters by using a

diorganotelluride.7 Even though organotellurium catalysts

are valuable oxidation reagents, some limitations should be

noted. For example, the resulting products usually require

isolation and purification by chromatography, and it is gen-

erally necessary to use stoichiometric amounts of reagents,

which hampers the recycling of the catalysts. Because of

such synthetic, economic, and environmental concerns, it is

evident that an improvement in this catalytic process is

highly desirable.

To improve this catalytic process, we decided to immo-

bilize the organotelluride catalysts onto an ionic liquid (IL)

support. ILs have recently attracted substantial attention

from scientists in various areas of research. Previously, we

developed an easy-to-use and reusable reaction system by

exploiting the advantages of an IL,8 and more recently we

have developed an IL-supported organotelluride catalyst

that we subsequently employed for the aerobic oxidation of

thiols to disulfides under photosensitized conditions. On

the basis of that work, we concluded that this system,

which provides the corresponding disulfides in good yields

and circumvents the need for column chromatography,

might be reusable and would therefore lower the environ-

mental impact of this reaction.9 A shortcoming of this sys-

tem was that the IL-supported organotelluride catalyst

could not be used for the oxidation of phosphite esters.

Here, we describe the synthesis of a modified IL-supported

bulky diaryltelluride reagent, and its application in the pho-

tooxidation of phosphite esters to phosphate esters.

Initially, we focused on the synthesis of the IL-support-

ed organotelluride catalyst 5, as shown in Scheme 1. The

structure of this complex was confirmed by the 1H and 13C

NMR spectroscopy. Coupling of 1,2-bis(2,4,6-triisopropyl-

phenyl)ditellane with [4-(hydroxymethyl)phenyl]boronic

acid (1) gave {4-[(2,4,6-triisopropylphenyl)tellanyl]phe-

nyl}methanol (2). Subsequently, this was converted into the

halo compound 3 by treatment with thionyl chloride. The

reaction between 3 and N-methylimidazole gave the imid-

azolium salt 4. The stable hydrophobic IL-supported organ-

otelluride 5 was obtained by ion exchange of 4 with KPF6. 5

is soluble in ILs, and is insoluble in water and solvents of

low polarity. Therefore, we had successfully obtained a hy-

drophobic IL-supported organotelluride catalyst 5.
© 2020. Thieme. All rights reserved. Synlett 2020, 32, A–C
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Scheme 1  Synthesis of the IL-supported diaryltelluride 5

Next, we investigated the model oxidation reaction of

triphenyl phosphite to triphenyl phosphate by using 5 un-

der various reaction conditions. A solution of triphenyl

phosphite, ditelluride 5, and a photosensitizer [rose bengal

(RB), methylene blue (MB), eosin Y, or tetraphenylphorphy-

rin (TPP)] was stirred for 2.5 hours in an open flask at 15 °C

with irradiation by a white LED or halogen lamp. After the

reaction, triphenyl phosphate was isolated by extraction

into diethyl ether; the yields are summarized in Table 1. The

catalytic activity of 5 was higher than that of the less-bulky

IL-supported diphenyl telluride 6 (Table 1, entries 1 and 3).

The synthesis of 6 was based on our previously developed

protocol.7 The use of RB as a photosensitizer afforded the

best results in this reaction; other photosensitizers, espe-

cially TPP, afforded inferior results, probably because TPP is

insoluble in ILs (entry 7). Furthermore, irradiation by LEDs

gave a superior result to that produced by using a halogen

lamp (entry 2). In other words, the best results for this

model oxidation were obtained by using 5 and RB under ir-

radiation from LEDs (entry 1). Note that the yield dropped

significantly under a nitrogen atmosphere or with the ex-

clusion of light (entries 8 and 9).

Next, we investigated the scope of the phosphite ester

under the previously established optimal reaction condi-

tions (Table 2). In all cases, the reactions proceeded rapidly

and gave the expected phosphate esters in good to excellent

yields (Table 2, entries 1–6). An exception was the oxidation

of tris(4-methoxyphenyl) phosphite, which gave the corre-

sponding phosphate ester in only 85% yield (entry 7).

A possible catalytic cycle is proposed in accordance with

our previous communication (Scheme 2).5 Triplet oxygen is

converted into singlet oxygen by photosensitization under

light irradiation. The telluride is then converted into the

corresponding telluroxide and/or tellurone by singlet-oxy-

gen oxidation. The telluroxide provides adduct A by attack-

ing the phosphite ester. Subsequently, adduct A furnishes

the telluride and the phosphate ester.

Finally, we examined the reusability of this reaction sys-

tem in the oxidation of (PhO)3P. When the oxidation of the

phosphite was complete, the product was extracted with

diethyl ether. The remaining (bmim)[PF6] solution contain-

ing 5 and RB could be reused at least five times in subse-

quent reactions without any detectable deterioration in

performance (Table 3).
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Table 1  Aerobic Oxidation of Triphenyl Phosphite Catalyzed by Organ-
otellurium Catalysts 5 or 6a

Entry Catalyst Sensitizer Light source Yield (%)

1 5 RB LEDb 97

2 5 RB halogen lampc 54

3 6 RB LED 30

4 – RB LED 28

5 5 MB LED 76

6 5 eosinY LED 44

7 5 TPP LED 12

8d 5 RB – 17

9e 5 RB LED 17

a Reaction conditions: (PhO)3P (0.25 mmol), catalyst (0.05 mmol), sensitiz-
er (0.0125 mmol), (bmim)[PF6] (5 mL), aerobic conditions, 15 °C, 2.5 h.
b 60 W LED.
c 500 W halogen lamp
d Shielded from light.
e Under N2.

NN
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NN

Te
i-Pr
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P
OPh

OPhPhO
P
OPh

OPhPhO
O

PF6

PF6

(bmim)[PF6] 
15 °C, 2.5 h

sensitizer 
catalyst (20 mol%) 

hν 5

catalyst

6

Table 2  Aerobic Oxidation of Various Phosphites Catalyzed by Organo-
tellurium Catalyst 5a

Entry R Time (h) Yield (%)

1 Ph 2.5 99

2 i-Pr 1 93

3 2-Tol 2.5 95

4 4-Tol 2.5 99

5 4-FC6H4 2 quant

6 4-ClC6H4 2 97

7 4-MeOC6H4 2.5 85

a Reaction conditions: Phosphite (0.25 mmol), 5 (0.05 mmol), RB (0.0125 
mmol), (bmim)[PF6] (5 mL), LED (60 W), in air, 15 °C.
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O

(bmim)[PF6], 15 °C

RB, 5 (20 mol%), hν
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In summary, we have developed a hydrophobic ionic-

liquid-supported bulky diaryltelluride 5 and demonstrated

its catalytic utility in the aerobic oxidation of phosphite es-

ters.10 This system exhibits a desirable catalytic perfor-

mance and a low environmental footprint due to its ability

to be recycled.

Supporting Information

Supporting Information for this article is available online at
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tion. The resulting mixture was extracted with Et2O, and the
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(99%); mp 44–47 °C.
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Scheme 2  Plausible reaction mechanism for the catalytic oxidation of 
phosphite esters
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Table 3  Recycling of Catalyst 5a

Cycle 1 2 3 4 5

Yield (%) 99 quant quant quant quant

a Reaction conditions: (PhO)3P (0.25 mmol), 5 (0.05 mmol), RB (0.0125 
mmol), (bmim)[PF6] (5 mL), LED (60 W), in air, 2.5 h, 15 °C.

P
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P
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OPhPhO
O

(bmim)[PF6], 15 °C, 2.5 h

RB, 5 (20 mol%), hν
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