¹³C NMR Study of ortho-, meta- and para-Substituted Phenyldiphenylamines: Substituent Effect Correlations

Eugene Grimley* and David H. Collum

Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, USA

Earl G. Alley and (the late) Bobby Layton

Mississippi State Chemical Laboratory, Mississippi State, Mississippi 39762, USA

The ¹³C chemical shifts of 11 substituted triphenylamines have been determined and the assignment of these resonances made using intensities, ¹H and ¹⁹F couplings and predictions from bond additivity relationships. ¹³C chemical shifts at carbons bearing the substituent and at carbons *ortho* to the substituent correlated reasonably well with the Q parameter. A multiple regression analysis of chemical shifts with the field and resonance parameters of Swain and Lupton and the Q parameter produced significantly better correlations than those obtained when Q was omitted for these positions. ¹³C chemical shift correlations for carbons *meta* and *para* to the substituent were not significantly better than when Q was omitted. Significant correlations were obtained between field and resonance parameters and ¹³C chemical shifts of C-o and C-p, and C-i, C-o, C-m and C-p of the non-substituent bearing phenyl rings in *ortho*- and *para*-substituted phenyl-diphenylamines, respectively.

Considerable interest has been exhibited¹⁻⁴ in establishing correlations between ¹H, ¹³C and ¹⁹F NMR chemical shifts and systematic variations in the molecular structures of monosubstituted and ortho-, meta- and para-disubstituted benzenes. The basic assumption made in these correlations is that ¹H, ¹³C and ¹⁹F chemical shifts reflect the electronic environment of the observed atoms.⁵ Inductive effects, resonance effects, electronegativity of the substituent. steric factors and magnetic anisotropy of substituents have developed²⁻⁹ as theoretical or empirical parameters which can be correlated with chemical shifts. Spiesecke and Schneider² reported that correlations of Hammett's σ with ¹³C chemical shifts of monosubstituted benzenes held up well only for the *para* position. Maciel and Natterstad⁹ correlated Taft's reactivity re-sonance parameters,¹⁰ σ_R and σ_R° , and ¹³C chemical solution of a series of para-substituted bromobenzenes. Taft's divided substitutent constants, $\sigma_{\rm I}$ and $\sigma_{\rm R}^{\circ}$, and the 13 C chemical shifts for the para position of a series of para-substituted bromobenzenes. Taft's divided substituent constants, $\sigma_{\rm I}$ and $\sigma_{\rm R}^{\circ}$, and the 13 C chemical shifts of seven ortho-substituted aromatic systems, I, were correlated

* Author to whom correspondence should be addressed.

using the multiple linear regression Eqn (1), by Yoder and co-workers.⁶ Correlations at

$$\delta_{\mathbf{X}} - \delta_{\mathbf{H}} = \rho_{\mathbf{I}} \sigma_{\mathbf{I}} + \rho_{\mathbf{R}} \sigma_{\mathbf{R}}^{\circ} + C \tag{1}$$

ortho-carbons and ring carbons bearing the substituent were significantly improved when the parameter Q, defined by Hruska, Hutton and Schaefer,^{4,12} was added to Eqn (1). An experimental method for determining Q values has been developed by Smith and Roark.¹³

A unified correlation of substituent effects with ¹H, ¹³C and ¹⁹F chemical shifts in aromatic and olefinic systems was reported by Smith and Proulx.⁷ Chemical shifts in these systems were found to be correlated well by linear multiple regression analysis with the Swain and Lupton¹⁴ field and resonance parameters \mathcal{F} and \mathcal{R} , and the semiempirical parameter Q. Values of a, b, c, d, the correlation coefficient r, the average deviation and the range of chemical shifts for each carbon position were determined for homologous series of aromatic compounds using Eqn (2).

$$\delta = a\mathcal{F} + b\mathcal{R} + cQ + d \tag{2}$$

We have been investigating the ¹³C chemical shifts of a series of *mono*-substituted phenyldiphenylamines, phosphines and arsines¹⁵ in order to study the usefulness of bond additivity in making ¹³C chemical shift assignments and to test the use of the unified correlation of substituent effects of ¹³C chemical shifts. The results of this investigation for triphenylamine and 11 of its derivatives are reported herein. The numbering sequence of the triphenylamine derivatives is given in II.

CCC-0030-4921/81/0015-0296\$03.50

EXPERIMENTAL

Triphenylamine was obtained from Pfaltz and Bauer and used without further purification. The ¹³C NMR spectrum of triphenylamine in a 1:1 (v:v) solution of d_6 -acetone (Wilmad) and dichloromethane gave chemical shifts which differed from literature¹⁶ values due to the use of a different solvent. Literature procedures¹⁷⁻²⁰ were followed in the syntheses of ochloro-, o-nitro-, o-amino- and p-fluorophenyldiphenylamines. The Ullman reaction,²¹ as modified by Nelson and Adams,¹⁴ was used to synthesize p-bromoand p-nitrophenyldiphenylamine,¹⁹ and the new compounds o-fluoro-, o-bromo-, o-iodo, m-bromo- and p-chlorophenyldiphenylamine. All reactions were conducted in a 500 ml 3-neck flask fitted with a mechanical stirrer, a Dean Stark trap, a reflux condenser and a nitrogen purge. Starting materials for the reactions were obtained commercially and used without further purification. Finely powdered anhydrous potassium carbonate was used to take up hydrogen iodide liberated in the condensation reaction. The copper catalyst was prepared according to the procedure described by Kleiderer and Adams.²² Reaction mixtures were heated at reflux in o-dichlorobenzene or nitrobenzene and stirred vigorously. Reaction progress was monitored using gas chromatographic analysis by measuring loss of diphenylamine and concomitant formation of the appropriate product. After the reactions were complete the products were filtered while hot through a Buchner funnel to remove inorganic materials. The filtrate was vacuum distilled to separate the solvent and reaction products. A summary of the reaction conditions for new compounds is given in Table 1. Elemental and mass spectral data for compounds recrystallized from ethanol are given in Table 2. (Microanalytical determinations were performed by Galbraith Laboratories, Knoxville, TN. Mass spectrometric analyses were performed using either a Dupont 21-590F low resolution mass spectrometer or a Hewlett Packard 5930 Quadrupole mass spectrometer.)

Determinations of ¹³C chemical shifts of triphenylamine and monosubstituted triphenylamines were made using a Varian CFT-20 NMR spectrometer operating at 20 MHz and a probe temperature of c. 37 °C. d_6 -Acetone was used as a deuterium lock and as a secondary internal reference with final chemical shifts being referenced to TMS. A flip angle of 19° and an acquisition time of 1.023 s for 8 K data were employed for acquisition of approximately 8000 transients. Broad band proton noise decoupled spectra were obtained for c. 20% (w/v) solutions of the compounds in 1:1 (v:v) d_6 -acetone/methylene chloride solution using 8 mm tubes. Chemical shift values were reproducible to better than ± 0.02 ppm.

DISCUSSION

The ¹³C chemical shift assignments given in Table 3 were made on the basis of peak intensities, similarities of ¹³C chemical shifts for closely related compounds, nuclear Overhauser enhancement considerations, off-resonance experiments, bond additivity predictions¹¹ and carbon-fluorine coupling constants. The numbering and lettering sequence used to identify the positions of the carbon atoms in the substituted and non-substituted phenyl rings of the triphenylamine derivatives described in this discussion are given by II.

First, ¹³C chemical shift assignments were made for the four magnetically non-equivalent carbon atoms of the two non-substituted phenyl rings. These resonances were clearly distinguishable from peaks due to the carbons of the substituted phenyl ring in each spectrum on the basis of their intensities, as illustrated in Fig. 1, and on the basis of the constancy of the chemical shift values in each spectrum for *meta*- and *para*-substituted triphenylamine derivatives in order

fable 1		Summary	of	reaction	conditions	for	synthetic	procedures
---------	--	---------	----	----------	------------	-----	-----------	------------

NPh ₂		Ph₂NH mass (moles)	K ₂ CO ₃ mass (moles)	Cu mass (moles)	Product mass (moles) ^c (% yield)	Reflux ^a time (hrs)	b.р. (°С)
o-Fluoro	25.0 g (0.113)	19.1 g (0.113)	15.6 g (0.113)	7.2 g (0.113)	20.5 g (0.078) (69%)	187	155°/1.3 mm
o-Bromo ^e	55.0 g (0.192)	32.8 g (0.194)	26.8 g (0.194)	12.3 g (0.194)	40.1 g (0.124) (69%)	96	165°/0.3 mm
o-lodo	20.0 g (0.061)	10.3 g (0.061)	6.3 g (0.046)	3.0 g (0.047)	12.1 g (0.033) (53%)	96	155°/0.2 mm
m-Bromo ^e	17.5 g (0.062)	10.3 g (0.061)	8.5 g (0.062)	3.9 g (0.062)	7.2 g (0.022) (36%)	72	193°/2.5 mm
p-Bromo ^e	19.8 g (0.070)	11.8 g (0.070)	9.8 g (0.071)	4.5 g (0.071)	11.1 g (0.034) (49%)	48	185°/2.5 mm
p-Nitro	25.0 g (0.100)	16.9 g (0.100)	13.8 g (0.100)	6.5 g (0.100)	16.5 g (0.057) (57%)	48 ⁶	d
p-Chloro	20.0 g (0.084)	14.2 g (0.084)	11.6 g (0.084)	5.3 g (0.084)	10.5 g (0.040) (47%)	48	130°/0.3 mm

^a Solvent used was ortho-dichlorobenzene.

^b Solvent used was nitrobenzene.

[°] Product was recrystallized from ethanol.

^d This product was obtained by recrystallization from ethanol after the solvent was stripped from the reaction mixture.

^e Product was recrystallized from 2-propanol.

1 able 2. Analytical data for A-phenyldiphenylamit	nes~~	lamines**
--	-------	-----------

	Parent	C	(%)	H(%)	N	(%)	Halog	en (%)	m	.p.	
Compound	ion peak	Found	Req'd	Found	Req'd	Found	Req'd	Found	Req'd	Exp.	Lit.	Ref.
o-Fluorophenyldiphenylamine C ₁₈ H ₁₄ NF	263	81.94	82.09	5.16	5.32	5.51	5.32	7.23	7.22	98		This work
o-Chlorophenyldiphenylamine C ₁₈ H ₁₄ NCI	279, 281	76.90	77.27	5.72	5.05	4.84	5.01	12.42	12.67	200ª	202ª	17
o-Bromophenyldiphenylamine C ₁₈ H ₁₄ NBr	323, 325	66.65	66.68	4.49	4.35	4.25	4.32	24.49	24.65	63		This work
o-lodophenyldiphenylamine C ₁₈ H ₁₄ NI	371	58.39	58.24	3.90	3.80	3.68	3.77	34.02	34.18	83		This work
o-Nitrophenyldiphenylamine C ₁₈ H ₁₄ N ₂ O ₂	290	73.91	74.46	5.00	4.87	9.42	9.65			99	98	18
o-Aminophenyldiphenylamine C ₁₈ H ₁₆ N ₂	260	82.87	83.04	6.21	6.20	10.61	10.76			148	145	19
<i>m</i> -Bromophenyldiphenylamine C ₁₈ H ₁₄ NBr	323, 325	66.34	66.68	4.69	4.35	4.25	4.32	24.43	24.65	92		This work
p-Fluorophenyldiphenylamine C ₁₈ H ₁₄ NF	263	81.91	82.09	5.34	5.32	5.18	5.32	7.26	7.22	102	101	20
p-Chlorophenyldiphenylamine C ₁₈ H ₁₄ NCI	279, 281	77.31	77.27	4.97	5.05	5.02	5.01	12.59	12.67	107	108	20
p-Bromophenyldiphenylamine C ₁₈ H ₁₄ NBr	323, 325	66.74	66.68	4.50	4.35	4.31	4.32	24.28	24.65	112	113 ^b	This work
p-Nitrophenyldiphenylamine C ₁₈ H ₁₄ N ₂ O ₂	290	74.61	74.46	5.0 9	4.87	9.57	9.65			144	141 ^ь	This work

^a Values are for boiling point at 1 mm of Hg.

^b M.p. values are for this compound as synthesized by the procedure of Ref. 20.

of increasing field strength C-*i*, C-*m*, C-*o* and C-*p* as shown in Fig. 2. The ¹³C chemical shifts for C-*m* remained the most constant for the series of triphenyl-amine derivatives, whereas those for C-*p* were further downfield than for C-*o* of *ortho*-substituted derivatives. This order is inverted in comparison to that observed for triphenylamine and *meta*- and *para*-

substituted triphenylamine derivatives. It is apparently due to a steric or a magnetic anisotropic effect on the diphenylamine group when placed *ortho* to the variable substituent. Assignment of ¹³C chemical shifts for *ipso*-positions were supported by the observation that C-*i* resonances had lower intensities than C-*p* resonances. This is in accord with the relative intensities of

Table 2	Obcomed and	predicted 13C	abamical d	hifts for	auhatitutad	nhonyldinhon	alaminas in	-
Table 5.	Observed and	predicted C	chemical s	umis tor	substituteu	phenyimphen	ylammes m	hhm

	-	•						-		•	
Compound	C-1	C-2	C-3	C-4	C-5	C-6	C-i	C-o	C-m	C-p	Method
Triphenylamine	147.8	123.9	129.1	122.6			147.8 147.9	123.9 121.2	129.1 129.1	122.6 122.5	exp. Ref. 16
o-Fluoro	134.3 133.5	158.7 159.0	116.7 114.8	124.9 123.5	126.2 124.7	129.3 124.8	147.2	122.0	128.9	122.3	exp. pred.
o-Chloro	143.8 148.0	132.7 129.6	131.0 129.3	126.9 124.1	130.9 127.4	128.1 125.4	146.9	121.7	128.8	121.9	exp. pred.
o-Bromo	145.2 150. 9	123.4 117.8	140.7 132.1	127.3 124.4	134.2 127.7	131.5 125.7	147.8	121.6	128.8	121.8	exp. pred.
o-lodo	148.7 156.9	99.9 89.5	140.7 138.2	127.6 124.5	131.3 128.2	129.8 125.8	146.8	121.8	128.8	121.8	exp. pred.
o-Nitro	140.5 142.7	145.8 143.6	125.6 124.0	124.6 123.7	133.5 135.5	129.8 125.0	146.3	122.8	129.1	123.2	exp. pred.
o-Amino	131.4 134.0	144.5 143.2	116.2 115.3	127.1 123.2	118.2 118.1	129.9 124.5	146.8	120. 9	128.9	121.4	exp. pred.
<i>m</i> -Bromo	149.7 149.6	125.1 126.9	122.4 123.0	124.7 125.6	130.5 130.9	121.3 122.5	147.1	124.7	129.4	123.6	exp. pred.
p-Fluoro	143.9 143.6	126.3 125.7	115.8 115.9	158.7 157.2			147.8	123.4	129.1	122.4	exp. pred.
p-Chloro	146.6 146.1	124.5 125.4	129.0 129.3	126.8 128.3			147.3	124.2	129.2	123.1	exp. pred.
p-Bromo	146.8 146.4	124.8 125.7	132.1 132.1	114.3 116.5			147.4	124.5	129.4	123.4	exp. pred.
p-Nitro	153.4 154.2	125.7 125.0	125.0 124.0	139.9 142.3			145.6	126.5	129.8	117.6	exp. pred.

Figure 1. ¹³C NMR spectrum of o-fluorophenyldiphenylamine.

the two positions based on predictable differences in nuclear Overhauser enhancements. Furthermore, carbon atoms assigned to C-i positions were not bonded to hydrogen, as shown by off-resonance spectra.

Next, the usefulness of bond additivity^{11,23-25} for the assignments of the ¹³C chemical shifts for C-1 through C-6 of the substituted phenyl rings was examined. With this method ¹³C chemical shift differences between a mono-substituted compound and its parent unsubstituted compound are expressed by $\Delta\delta_x$, as shown in Eqn (3) for each ring carbon denoted by k. The additivity rule can be stated as Eqn (4) for disubstituted compounds containing X and Y substituents. Agreement between

$$\Delta \delta_{\mathbf{X}}^{(k)} = \delta_{\mathbf{X}}^{(k)} - \delta_{\mathbf{H}}^{(k)} \tag{3}$$

$$\delta_{\mathbf{X}\mathbf{Y}}^{(k)} = \delta_{\mathbf{H}}^{(k)} + \Delta\delta_{\mathbf{X}}^{(k)} + \Delta\delta_{\mathbf{Y}}^{(k)} \tag{4}$$

calculated values based on Eqn (4) and experimentally observed ¹³C chemical shifts has been generally good

Figure 2. ¹³C chemical shifts of the *ipso-*, *ortho-*, *meta-* and *para-*carbons for the two non-substituted phenyl groups in the triphenylamine derivatives.

for *meta-* and *para-substituted* aromatic compounds and poor for *ortho-substituted* compounds.²³

Values of $\Delta \delta_{\rm X}^{(k)}$ were obtained from ¹³C chemical shifts of benzene and monosubstituted benzene compounds as c. 20% (w/v) in 1:1(v:v) d_6 -acetone/ methylene chloride solution and agreed with literature values,² with small differences being ascribed to different solvent conditions. Assignments of ¹³C chemical shifts for meta- and para-substituted compounds using bond additivity was straightforward, as illustrated by the data of Table 3. However, assignment of ortho-substituted compounds was not, as illustrated by the differences between the observed ¹³C chemical shifts of C-1 through C-6 and those calculated by bond additivity. Although the ¹³C chemical shift assignments using bond additivity were made in such a way as to minimize the sum of the deviations between experimental and calculated shifts, assignments of C-4, C-5 and C-6 were less certain for ortho-derivatives. The mean deviations between experimental chemical shifts and those calculated from bond additivity were 0.8 ppm for both meta- and para-substituted aromatics, whereas the mean deviation for ortho-substituted compounds was 3.4 ppm. Mean deviations were greatest at C-1, C-2 and C-6 for the ortho-substituted phenyldiphenylamines and increased with size when the substituents were halogens. Intramolecular hydrogen bonding did not appear to be a perturbing factor in the assignment of C-1 through C-6 in the case of ortho-aminophenyldiphenylamine. The accuracy of the calculated ¹³C chemical shifts for C-1 through C-6 improved as the distance between the position of the observed carbon and the substituent increased. This was in agreement with the conclusion that interactions between ring carbons and substituents decreased rapidly and bond additivity was more accurate as substituents were placed further apart in a series of 1,4-phenylene derivatives.²⁵

Further evidence supporting ¹³C chemical shift assignments of *ortho-* and *para-*fluorophenyldiphenylamine was obtained from the observed magnitudes of ¹³C—¹⁹F coupling constants given in Table 4. In aromatic compounds containing fluorine, one-bond ¹³C—¹⁹F coupling constants²⁶ are approximately

Table 4. A c fi fi	A comparisor onstants [*] of luorophenyld luorobenzene	of ¹³ C ortho iphenylam	¹⁹ F coupling and <i>para</i> - ine with
¹³ C— ¹⁹ F Coupling constants (Hz)	F	F NPh ₂	F NPh ₂
J(CF) J(CCF) J(CCCF) J(CCCCF) J(C'CF) J(C"C'F)	244.0 21.5 7.9 2.9	241.8 22.7 7.9 2.8	250.0 10.7 1.8 7.7 19.6 3.8

^a Compounds were c. 20% in 1:1 (v:v) d_{6} -

acetone/methylene chloride solution.

^b Taken from Ref. 26.

250 Hz. These decrease rapidly with increased number of bonds to c. 3 Hz for four-bond separations. This order of decreasing J(CF) values with increasing number of intervening bonds was observed for parafluorophenyldiphenylamine and supported the ¹³C chemical shift assignments based on the bond additivity method. In ortho-fluorophenyldiphenylamine only J(CF) and J(C'CF) exhibited values expected for oneand two-bond coupling, respectively. The breakdown in similarity of ${}^{13}C$ — ${}^{19}F$ coupling constants for the remainder of the ring carbons was indicative of differences in the electronic distribution in the ring. This is apparently due to the electronegativity and the steric interaction of substituents when placed ortho to each other in the aromatic ring. As additional evidence for ¹³C chemical shift assignments for C-1 and C-2, offresonance spectra were obtained for all compounds. The non-hydrogen bearing aromatic carbons were unequivocally assigned from these data. The relationships between the Q parameter of Hruska, Hutton and Schaefer⁴ and the ¹³C chemical shifts of the C-1 through C-6 ring carbons were examined in order to gain further insight into the nature of ortho-substituent interactions. Plots of Q versus ¹³C chemical shifts of C-1 to C-3 for ortho-substituted phenyldiphenylamines and of C-3 and C-4 for para-substituted phenyldiphenylamines resulted in the linear relationships shown in Figs 3 and 4, respectively, whereas the remaining ring carbons gave poor correlations. The correlation coefficient of the least squares line is given for each graph. These plots exhibit a behavior similar to that of plots for ortho-substituted phenols7 and ortho-substituted fluorobenzenes.²⁷ Substituent effects at C-1 and C-3 in ortho-substituted compounds operate in the opposite sense to that at C-2, and the substituent effects at C-4 in para-substituted compounds operate in the opposite sense to those at C-3.

Figure 3. The ¹³C chemical shifts at C-1 to C-3 for orthosubstituted phenyldiphenylamines plotted against Q with the corresponding correlation coefficient also shown.

Figure 4. The ¹³C chemical shifts at C-3 and C-4 for parasubstituted phenyldiphenylamines plotted against Q with the corresponding correlation coefficient also shown.

Smith and Proulx⁸ interpreted this behavior as indicating that factors other than electron density were important because the effects were not predicted by calculations² of electron density. It is evident that further theoretical calculations of substituent effects on the ¹³C chemical shifts of aromatic compounds will have to account for this behavior in addition to effects due to σ or π electron density.

Both ortho- and para-substituted phenyldiphenylamines afforded a test of the correlatability of ¹³C chemical shifts with field and resonance parameters of Swain and Lupton¹⁴ and the Q parameter using Eqn (2). The quality of the correlations for the disubstituted ring, both with and without the use of the Qparameter, is illustrated by the results given in Table 5. That the special factor measured by Q is important is demonstrated by the improved quality of the linear regression fit. Values of the correlation coefficients and the average deviations between experimentally observed ¹³C chemical shifts and those calculated from results of regression analysis support this conclusion. The Q parameter is most significant at C-1, C-2 and C-3 in ortho-substituted phenyldiphenylamines and at C-3 and C-4 in para-substituted phenyldiphenylamines. In agreement with the results of previous work,^{7,27} the coefficient of O for the carbon bearing the variable substituent is negative in value and opposite in sign compared to the carbon atoms ortho to the substituent.

The ortho series was particularly interesting because the diphenylamine moiety is larger than groups tested previously with this relationship. Steric effects for ortho-substituted phenyldiphenylamines could be reflected either in the quality of the correlation or in the values of the coefficient of the Q parameter. Values of c, the coefficient of Q, obtained in this study for ortho- or para-substituted triphenylamine derivatives were not greatly different compared to those previously reported for ortho- and para-substituted aromatic compounds.^{7,27}

The correlatability of the ¹³C chemical shifts of C-*i*, C-*o*, C-*m* and C-*p* with Q and the field and resonance parameters of Swain and Lupton¹⁴ for *ortho*- and *para*-substituted triphenylamine derivatives was also

Position	а	ь	С	d	r	Average deviation	Range				
ortho-substituted phenyldiphenylamines											
C-1	-6.37	9.98	4.22	138.50	0.998	0.3	17.3				
	-4.91	20.41		148.50	0.707	3.8					
C-2	18.94	11.98	-15.50	157.16	0.952	5.1	58.8				
	13.55	-26.39		119.81	0.362	13.1					
C-3	-1.23	-3.31	7.69	112.36	0.962	2.1	24.5				
	1.44	15.72		130.89	0.446	7.2					
C-4	2.56	8.05	0.92	120.88	0.914	0.6	5.0				
	2.88	-5.78		123.08	0.733	1.0					
C-5	3.94	9.51	1.87	124.78	0.976	0.7	16.0				
	4.59	14.15		129.29	0.899	1.9					
C-6	5.72	-8.06	0.29	123.45	0.897	0.9	7.6				
	5.83	-7.34		124.15	0.887	0.9					
		para-subs	tituted pher	nyldipheny	/lamines						
C-1	2.64	17.24	0.003	147.76	0.999	0.1	9.5				
	2.64	17.24		147.78	0.999	0.1					
C-2	1.49	-1.26	-0.71	125.48	0.967	0.2	2.4				
	1.75	-1.74		123.73	0.778	0.5					
C-3	-1.87	9.05	7.16	112.85	0.998	0.3	16.3				
	-4.49	13.94		130.55	0.476	4.4					
C-4	8.86	15.09	-19.76	168.00	0.999	0.2	44.4				
	16.13	-28.60		119.13	0.461	11.9					

Table 5. Constants and correlation coefficients of $a\mathcal{F} + b\mathcal{R} + cQ + d$ of C-1 through C-6 for ortho- and para-substituted phenyldiphenylamine compounds from linear regression analysis^a

^a The coefficient of multiple regression is given under *r*. The chemical shift ranges and the average deviations are given in ppm and *d* is based on ¹³C chemical shifts found in Table 3 referenced to TMS. The second set of values for each carbon position are the results from linear regression with *c* equal to zero.

Table 6. Constants and correlation coefficients of $a\mathcal{F} + b\mathcal{R} + d$ of C-*i*, C-*o*, C-*m* and C-*p* for ortho- and parasubstituted phenyldiphenylamine compounds from linear regression analysis^a

Position	а	ь	d	r	Average deviation	Range						
	ortho-	substitute	d phenyldi	phenylar	nines							
C-i	-0.834	0.634	147.68	0.519	0.4	1.5						
C-o	-1.52	3.98	123.75	0.931	0.3	3.0						
C-m	-0.173	0.38	129.09	0.662	0.1	0.3						
С-р	0.002	1.87	122.52	0.818	0.3	1.8						
	para-substituted phenyldiphenylamines											
C-i	-1.51	-3.33	147.81	0.998	0.04	2.2						
C-o	1.69	4.83	123.91	0.994	0.1	3.1						
C-m	0.50	0.99	129.10	0. 971	0.04	0.7						
C-p	-3.06	-8.86	122.88	0.903	0.8	5.8						

^a The coefficient of multiple regression is given under r. The chemical shift ranges and the average deviations are given in ppm and d is based on ¹³C chemical shifts found in Table 3 referenced to TMS.

examined.[†] Although the range of 13 C chemical shifts was smaller than for C-1 through C-6, significant correlations were determined using the two-part correlation given by Eqn (5). The quality of the correlations is illustrated by the results given in Table 6. These correlations

$$\delta = a\mathcal{F} + b\mathcal{R} + d \tag{5}$$

[†] Correlations of the ¹³C chemical shifts for C-*i*, C-*o*, C-*m* and C-*p* with Swain and Lupton field and resonance parameters were undertaken at the suggestion of a referee. appeared to be significant only for C-o and C-p in ortho-substituted phenyldiphenylamines whereas ¹³C shifts at all four positions, C-i, C-o, C-m and C-p, correlated well in the para-phenyldiphenylamine series. The correlatability of the ¹³C chemical shifts for carbons in the non-substituent bearing phenyl rings appears to be mainly due to field and resonance effects which are transmitted through nitrogen. That correlations are considerably poorer for ortho-substituted derivatives in comparison to para-derivatives indicates that the steric effect of the substituent disrupts the transmission of magnetic and electronic interactions between substituent and non-substituent bearing phenyl rings.

This investigation has shown that bond additivity is a reliable method for making ¹³C chemical shift assignments in singly substituted phenyldiphenylamine compounds and that these assignments appear to be supported by the consistency of the results of ¹³C chemical shift results when correlated to Eqn (2) as proposed by Smith and Proulx.⁷ That this series of compounds shows a good correlation extends the application of the unified correlation method.

Acknowledgement

The authors wish to express their appreciation to Dr Leonard Ingram of the Forestry Products Laboratory at Mississippi State University and Dr Paul Hedin of the USDA Boll Weevil Laboratory in Starkville, Mississippi, for their cooperation in providing mass spectral analyses of the compounds reported herein.

REFERENCES

- 1. M. Karplus and T. P. Das, J. Chem. Phys. 34, 1683 (1961).
- 2. H. Spiesecke and W. G. Schneider, J. Chem. Phys. 35, 731 (1961).
- N. Boden, J. W. Emsley, J. Feeney and L. H. Sutcliffe, *Mol. Phys.* 8, 133 (1964).
- J. Hruska, H. M. Hutton and T. Schaefer, Can. J. Chem. 43, 2392 (1965).
- N. F. Ramsey, Phys. Rev. 78, 699 (1950); Phys. Rev. 86, 243 (1952).
- C. H. Yoder, F. K. Sheffy Jr, R. Howell, R. E. Hess, L. Pacala, C. D. Schaeffer Jr and J. J. Zuckerman, J. Org. Chem. 41, 1511 (1976).
- W. B. Smith and T. W. Proulx, Org. Magn. Reson. 8, 205 (1976); W. B. Smith and T. W. Proulx, Org. Magn. Reson. 8, 567 (1976); W. B. Smith, A. M. Ihrig and J. L. Roark, J. Phys. Chem. 74, 812 (1970).
- 8. R. G. Jones and P. Partington, J. Chem. Soc. Faraday Trans. 2 68, 2087 (1973).
- G. E. Maciel and J. J. Natterstad, J. Chem. Phys. 42, 2427 (1965).
- S. Ehrenson, R. T. C. Brownlee and R. W. Taft, Prog. Phys. Org. Chem. 10, 1 (1973); P. R. Wells, Linear Free Energy Relationships, Academic Press, New York (1968).
- J. F. Hinton and B. Layton, Org. Magn. Reson. 4, 353 (1972).
 T. Schaefer, F. Hruska and H. M. Hutton, Can. J. Chem. 45, 3143 (1967).
- W. B. Smith and J. L. Roark, J. Am. Chem. Soc. 89, 5018 (1967); J. L. Roark and W. B. Smith, J. Phys. Chem. 73, 1043 (1969).
- G. C. Swain and E. C. Lupton Jr, J. Am. Chem. Soc. 90, 3925 (1968).
- 15. To be published.

- 16. T. A. Modro, Can. J. Chem. 55, 3681 (1977).
- 17. R. F. Nelson and R. N. Adams, J. Am. Chem. Soc. 90, 3925 (1968).
- J. Piccard and L. M. Larsen, J. Am. Chem. Soc. 39, 2006 (1917).
- J. Piccard and R. Q. Brewster, J. Am. Chem. Soc. 43, 2630 (1921).
- S. C. Creason, J. Wheeler and R. F. Nelson, J. Org. Chem. 37, 4440 (1972).
- J. Ullman, Ber. Dtsch. Chem. Ges. 29, 1878 (1896); J. Ullman, Justus Liebigs Ann. Chem. 332, 38 (1904); J. Ullman, Justus Liebigs Ann. Chem. 366, 79 (1909).
- E. C. Kleiderer and R. N. Adams, J. Am. Chem. Soc. 55, 4219 (1933).
- J. W. Emsley, J. Feeney and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Vol. 2, p. 754ff. Pergamon Press, New York, 1966; G. B. Savitsky, J. Phys. Chem. 67, 2723 (1963); P. C. Lauterbur, J. Am. Chem. Soc. 83, 1838 (1961); P. C. Lauterbur, J. Am. Chem. Soc. 83, 1846 (1961).
- J. B. Stothers, Carbon-13 NMR Spectroscopy, p. 196. Academic Press, New York (1972).
- 25. S. Gould and D. Laufer, J. Magn. Reson. 34, 37 (1979).
- F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc. 91, 4940 (1969).
- W. B. Smith and D. L. Deavenport, J. Magn. Reson. 7, 364 (1972).

Received 28 March 1980; accepted (revised) 1 October 1980 © Heyden & Son Ltd, 1981