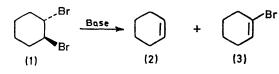
J.C.S. Снем. Сомм., 1972

1289


1-Bromocyclohexene from *trans*-1,2-Dibromocyclohexane; a β-Elimination by a "Complex Base"

By P. CAUBÈRE* and G. COUDERT

(Laboratoire de Chimie Organique I, Université de Nancy I, BP 140-54037, Nancy, France)

Summary The action of $NaNH_2$ -Bu^tONa on trans-1,2-dibromocyclohexane under mild conditions gives 1-bromocyclohexene in good yield. A SURVEY of the literature on β -eliminations brought about by bases, shows that *syn*-eliminations¹ are useful synthetically. There is evidence that the nature and structure of the

J.C.S. Снем. Сомм., 1972

bases used are important in these reactions.² Our previous work has shown that "complex bases"³ can remove a proton under abnormal conditions,^{3,4} and also favour syn-eliminations in halogenobenzenes⁵ and 1-chlorocyclohexenes.⁶ Proof of the generality of the latter property was obtained from preparing some acetylenic hydrocarbons difficult to obtain by other means.⁷ This result led us to a study of the synthesis of 1-bromocyclohexene from trans-1,2-dibromocyclohexane. To our knowledge, no satisfactory method has so far been found for this.⁸ Treatment of the dibromo-compound (1) with base produces (2) and (3) (see Table). Compound (2) results from debromination as occurs with compounds having two antiparallel bromine

Action of bases on trans-1,2-dibromocyclohexane (1) (40 mm) in THF at 20° for 22 h

		Product (%)	
Base (mm)	(1)	(2)ª	(3)ª
NaNH ₂ (180)	90	trace	0
Bu ^t ONa (180)	70 - 75	0	trace
NaNH ₂ -Bu ^t ONa (120-160)	0	36	60 ^b

^a Measured by g.l.c. using the internal standard method. ^b Isolated pure: 50-55%.

atoms,⁸ whereas (3) can only be formed as the result of syn-elimination. The behaviour of the "complex base" (NaNH₂-Bu^tONa) is different of that of either NaNH₂ or Bu^tONa used separately.

We thank P. Bourguignon for the n.m.r. spectra, and D.G.R.S.T. for partial financial support.

(Received, 6th October 1972; Com. 1706.)

- ¹ J. Sicher, Angew. Chem. Internat. Edn., 1972, 11, 200. ² J. Závada and M. Svoboda, Tetrahedron Letters, 1972, 23; M. Svoboda, J. Hapala, and J. Závada, ibid., p. 265.
- ³ P. Caubère and B. Loubinoux, Bull. Soc. chim. France, 1969, 2483.
- ⁴ P. Caubère and G. Coudert, Bull. Soc. chim. France, 1971, 2234.
- ⁵ P. Caubère, G. Guillaumet, and M. S. Mourad, Tetrahedron, 1972, 28, 95 and references therein; P. Caubère and G. Guillaumet, Bull. Soc. chim. France, in the press. P. Caubère and J. J. Brunet, Tetrahedron, 1971, 27, 3515 and references therein; *ibid.*, 1972, in the press.

 - ⁷ P. Caubère and G. Coudert, Tetrahedron, in the press.

⁸ N. A. LeBel, Adv. Alicyclic Chem., 1971, 3, 196; H. Smith, 'Chemistry in Nonaqueous Ionizing Solvents,' Interscience, London and New York, 1963, p. 99; D. D. Davis and G. G. Ansari, J. Org. Chem., 1970, 35, 4285.