# MASS-SPECTROMETRIC INVESTIGATION OF ELECTRON-IMPACT-INDUCED IONIZATION OF CHLORINE DIOXIDE AND CHLORYL FLUORIDE MOLECULES

A. V. Baluev, Z. K. Nikitina, L. I. Fedorova, and V. Ya. Rosolovskii UDC 543.51:541.124.7:546.134:546.162'13

Fisher [1] investigated the formation of positive ions (PI) during ionization of  $ClO_2$  molecules by electron impact (EI). This author determined the ionization potential (IP) of ClO and  $ClO_2$  molecules: IP(ClO) = 11.1 ± 0.1 eV; IP(ClO<sub>2</sub>) = 10.7 ± 0.1 eV; the bond energy of the first oxygen atom in the ClO<sub>2</sub> molecule was found to be  $D_0(O-ClO) = 55 \pm 2 \text{ kcal/mole}$ . Negative ions (NI) in the mass spectrum of ClO<sub>2</sub> were not investigated. No one has previously investigated the ionization of ClO<sub>2</sub>F molecules.

We have investigated the formation of PI and NI in the mass spectrum of  $ClO_2F$ , and NI in the mass spectrum of  $ClO_2$ , to obtain new data and refine existing data on the thermochemical characteristics of these molecules. Simultaneously, we measured the appearance potentials (AP) of PI in the mass spectrum of  $ClO_2$ . The kinetic energies ( $E_k$ ) of most of the PI and NI were measured.

## EXPERIMENTAL

The apparatus and measurement procedure were described in [2]. We obtained  $ClO_2$  by heating at 60°C a wetted mixture of  $KClO_3$  and  $H_2C_2H_4 \cdot 2H_2O$ ; it was freed of  $CO_2$  and kept in a glass capsule, located in a Dewar flask with dry ice.

The mass spectrum of PI, corresponding to the initial admission of  $ClO_2$  into the mass spectrometer, contained mainly  $O^+$ ,  $O_2^+$ ,  $Cl^+$ , and  $Cl_2^+$  ions;  $ClO_2^+$  and  $ClO^+$  ions were absent. It seems that the presence of oxygen and chlorine ions in the mass spectrum is due to decomposition of  $ClO_2$  on the inner surface of the components of the mass spectrometer and admission system. We were able to greatly reduce the degree of decomposition of  $ClO_2$  by prolonged heating of the admission system and analyzer tube at 300-400°C in the presence of argon, followed by direct heating of this oxide. The moment when the intensity of the  $Cl_2^+$  ion peak (m/q = 70) was  $\sim 1\%$  of that of the  $ClO_2^+$  ion (m/q = 67) was taken as the end of passivation. During recording of the ionization efficiency curves (IEC) and the curves of the ion distribution with respect to  $E_k$ , the components of the ion source and the analyzer tube of the mass spectrometer were additionally cooled with liquid N<sub>2</sub>.

As the source of  $ClO_2F$  ions we used its complex with  $BF_3$  – tetrafluoroborate chloride  $ClO_2^+BF_4^-$ . The salt was kept in a quartz capsule at  $-78^{\circ}C$ . The vapor pressure of  $ClO_2F$  and  $BF_3$  above the salt at  $\sim 20^{\circ}C$  is 225 torr. The IR spectrum of the gas exhibits bands of  $ClO_2F$  and  $BF_3$ .

Like  $\text{ClF}_3$  [3],  $\text{ClO}_2\text{F}$  actively reacts with the unpassivated surface of the components of the admission system and the mass spectrometer. As a consequence the mass spectrum of the PI is represented mainly by  $\text{ClO}_3\text{F}^+$ ,  $\text{ClO}_3^+$ ,  $\text{SiF}_3^+$ ,  $\text{Cl}_2^+$ ,  $\text{ClO}_2^+$ ,  $\text{ClO}^+$ ,  $\text{HCl}^+$ ,  $\text{O}_2^+$ ,  $\text{HF}^+$ , and  $\text{F}^+$  ions. It is probable that besides halogenation of the surface of the components and of the substances adsorbed on it, we observe decomposition of  $\text{ClO}_2\text{F}$ ; this is indicated by the high intensity of the  $\text{O}_2^+$  ions. Simultaneously, the mass spectrum displays  $\text{BF}_3^+$ ,  $\text{BF}_2^+$ , and  $\text{BF}^+$  ions as a result of ionization of  $\text{BF}_3$ . To economize on  $\text{ClO}_2\text{F}$ , the surface was passivated with  $\text{ClF}_3$  by the procedure in [3]. This measure was justified, because the molecular ion  $\text{ClO}_2\text{F}^+$  was detected directly when we introduced a mixture of  $\text{ClO}_2\text{F}$  and  $\text{BF}_3$  into the passivated mass spectrometer. The  $\text{ClO}_3\text{F}^+$  and  $\text{ClO}_3^+$  ions disappeared from the mass spectrum, and the intensities of the other accompanying ions were sharply reduced. It was found that at the moment of replacement of  $\text{ClF}_3$  in the admission system by a mixture of  $\text{ClO}_2\text{F}$  and  $\text{BF}_3$ , the mass spectrum displayed  $\text{ClF}_3^+$ ,  $\text{ClF}_2^+$ , and  $\text{ClF}^+$  ions. When the gas in the admission system was replaced thrice, these ions disappeared altogether from the mass spectrum; this is attributable to adsorption of  $\text{ClF}_3$  on the surface of the components of the admission system and the mass spectrometer at the moment of passivation, followed by its desorption when the gas was changed. The distinguishing

Institute of New Chemical Problems, Academy of Sciences of the USSR, Chernogolovka. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 1963-1971, September, 1980. Original article submitted October 16, 1979.

| m/q                                                                                                                                          | Ion                                                                                                                                                                                                                                                                                             | Data of Fisher [1]                                                                                                     |                      | Authors' data                                                                                                                                               |                                                                                                                                  |                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                 | relative in-<br>tensity                                                                                                | AP, eV               | relative in-<br>tensity                                                                                                                                     | AP, eV                                                                                                                           | E <sub>k</sub> , eV                                      |
| 72<br>70<br>69<br>67<br>53<br>51<br>44<br>38<br>37<br>36<br>35<br>32<br>28<br>53<br>32<br>28<br>53<br>35<br>32<br>37<br>35<br>32<br>16<br>16 | $\begin{array}{c} Cl_{2}+\\ Cl_{2}+\\ ClO_{2}+\\ ClO_{2}+\\ ClO_{2}+\\ ClO_{+}\\ ClO_{+}\\ ClO_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{+}\\ Cl_{-}\\ ClO_{-}\\ ClO_{-}\\ ClO_{-}\\ Cl_{-}\\ Cl_{-}\\ Cl_{-}\\ O_{1}-\\ O_{1}-\\ O_{1}-\\ O_{1}-\\ \end{array}$ | $\begin{array}{c} - \\ - \\ 32,0 \\ 100 \\ 10,1 \\ 31,3 \\ 10,4 \\ 0,5 \\ 0,6 \\ 1,5 \\ 1,9 \\ 2,1 \\ 4,1 \end{array}$ | 10,7±0,1<br>13,5±0,1 | $\begin{array}{c} 0,6\\ 1,0\\ 33,0\\ 100\\ 16,0\\ 48,2\\ 14,2\\ 1,2\\ 3,2\\ 3,8\\ 9,5\\ 7,1\\ 7,0\\ 32,5\\ 100\\ 13,2\\ 40,6\\ 1,1\\ -\\ 1,1\\ \end{array}$ | $\begin{array}{c} 10,77\pm0,10\\ 13,55\pm0,08\\ 0,27\pm0,07\\ 0,23\pm0,07\\ 0,00\pm0,03\\ \approx 1\\ 3,75\pm0,07\\ \end{array}$ | 0,032±0,004<br>0,043±0,006<br>0,059±0,017<br>0,020±0,020 |

TABLE 1. Relative Intensities, Appearance Potentials (AP), and Kinetic Energies ( $E_k$ ) of Positive and Negative Ions in the Mass Spectrum of ClO<sub>2</sub>\*

\*The mass spectrum of PI corresponds to 70 V of ionizing potential. The NI current intensity was measured at the IEC maximum.

feature of the mass spectrum of a mixture of  $ClO_2F$  and  $BF_3$  is a constant change in the  $Cl_2^+$  ion current intensity. In the case of liquid N<sub>2</sub> cooling of the mass-spectrometer analyzer tube and the ion source components, at the beginning of admission of a mixture of  $ClO_2F$  and  $BF_3$ , the mass spectrum does not exhibit  $Cl_2^+$  ions, but after 30 min the  $Cl_2^+$  ion current intensity becomes sufficient to mask the  $ClOF^+$  ion, coinciding in mass with the  $Cl_2^+$  ion (m/q = 70 and 72). This means that we were unable to measure the AP of the  $ClOF^+$  ion.

### DISCUSSION OF RESULTS

<u>Chlorine Dioxide</u>. Table 1 gives the relative intensities, the AP, and the  $E_k$  of the ions in the mass spectrum of ClO<sub>2</sub>. Figures 1-3 show the IEC, PI, and NI. Our data for the PI agree completely with those in [1]. Using photoelectron spectroscopy, Bulgin et al. [4] found that the first vertical IP of the ClO molecule is 11.01 ± 0.01 eV. The combination of this value of the IP(ClO) with our measured values of AP(ClO<sup>+</sup>) and  $E_k$  of the ionization products in the process

$$ClO_2 + \vec{e} \rightarrow ClO^+ + O + 2\vec{e}$$
<sup>(1)</sup>

gives, for the upper limit of the bond energy of the first oxygen atom in the  $ClO_2$  molecule, the value  $D_0(O-ClO) = 2.40 \pm 0.08$  eV or 55.3  $\pm 1.9$  kcal/mole. This value agrees with that given in a reference work [5] (57.6  $\pm 1.5$  kcal/mole).

Fisher [1] noted distinguishing features in the IEC of the  $ClO_2^+$  ion. We also observed complexities in the IEC of this ion, manifested in the absence of a linear sector of the curve from the AP up to 14.5 eV. Such behavior of the IEC cannot be attributed to the electron energy distribution. This phenomenon remains obscure.

In the mass spectrum of the NI the most intense ion  $\text{ClO}^-$  is formed from the  $\text{ClO}_2$  molecule in the process

$$ClO_2 + \vec{e} \to ClO^- + 0 \tag{2}$$

Calculation of the electron affinity (EA) of the ClO molecule, taking account of the measured AP(ClO<sup>-</sup>) and  $E_k$  of the ionization products and the calculated value of  $D_0(O-ClO) = 2.40 \pm 0.08 \text{ eV}$ , gives the value EA(ClO)  $\geq 2.35 \pm 0.12 \text{ eV}$  or  $54.2 \pm 2.8 \text{ kcal/mole}$ . According to [5],  $D_0(O-ClO) = 2.91 \text{ eV}$ . I. [5] the estimated value of the heat of hydration of the ClO<sup>-</sup> ion was used and therefore the result is an estimate.

During resonance capture of an electron by the  $ClO_3F$  molecule, Dibeler et al. [6] obtained three values for AP(ClO<sup>-</sup>): 2.4 ± 0.3, 4.6 ± 0.3, and 8.5 ± 0.3 eV. In our opinion, the processes of formation of the ClO<sup>-</sup> ion



Fig. 1. Ionization efficiency curves of  $ClO_2$  with formation of positive ions: 1)  $ClO_2^+$ ; 2)  $ClO^+$ ; 3) Ar<sup>+</sup>. Here and below the ion current is given in arbitrary units. The middle scale of abscissas refers to curve 2, the lower one to curve 3.

Fig. 2. Ionization efficiency curves of  $ClO_2$  with formation of negative ions: 1)  $SF_6$ ; 2)  $O_2$ ; 3)  $ClO^-$ ; 4)  $SF_5$ .

from the  $ClO_3F$  molecule, postulated in [6], are doubtful. The difference in the first two values of the AP of  $ClO^-$  agrees with the bond energy of the atoms in the OF molecule [5]; therefore, it is preferable to assign the first two potentials to the processes

$$ClO_{3}F + \vec{e} \rightarrow ClO^{-} + O + OF$$

$$ClO_{*}F + \vec{e} \rightarrow ClO^{-} + 2O + F$$

$$(3)$$

$$(3)$$

The third value of AP(ClO<sup>-</sup>) possibly corresponds to a process with a high value of the sum of the excitation energies and the  $E_k$  of the ionization products. Calculation of EA(ClO) from the equation of the energy balance corresponding to process (4), using the data of [5] and the value  $\Delta H_{f_{298}}(ClO_3F) = -5.40 \pm 0.24 \text{ kcal/mole}$  [7], gives the value EA(ClO)  $\geq 2.6 \pm 0.3 \text{ eV}$ . This value agrees with the one we obtained.

Like the ClO<sup>-</sup> ion, the  $O_2^-$  ion of the ClO<sub>2</sub> molecule is uniquely formed by the scheme

$$ClO_2 + \vec{e} \to O_2^- + Cl \tag{5}$$

Taking account of the thermochemical data in [5], the calculated  $AP(O_2)$  in process (5) is  $-0.28 \pm 0.07$  eV. The existence of the  $O_2^-$  ion in the mass spectrum of  $ClO_2$  indicates the presence of an excitation energy of the ionization products in process (5), equal to  $0.24 \pm 0.09$  eV.

The IEC of the O<sup>-</sup> ion exhibits two peaks. Owing to the low relative intensity of the first peak, the origin of the curve is estimated as 1 eV. Linear extrapolation (see Fig. 3) gives the value of  $3.75 \pm 0.08$  eV for AP(O<sup>-</sup>). This value agrees closely with the calculated value  $3.78 \pm 0.06$  eV, obtained by taking account of the thermochemical characteristics [5], if we assume that the O<sup>-</sup> ion is formed in the process

$$ClO_2 + \vec{e} \rightarrow 0^- + 0 + Cl \tag{6}$$

Similar calculation of  $AP(O^{-})$  in the process

$$ClO_2 + \vec{e} \to 0^- + ClO \tag{7}$$

gives the value  $1.02 \pm 0.06$  eV. Our estimated value of AP(O<sup>-</sup>), corresponding to the IEC origin, coincides with the calculated value. We can therefore assert that formation of the O<sup>-</sup> ion in processes (6) and (7) is possible, but the probability of formation of this ion in (6) is higher.

Formation of the  $\mbox{Cl}^-$  ion from the  $\mbox{Cl}O_2$  molecule is also possible in the two processes

$$ClO_2 + \vec{e} \rightarrow Cl^- + O_2 \tag{8}$$

$$ClO_2 + \vec{e} \to Cl^- + 20 \tag{9}$$



Fig. 3. Ionization efficiency curves of  $ClO_2$  with formation of negative ions: 1)  $SF_6^-$ ; 2) O<sup>-</sup>.

Fig. 4. Ionization efficiency curves of  $ClO_2F$  with formation of positive ions: 1)  $Xe^+$ ; 2)  $ClO_2F^+$ ; 3)  $ClO_2^+$ ; 4)  $ClO^+$ ; 5)  $Ar^+$ . The middle axis of abscissas refers to curve 3, the lower one to curves 4 and 5.

| m/q                                          | Ion                                                                                                                                                                             | Relative in-<br>tensity                        | AP, eV                   | E <sub>k</sub> , eV |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|---------------------|
| 88<br>86<br>74<br>72<br>70<br>69             | $\begin{array}{c} \text{ClO}_2\text{F}^+\\ \text{ClO}_2\text{F}^+\\ \text{Cl}_2^+\\ \text{Cl}_2^+; \text{ ClOF}^+\\ \text{Cl}_2^+; \text{ ClOF}^+\\ \text{ClO}_2^+ \end{array}$ | 1,5<br>4,4<br><0,01<br>4,1<br>11,9<br>33,0     | 12,41±0,10               | 0,021±0,004         |
| 68<br>67                                     | BF3 <sup>+</sup><br>BF3 <sup>+</sup> ; ClO2 <sup>+</sup>                                                                                                                        | 6,0<br>100                                     | 11,1±0,3<br>13,15±0.08   | 0,015±0,006         |
| 53<br>51                                     | ClO+<br>ClO+                                                                                                                                                                    | 4,2<br>12,8                                    | 13,41±0,08<br>16,07±0,06 | 0,041±0,009         |
| 49<br>48<br>44<br>38<br>37<br>36<br>35<br>32 | $BF_{2}^{+}$ $BF_{2}^{+}$ $CO_{2}^{+}$ $HCl^{+}$ $Cl^{+}$ $Cl^{+}$ $Cl^{+}$ $Cl^{+}$                                                                                            | 32,8<br>7,3<br>3,6<br>2,4<br>0,4<br>7,4<br>1,4 | 42 46±0.05               | 0.017 + 0.000       |
| 32<br>30<br>29<br>28                         | $\begin{array}{c} 0_{2}^{+} \\ BF^{+} \\ BF^{+} \\ N_{2}^{+}; CO^{+} \end{array}$                                                                                               | 0,06<br>0,01<br>0,6                            | 14,10±0,05               | 0,014± <b>0,006</b> |

TABLE 2. Relative Intensities, Appearance Potentials, and Kinetic Energies of Positive Ions in the Mass Spectrum of  $ClO_{2}F$ 

The AP(Cl<sup>-</sup>) in these processes, calculated from thermochemical characteristics [5], are  $-3.48 \pm 0.06$  and  $1.62 \pm 0.06$  eV, respectively. Comparison of the calculated values with AP(Cl<sup>-</sup>) =  $0.23 \pm 0.07$  eV excludes process (9) from the examination. Process (8) is possible when the sum of  $E_k$  and the excitation energy of the ionization products is  $3.71 \pm 0.09$  eV. It is more probable that the Cl<sup>-</sup> ion is formed during ionization of the molecules of some accompanying gaseous chloride.

<u>Chloryl Fluoride</u>. Tables 2 and 3 give the AP,  $E_k$ , and relative intensities of the PI and NI in the mass spectrum of ClO<sub>2</sub>F. Table 2 includes the mass spectra of BF<sub>3</sub> and other accompanying gases. Figures 4 and 5 give the IEC of most of the recorded ions in the mass spectrum of ClO<sub>2</sub>F.

Dudin et al. [8] showed that the systematic overestimate of the AP in the electron impact (EI) method in comparison with the photoionization method is less than 0.1 eV. In this connection the measured AP of the  $ClO_2F^+$  ion corresponds to the upper limit of the adiabatic IP of the  $ClO_2F$  molecule and is 12.41 ± 0.10 eV.

The origin of the IEC of the  $ClO_2^+$  ion corresponds to 11.1 ± 0.3 eV. The IEC has a break at 13.15 ± 0.08 eV. Within the limits of reproducibility of the results the first value coincides with  $IP(ClO_2)$  (see Table 1).

TABLE 3. Relative Intensities, Appearance Potentials, and Kinetic Energies of Negative Ions in the Mass Spectrum of  $ClO_2F$ 

| m/q            | Ion                                                                                    | Relative in-<br>tensity | A₽, eV                         | E <sub>k</sub> , eV                |  |
|----------------|----------------------------------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|--|
| 72<br>70<br>69 | CIOF-<br>CIOF-<br>CIO <sub>21</sub>                                                    | 10,8<br>32,1<br>3,8     | 0,88±0, <b>12</b>              | 0,050±0,010                        |  |
| 67             | $\begin{array}{c} ClO_{211} \\ ClO_{\overline{21}} \\ ClO_{\overline{21}} \end{array}$ | 6,2<br>11,6             | $0,66 \pm 0.09$                | $0,040\pm0,005$                    |  |
| 56<br>54       | ClF-<br>ClF-                                                                           | 10,4<br>32,6            | 5,50-0,11                      | 0,045-0,012                        |  |
| əə<br>54       |                                                                                        | 4,8<br>32,3             | 0.221.0.40                     | 0.028 / 0.044                      |  |
| 51             | ClO <sub>I</sub>                                                                       | 15,2                    | $0,33\pm0,10$<br>$3,53\pm0,10$ | $0,050\pm0,011$<br>$0,061\pm0,010$ |  |
| 37<br>35       | CI-                                                                                    | 31,5                    |                                |                                    |  |



Fig. 5. Ionization efficiency curves of  $ClO_2F$ with formation of negative ions: 1)  $SF_6^-$ ; 2)  $ClO^-$ ; 3)  $ClOF^-$ ; 4)  $ClO_2^-$ .

This may indicate that  $ClO_2F$  reacts with the surface of the components of the mass spectrometer, leading to formation of  $ClO_2$ . The break on the IEC is most likely due to formation of the  $ClO_2^+$  ion in the process

$$ClO_{2}F + \vec{e} \rightarrow ClO_{2}^{+} + F + 2\vec{e}$$
(10)

and is manifested more strongly in the case of liquid  $N_2$  cooling of the components of the ion source and massspectrometer analyzer chamber, owing to the decrease in the intensity of the initial sector of the IEC. This is further proof that the  $AP(ClO_2^+)$  of process (10) is  $13.15 \pm 0.08 \text{ eV}$ . Taking account of the measured  $E_k$  of the ionization products of the  $ClO_2F$  and  $ClO_2$  molecules, the difference in  $AP(ClO_2^+)$  and  $IP(ClO_2)$  gives for the bond energy of the fluorine atom in the  $ClO_2F$  molecule the value  $D_0(F-ClO_2) = 2.38 \pm 0.13 \text{ eV}$  or  $54.9 \pm 3.0 \text{ kcal} / \text{mole}$ .

From the viewpoints of structure and behavior in relation to cooling with liquid  $N_2$ , the IEC of the ClO<sup>+</sup> ion is analogous to that of the  $ClO_2^+$  ion. Within the limits of the experimental error the origin of the IEC, corresponding to 13.41 ± 0.08 eV, coincides with the AP of the ClO<sup>+</sup> ion from the ClO<sub>2</sub> molecule (Table 1); this is additional proof of the presence of ClO<sub>2</sub> in the region of the ionization chamber. We assign the break on the IEC to the process

$$ClO_2F + \vec{e} \rightarrow ClO^+ + O + F + 2\vec{e}$$
(11)

Taking account of the  $E_k$  of the ionization products in process (11), the difference in AP(ClO<sup>+</sup>) = 16.07 ± 0.06 and IP(ClO) = 11.01 ± 0.01 eV [4] gives for the energy of detachment of fluorine and oxygen atoms the value  $D_0(O, F-ClO) = 5.00 \pm 0.06 \text{ eV}$  or  $115.3 \pm 1.4 \text{ kcal/mole}$ . In this case the bond energy of the first oxygen atom in ClO<sub>2</sub>F is 2.62 ± 0.14 eV or 60.4 ± 3.2 kcal/mole. Taking account of [5], calculation of the  $\Delta H_{f_0}^0(ClO_2F)$  from processes (10) and (11) leads to the values  $-10.8 \pm 3.4$  and  $-13.4 \pm 1.5$  kcal/mole, respectively; the mean value is  $-12.1 \pm 1.4 \text{ kcal/mole}$ , agreeing with the value  $\Delta H_{f_298}^0(ClO_2F) = -8.1 \pm 12.5 \text{ kcal/mole}$ , obtained by the thermochemical method [9].

The IEC of the ClOF<sup>-</sup> ion exhibits another peak, corresponding to dissociative capture of an electron by the ClO<sub>2</sub>F molecule with AP(ClOF<sup>-</sup>) =  $0.88 \pm 0.12$  eV. The ClOF<sup>-</sup> ion can be formed from the ClO<sub>2</sub>F molecule only by the scheme

$$ClO_2F + \vec{e} \rightarrow ClOF^- + O$$
 (12)

Bearing in mind the above-calculated value of the bond energy  $D_0(\text{CIOF}-O)$  and the measured AP and  $E_k$  of the ionization products in process (12), we obtain EA(CIOF) = 2.00 ± 0.19 eV or 46.1 ± 4.4 kcal/mole. Furthermore, the values obtained above for  $\Delta H_{f_0}^0(\text{CIO}_2\text{F})$  and  $D_0(\text{CIOF}-O)$  permit calculation of the heat of formation of the CIOF molecule:  $\Delta H_{f_0}^0(\text{CIOF}) = -29.8 \pm 3.5 \text{ kcal/mole}$ . In the calculation we used the data of [5].

The IEC of the  $ClO_2^-$  ion displays two resonance peaks. Clearly, there are two ways in which the  $ClO_2^-$  ion can be formed from the  $ClO_2F$  molecule, the ionization products having different excited states. In that case we naturally assign the lower value  $AP(ClO_2^-) = 0.66 \pm 0.09 \text{ eV}$  to the ionization process

$$\operatorname{ClO}_2 \mathbf{F} + \vec{e} \to \operatorname{ClO}_2^- + \mathbf{F}$$
 (13)

with the low value of the excitation energy of the ionization products. Calculation of the electron affinity from the measured AP and  $E_k$  of the ionization products in process (13), taking account of the above-calculated bond energy  $D_0(F-ClO_2)$ , gives the value  $EA(ClO_2) \ge 1.77 \pm 0.16$  eV or  $40.8 \pm 3.7$  kcal/mole. The literature does not give the exact value of the EA of the  $ClO_2$  molecule. The value given in [5], 3.43 eV, is a distortion of the data of Weiss [10], who gives the value 2.8 eV. The value  $EA(ClO_2) = 2.8$  eV, taken by the authors of [5] from [10], was erroneously attributed to the EI method. In the calculation of  $EA(ClO_2)$ , Weiss [10] used the estimated heat of hydration of the  $ClO_2^-$  ion. Without exact data on the heat of hydration of the  $ClO_2^-$  ion, we must regard the value of 2.8 eV for  $EA(ClO_2)$  as an estimate. Zolotukhin et al. [11] measured the thermal effect of the reaction

$$\operatorname{ClO}_{2\operatorname{soln}} + \overline{e} \to \operatorname{ClO}_{2\operatorname{soln}}^{\bullet}$$
(14)

 $\Delta H_{298} = 25.71 \text{ kcal/mole.}$  However, owing to the absence of data on the heats of hydration of the ClO<sub>2</sub><sup>-</sup> ion and the ClO<sub>2</sub> molecule we cannot use this value for calculating the electron affinity of ClO<sub>2</sub>. For subsequent use, we recommend the value 1.80 ± 0.16 eV as the value of EA (ClO<sub>2</sub>).

The IEC of the ClO<sup>-</sup> ion also exhibited two peaks corresponding to two processes of its formation. The AP and  $E_k$  of the ion, determined from the first peak, are practically the same as those of the ClO<sup>-</sup> ion formed during resonance capture of an electron by the ClO<sub>2</sub> molecule. Above, for the case of the AP of ClO<sup>+</sup> and ClO<sup>+</sup><sub>2</sub> ions we showed that the ClO<sub>2</sub> F investigated contained ClO<sub>2</sub> as an impurity. The coincidence of the AP(ClO<sup>-</sup>) here and for ClO<sub>2</sub> is also attributable to the presence of ClO<sub>2</sub> in the gas. In that case the second AP of the ClO<sup>-</sup> ion, AP(ClO<sup>-</sup>) = 3.53 ± 0.10 eV, very probably belongs to the capture of an electron by the ClO<sub>2</sub> F molecule. There are two possible routes of formation of the ClO<sup>-</sup> ion from a ClO<sub>2</sub> F molecule

$$ClO_2F + \vec{e} \rightarrow ClO^- + OF$$
 (15)

$$ClO_2F + \vec{e} \rightarrow ClO^- + O + F \tag{16}$$

Calculation of the electron affinity of the ClO molecule by (15) and (16) gives the values  $EA(ClO) = -0.69 \pm 0.25$ and  $1.53 \pm 0.14 \text{ eV}$ , respectively. The first of the negative values indicates that there is no possibility of formation of the ClO<sup>-</sup> ion from a ClO<sub>2</sub>F molecule by Eq. (15). The second value has the meaning of the lower limit of the EA of the ClO molecule. Therefore, of the two above-calculated values of the electron affinity of the ClO molecule we recommend the value  $2.35 \pm 0.12 \text{ eV}$  for subsequent use.

At present the measured value of  $AP(C1^{-})$  in the mass spectrum of  $ClO_2F$  cannot be assigned to any particular process of formation of the  $C1^{-}$  ion.

## CONCLUSIONS

1. Using the electron-impact method the authors have investigated the ionization of  $ClO_2$  and  $ClO_2F$  molecules with formation of positive and negative ions<sub>4</sub>

2. They have calculated the energies of the  $F-ClO_2$ , O, F-ClO, and O-ClOF bonds, the heats of formation of ClO<sub>2</sub>F and ClOF, and the lower limits of the electron affinity of ClO, ClO<sub>2</sub>, and ClOF molecules.

#### LITERATURE CITED

- 1. I. P. Fisher, Trans. Faraday Soc., 63, 684 (1967).
- 2. A. V. Dudin, A. V. Baluev, and L. N. Gorokhov, Izv. Akad. Nauk SSSR, Ser. Khim., 1306 (1978).
- 3. A. V. Dudin, L. N. Gorokhov, and A. V. Baluev, Izv. Akad. Nauk SSSR, Ser. Khim., 2408 (1979).
- 4. D. K. Bulgin, I. H. Dyke, N. Jonathan, and A. Morris, J. Chem. Soc. Faraday Trans., 2, 456 (1979).
- 5. V. N. Kondrat'ev (editor), The Splitting Energies of Chemical Bonds. Ionization Potentials and Electron Affinity. A reference work [in Russian], Nauka (1974).
- 6. V. H. Dibeler, R. M. Reese, and D. E. Mann, J. Chem. Phys., 27, 176 (1957).
- 7. J. M. Cartwright and A. A. Woolf, J. Fluor. Chem., 13, 353 (1979).
- 8. A. V. Dudin, A. V. Baluev, and L. N. Gorokhov, Izv. Akad. Nauk SSSR, Ser. Khim., 2172 (1979).
- 9. P. Barberi, Bull. Inform. Sci. Technol., CEA, 180, 55 (1973).
- 10. I. Weiss, Trans. Faraday Soc., <u>43</u>, 173 (1947).
- 11. V. M. Zolotukhin, I. E. Flis, and K. P. Mishchenko, Zh. Prikl. Khim., <u>38</u>, 369 (1965).