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Abstract A novel diaminomethyleneindenedione (DMI) organocata-
lyst efficiently promotes the asymmetric conjugate addition of a ketone
to a maleimide to afford the corresponding addition product in a high
yield with up to 99% enantiomeric excess.
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Asymmetric conjugate additions of nucleophiles to ma-
leimides using organocatalysts have attracted a great deal
attention,! because organocatalysis is an environmentally
benign method, and the substituted succinimide derivative
addition products are valuable intermediates for synthesiz-
ing natural products and some candidates for use as clinical
drugs.? Melchiorre and coworkers described their pioneer-
ing work in this area using natural cinchona alkaloids to
catalyze enantioselective conjugate additions of 1,3-dicar-
bonyl compounds to maleimides,® and Michael additions of
various nucleophiles to maleimides have been devel-
oped.'4-6 There have been several reports of asymmetric
conjugate additions of aldehydes to maleimides using or-
ganocatalysts,* but successful conjugate additions of simple
ketones, such as acetone or cyclohexanone, to maleimides
have rarely been reported.’ Therefore, the development of a
novel organocatalyst for Michael reactions between ma-
leimides and simple ketones remains a challenging research
theme in organic chemistry.

Conversely, thiourea and squaramide are excellent mo-
tifs for efficient organocatalysts, and they function as dou-
ble-hydrogen-bonding donors that offer highly efficient
catalytic activities in various asymmetric reactions, allow-
ing the production of enantiomerically enriched mole-
cules.” In recent years, we have developed the diamino-
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methylenemalononitrile (DMM) motif, which has an excel-
lent double-hydrogen-donating functional group for use
instead of the thiourea and squaramide motifs.8-!1 Organo-
catalyst 1, which bears the DMM motif and a primary
amine group, accelerates reactions between aldehydes and
vinyl sulfone, giving the corresponding adducts with a high
degree of stereoselectivity.® Furthermore, 1 promotes the
conjugate addition of a malonate to an o,B-unsaturated ke-
tone without requiring a reaction solvent, and Michael ad-
ducts with excellent enantioselectivities are produced.® We
also reported that the pyrrolidine-DMM organocatalyst 2 is
a good catalyst for asymmetric conjugate additions of ke-
tones to nitroalkenes and stereoselective direct aldol reac-
tions of ketones with aromatic aldehydes.!® In addition, we
have described a cinchona-DMM organocatalyst for the
asymmetric conjugate addition of a 1,3-diketone to ni-
troalkenes.!' To demonstrate further benefits of the DMM
motif in organocatalysts, we attempted to use organocata-
lysts 1 and 2 (each have a DMM skeleton, Figure 1) to cata-
lyze the asymmetric conjugate additions of simple ketones
to maleimides.

We examined the abilities of the DMM organocatalysts
1 and 2 to catalyze the asymmetric conjugate addition of
acetone to N-phenylmaleimide (4a), as shown in Table 1.
Organocatalyst 1, which has a primary amine group, pro-
vided the desired product 5a in a low yield with moderate
enantioselectivity (Table 1, entry 1). Organocatalyst 2,
which has a secondary amine group, promoted the conju-
gate addition reaction, and no 5a was produced (Table 1,
entry 2). Unfortunately, neither 1 nor 2 was a good catalyst
for the Michael reaction of maleimides with acetone. How-
ever, a tendency was found for organocatalysts with prima-
ry amine groups, such as 1, to be suitable for catalyzing
conjugate addition. We presumed that introducing a more
powerful electron-withdrawing group than the cyano
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Figure 1 Structure of organocatalysts

group would be required to develop a more reactive or-
ganocatalyst. Organocatalyst 3, which has a 2-(diamino-
methylene)indene-1,3-dione (DMI) skeleton and contains
carbonyl groups rather than the cyano groups that are pres-
ent in 1, was found to be a good catalyst, giving the desired
adduct 5a in moderate yield with a high degree of enanti-
oselectivity (Table 1, entry 3). Here, we describe efficient
conjugate additions of simple ketones to maleimides using
the DMI organocatalyst 3 rather than the DMM motif.

Table 1 Selection of Organocatalysts?

0 catalyst PhCO,H o
0 (0.1 equiv) (0.1 equiv) \H/f
| N—Ph + )K — N—Ph
5 ) toluene, r.t.
equiv
(0]
4a 5a
Entry Catalyst Time (h) Yield (%)° ee (%)°
1 1 170 16 57
2 2 170 n.d.d -
3 3 95 59 89

2 Reactions conditions: 4a (0.20 mmol), acetone (1.0 mmol), and catalyst
(0.020 mmol) in toluene (0.2 mL) were stirred at rt.

b Isolated yields.

¢ Determined by HPLC analysis.

4 Not detected.

Organocatalyst 3 was easily prepared from the known
compound 62 in two steps, as shown in Scheme 1. The re-
action of 6 with 3,5-bis(trifluoromethyl)benzylamine (7)
under reflux conditions in THF provided intermediate 8 in
93% yield. Intermediate 8 was then reacted with (1R,2R)-
cyclohexane-1,2-diamine (9) to afford the desired DMI
organocatalyst 313 in 63% yield.

7N FoC NH,
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Scheme 1 Preparation of organocatalyst 3

We performed tests to determine the optimal condi-
tions for the enantioselective conjugate addition using 3, as
shown in Table 2. The conjugate addition reactions were
conducted using acetone and 4a as test reactants in the
presence of a catalytic amount of 3 and the chosen additive
at room temperature. p-Xylene was found to be the most
suitable of the reaction solvents that were tested (Table 2,
entries 2-9). We examined the effects of the presence of
different protic acids, and benzoic acid was found to be the
most suitable additive (Table 2, entries 9-13). Adding 0.2 or
0.05 equivalents of benzoic acid resulted in a slight loss of
enantioselectivity (Table 2, entries 14 and 15). Performing
the reaction under dilute conditions tended to improve the
enantioselectivity (Table 2, entry 16). Conducting the reac-
tion at 40 °C in the presence of 0.2 equivalents of 3 gave
both a high yield and a high degree of enantioselectivity
(Table 2, entry 18).

Considering these optimal conditions, we examined the
scope and limitations of the conjugate additions between
ketones and maleimides 4 (Table 3).1* The reaction between
acetone and N-benzylmaleimide (4b) proceeded smoothly
to afford the corresponding product 5b in high yield with
excellent enantioselectivity (Table 3, entry 2). We tested
maleimides with electron-withdrawing groups, such as
halogen atoms and trifluoromethyl groups, on the aromatic
ring. The reactions between maleimides with electron-
withdrawing groups and acetone proceeded smoothly giv-
ing the corresponding adducts 5¢c-e in good to high yields
and with a high degree of enantioselectivity (Table 3, en-
tries 3-5).

Organocatalyst 3 promoted the reaction between ace-
tone and maleimides bearing methyl or methoxy electron-
donating groups to provide the corresponding adducts 5f-h
in good to high yields and with a high degree of enantiose-
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Table 2 Optimization of Reaction Conditions®

e}
(0.1 equw
| N—Ph + —_— N—Ph
rt., 48 h
O (5 equiv)
4a 5a
Entry Solvent Additive (equiv) Yield (%)° ee (%)°

14 CH,Cl, none 12 75
2 CH,Cl, PhCO,H (0.1) 32 79
3 MeOH PhCO,H (0.1) 37 37
4 MeCN PhCO,H (0.1) 44 36
5 THF PhCO,H (0.1) 61 85
6 toluene PhCO,H (0.1) 58 89
7 o-xylene PhCO,H (0.1) 63 88
8 m-xylene PhCO,H (0.1) 60 88
9 p-xylene PhCO,H (0.1) 50 91
10 p-xylene MeCO,H (0.1) 70 89
11 p-xylene 4-0,NCgH,4CO,H (0.1) 51 88

12 p-xylene TFA (0.1) trace -
13 p-xylene 4-MeOCgH,CO,H (0.1) 62 88
14 p-xylene PhCO,H (0.2) 48 85
15 p-xylene PhCO,H (0.05) 66 88
16¢ p-xylene PhCO,H (0.05) 57 93
17ef p-xylene PhCO,H (0.1) 68 90
18¢f9  p-xylene PhCO,H (0.1) 81 92

2 Reaction conditions (unless otherwise noted): 4a (0.20 mmol), acetone
(1.0 mmol), and catalyst 3 (0.020 mmol) in solvent (0.2 mL) were stirred at
r.t. for 48 h.

bIsolated yields.

¢ Determined by HPLC analysis.

9 The reaction was carried out for 65 h.

e p-Xylene (0.4 mL) was used.

fThe reaction was carried out at 40 °C.

9 Catalyst 3 (0.2 equiv) was used.

lectivity (Table 3, entries 6-8). Isobutyraldehyde reacted
with N-phenylmaleimide (4a) to afford the corresponding
adduct 5i in 74% yield with 94% enantiomeric excess (Table
3, entry 9). Cyclohexanone, another type of ketone, reacted
with 4a to provide the corresponding product 5j in 95%
yield with poor diastereoselectivity, but the enantioselec-
tivities for the syn and anti isomers were excellent (Table 3,
entry 10). The stereochemistry of the addition products
5a-j was determined by comparison with reported chiral-
phase HPLC retention times and optical rotation data.’
After considering the stereochemistry of the addition
products 5 we presumed that the conjugate addition of ace-
tone to a maleimide involving the DMI organocatalyst 3
progressed via a plausible transition state (Figure 2). The
primary amine group in 3 condenses with acetone to form
enamine intermediates. The two amine protons of the DMI

1250

skeleton can then function as hydrogen-bonding donors,
giving a rigid interaction with the maleimide oxygen. These
interactions can control the direction (Si-face attack) from
which the enamine intermediates approach the maleimide.
This ultimately leads to the corresponding addition product
being formed with excellent enantioselectivity.

Table 3 Conjugate Additions Using Organocatalyst 3?

9 3 PhCO,H
bonvl (0.2 equiv) (0.1 equiv)
_ carbony!
| N—R compound product
(5 equiv) p-xylene, 40°C, 48 h 5
o]
4
Entry  Product Yield (%)° ee (%)°
0
1 O NP 81 92
o]
5a
0
2 7)]/ N—Bn 92 95
o)
5b
0
3 7)]/ <§N4®78r 36 90
o)
5¢c
0 cl
4 T QN‘G 79 86
o)
5d
0] CF3
5¢ T EIéNO 65 92
o)
Se
0
6e \([)]/ ilé"‘ < >_ 51 89
o)
5f
0
7 \([3]/ N‘@ 80 86
o]
59
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Table 3 (continued)

Entry  Product Yield (%)° ee (%)°

| wgg .

99 (syn)

f
% 99 (anti)

2 Reactions conditions (unless otherwise noted): 4 (0.20 mmol), carbonyl
compounds (1.0 mmol), and catalyst 3 (0.040 mmol) in p-xylene (0.4 mL)
were stirred at 40 °C for 48 h.

bIsolated yields.

¢ Determined by HPLC analysis.

9 The reaction was carried out at r.t.

€ The reaction mixture was stirred for 140 h.

fThe ratio of syn and anti isomers was 51:49.

O O

N N“"

NH
CF3 \ Y

S/ face attack

(o)

Figure 2 Plausible transition-state model

In conclusion, the DMI organocatalyst 3, which can easi-
ly be prepared from 6 in two steps, is an excellent catalyst
for the conjugate additions of ketones to maleimides, pro-
viding the corresponding addition products 5 in high yields
and with a high degree of enantioselectivity (up to 99% ee).
We have demonstrated that the DMI motif can function as a
more efficient double-hydrogen-bond donor than can the
DMM motif in conjugate additions to maleimides. In our
laboratory, we are currently attempting to apply organocat-
alysts with DMI motifs to other types of stereoselective re-
action and to develop additional novel DMI organocatalysts.
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