MÖSSBAUER STUDIES ON FERROCENE COMPLEXES # XVI *. STRUCTURE OF TRIORGANOSTANNYL DERIVATIVES OF DIMETHYLAMINOMETHYLFERROCENE AND N. N-DIMETHYLBENZYLAMINE J. AZIZIAN ** Department of Chemistry, Shahid Chamran University, Ahwaz (Iran) R.M.G. ROBERTS *** and J. SILVER *** Department of Chemistry, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex (Great Britain) (Received September 24th, 1985) #### **Summary** A series of new stannylated derivatives of dimethylaminomethylferrocene (DMAMF) and N, N-dimethylbenzylamine have been synthesised and their structures investigated by ¹H, ¹³C and ¹¹⁹Sn NMR together with ⁵⁷Fe and ¹¹⁹Sn Mössbauer spectroscopy. Polystannylated derivatives were synthesised from DMAMF and BuLi in the presence of TMED. The methylene protons of the CH₂NMe₂ group were diastereotopic for all the DMAMF derivatives synthesised. The chemical shift differences of these protons is discussed in terms of conformational changes. ¹³C and ¹¹⁹Sn shifts were used to establish the substitution patterns in the polystannylated derivatives. ¹³C shifts for the 2-substituted derivatives of both DMBA and DMAMF were reasonably additive, for both the free amines and the quaternary ammonium salts. The Mössbauer data show no evidence of pentacoordination in any of the derivatives. #### Introduction The use of the dimethylaminomethyl group to stabilise organometallic systems has been known for some time. Thus N, N-dimethylbenzylamine (DMBA) is lithiated selectively in the 2-position [2] owing to coordination by the NMe₂ group. This ^{*} For part XV see ref. 1. ^{**} Honorary visiting fellow. (Dept. of Chemistry, University of Essex). ^{***} Addressees for correspondence. finding was extended to dimethylaminomethylferrocene [3] (DMAMF) and led to the synthesis of a number of new 2-substituted ferrocenes [4]; these now include mercury [5,6], manganese [7], platinum [8,9] and palladium [9] derivatives. In addition new chiral triorganotin halides have been prepared from 2-lithio N, N-dimethylbenzylamine [10]. These have distorted trigonal-bipyramidal geometries [11] as a result of intramolecular coordination by the NMe₂ group. We have very recently studied the structures and reactivities of some stannylated ferrocenes using both ⁵⁷Fe and ¹¹⁹Sn Mössbauer spectroscopy in conjunction with ¹¹⁹Sn NMR. We present here an extension of this work to both DMAMF and DMBA systems to provide information about the effect of the internal ligand CH₂NMe₂ on the structure. #### Results and discussion We have synthesised a number of new derivatives of DMAMF and DMBA with the following substitution patterns. $$(X = R_3Sn, Y = Z = H;$$ $X = Y = R_3Sn, Z = H;$ $X = Z = R_3Sn, Y = H;$ $X = Y = Z = R_3Sn;$ $R = Me, Bu, Ph)$ The polysubstituted DMAMF derivatives were prepared by lithiating the parent compound in the presence of excess TMED followed by addition of excess R₃SnCl, and were separated by repeated column chromatography on alumina. The monosubstituted compounds were prepared by a similar method but omitting the TMED. The DMBA series was obtained by treating the monolithiated parent with an excess of R₃SnCl. The use of TMED as a promoter of lithiation of aromatics is well established [12]. ## ¹H NMR spectra The ¹H NMR data for the dimethylaminomethyl group for both series of compounds are listed in Table 1. Of particular interest are the methylene resonances. TABLE 1 H NMR DATA FOR METHYLENE AND METHYL PROTONS OF STANNYLATED DIMETHYLAMINOMETHYLFERROCENES AND N,N-DIMETHYLBENZYLAMINE (δ (CDCl₃) ppm from external TMS) AND RELATED DERIVATIVES | Substituents | | | CH ₂ | J (Hz) | $\Delta \delta^{a}$ | CH ₃ | |-----------------------------------|----------------------|----------------------|-----------------|--------|---------------------|-----------------| | 2 | 4 | 1' | | | • | | | Dimethylamin | omethylferrocene | s | | | | | | _ | _ | _ | 3.15 | 0.0 | 0.0 | 2.03 | | _ b,c | - | _ | 4.45 | 0.0 | 0.0 | 2.70 | | Me ₃ Sn | _ | _ | 2.67, 3.60 | 13 | 0.93 | 2.03 | | Me ₃ Sn | _ | Me ₃ Sn | 2.80, 3.62 | 13 | 0.82 | 2.07 | | n-Bu ₃ Sn | _ | _ | 2.97, 3.40 | 12 | 0.43 | 2.10 | | n-Bu ₃ Sn ^b | _ | _ | 3.90, 5.58 | 13 | 1.68 | 3.42 | | n-Bu ₃ Sn | n-Bu ₃ Sn | _ | 2.95, 3.28 | 12.5 | 0.33 | 2.01 | | n-Bu ₃ Sn | n-Bu ₃ Sn | n-Bu ₃ Sn | 2.81, 3.20 | 12.4 | 0.39 | 2.05 | | Ph ₃ Sn ^d | | | 2.68, 3.40 | 12.5 | 0.72 | 1.73 | | Ph ₃ Sn ^b | _ | - | 3.62, 5.08 | 12 | 1.46 | 2.80 | | Ph ₃ Sn | _ | Ph ₃ Sn | 2.70, 3.27 | 13 | 0.57 | 1.72 | | Ph ₃ Sn ^b | _ | Ph ₃ Sn | 3.65, - e | 13 | _ | 2.82 | | HgCl | _ | HgCl | 3.23, 3.83 | 14 | 0.60 | 2.40 | | N,N-dimethyl | benzylamines | | | | | | | Н | | | 3.33 | 0 | 0 | 2.15 | | H ^b | | | 5.00 | 0 | 0 | 3.25 | | n-Bu ₃ Sn | | | 3.18 | 0 | 0 . | 1.97 | | n-Bu ₃ Sn ^b | | | 4.68 | 0 - | 0 | 3.38 | | Ph ₃ Sn | | | 3.20 | 0 . | 0 | 1.42 | | Ph ₃ Sn ^b | | | 4.60 | . 0. | 0 | 2.97 | ^a $\Delta \delta$ = difference in chemical shift between the diastereotopic methylene protons. ^b Methiodide derivative. ^c In acetone- d_6 . ^d Internal TMS. ^e Masked by Cp resonances. In the DMBA series both CH₂ protons are magnetically equivalent, implying free rotation about the C(1)-CH₂ bond. In the parent unsubstituted molecule, as expected, quaternisation causes a downfield shift of 1.67 ppm, which is larger than the shift for the ferrocene series (1.30 ppm). Because of the above free rotation, each methylene proton in the 2-substituted derivatives experiences a time-averaged effect of both the neighbouring substituent and H(6). n-Bu₃Sn and Ph₃Sn produce almost identical upfield shifts (Δ) of about 0.15 ppm. The value of Δ increases to 0.3–0.4 ppm on quaternisation. Since the geometry at C(1) in both the ferrocene and benzylamine systems is very similar, the above shifts are useful in identifying the CH₂ protons in the former series. The magnetic non-equivalence of these protons has been well documented [13], it is due to the inherent asymmetry of 1,2(X,Y) disubstituted, ferrocenes, and is not dependent on restricted rotation. Thus the CH₂ groups appears as two doublets (AB) with a coupling constant of 10–14 Hz for a wide range of substituents. The difference in chemical shift between H_A and H_B (δ_{AB}) will depend largely on two factors, the anisotropy of the group X, and the conformational equilibria shown in (Fig. 1). Whitesides and Roberts [14] have discussed this problem in detail, taking chiral ethers as an example of the effect of molecular asymmetry. They concluded that the phenomenon is best explained in terms of preferred conformers. Fig. 1. Conformational equilibria for 2-X DMAMF derivatives. It is of interest in this context, that 2-methyl and 2-ethyl DMAMF show values of δ_{AB} of 0.09 and 0.19 ppm, respectively [15], whereas 2-hydroxy DMAMF has δ_{AB} of 0.62 ppm [16]. In the former cases restricted rotation about C(1)–CH₂ is unlikely, and since the OH group is less bulky than either of the alkyl groups the large δ_{AB} values must be due either to the magnetic anisotropy of the lone pairs on oxygen or the presence of hydrogen-bonded structures of the type shown in Fig. 2. The former is less likely in view of the insensitivity of such shifts to changes in solvent acidity [14]. The consequences of such a structure would be to place one of the CH_2 protons H_B in a deshielded space, whereas the other (H_A) remains shielded by the anisotropy of the ferrocene group [17,18]. Another way of producing such rigid conformations is to increase the bulk of the 2-substituent. In 2-triorganotin DMAMF series, molecular models indicate severe restriction to rotation about the C(1)- CH_2 bond owing to interactions with the lower CP ring. A reasonably stable conformation may be envisaged as in Fig. 3 (conformation a). The shielding effect of a neighbouring R₃Sn has already been noted, and probably results from the anisotropy of the Sn-C bonds which should be more polarisable than C-C bonds. H_A in conformation (a) is about 2.9 Å from the centre of the nearest Sn-Me bonds. The shielding of the *axial* protons in cyclohexane is about 0.9 ppm, and the distance between the centre of the C(2)-C(3) bond responsible for this effect and the proton is about 2.5 Å. The angle subtended at this hydrogen by the C-C bond is 65°, which is almost identical with that for the Fig. 2. Anisotropic shielding (+) and deshielding (-) in DMAMF derivatives. Fig. 3. $Sn-CH_3/H_A$ case as measured from models. For bulkier groups on tin, conformation (a) becomes more crowded. The steric compression can be alleviated by rotation to conformer (b). Here the H_A originally shielded by Me_3Sn has moved into a deshielding zone resulting from the ferrocene anisotropy, and differences between H_A and H_B are therefore smaller. This is evident in Table 1, particularly for the n-Bu₃Sn derivatives. The quaternised derivatives show even greater separation of H_A and H_B , presumably due to further conformational changes enforced by the bulkier N^+Me_3 group. However, in all cases the methyl protons remained magnetically equivalent. # ¹³C NMR The ¹³C data and assignments for the DMBA series are listed in Table 2. Assignments are based on additivity factors obtained from Ref. 19. Surprisingly, no additivity factors are available for the very common n-Bu₃Sn substituent. It is likely however that the parameters will be very similar to those for Me₃Sn, whose values were therefore used in the correlations. The agreement between experimental and calculated values is good except for C(2) for the 2-Ph₃Sn DMBA and its methiodide. This is probably due to changes in the anisotropy of the neighbouring phenyl groups (Continued on p. 404) TABLE 2 ADDITIVITY OF 13 C CHEMICAL SHIFTS (δ (ppm)) FOR N,N-DIMETHYLBENZYLAMINES (obsd. (calcd.)) | 2-substituent | C(1) | C(2) | C(3) | C(4) | C(5) | C(6) | Other resonances | |-----------------------------------|---------|---------|---------|---------|---------|---------|-------------------------------------------------| | n-Bu ₃ Sn | 145.8 | 142.3 | 137.1 | 126.3 | 128.1 | 128.9 | CH ₂ , 66.7; NCH ₃ ; 45.3 | | - | (147.0) | (142.7) | (135.7) | (126.8) | (128.0) | (129.1) | Bu, 10.4, 13.6, 27.5, 29.2 | | n-Bu ₃ Sn ^a | 137.9 | 147.4 | 137.9 | 129.7 | 128.8 | 133.6 | CH ₂ , 72.1; NCH ₃ , 52.7 | | - | (136.3) | (147.1) | (137.3) | (131.1) | (129.6) | (133.5) | Bu, 11.6, 13.2, 26.9, 28.6 | | Ph ₃ Sn | 146.2 | 146.2 | 137.6 | 127.0 | 128.9 | 129.4 | CH ₂ , 65.3; NCH ₃ , 44.9 | | - | (148.4) | (149.1) | (137.1) | (127.7) | (128.5) | (130.0) | Ph ₃ Sn, 128.1, 136.8, 142.0 | | Ph ₃ Sn ^a | 137.6 | 143.5 | 139.5 | 134.8 | 130.6 | 134.8 | CH ₂ , 70.4; NCH ₃ , 52.3 | | - | (137.7) | (153.5) | (138.7) | (132.0) | (130.1) | (134.4) | Ph ₃ Sn, 129.3, 129.9, 136.8, 137.1 | a Methiodide. ADDITIVITY OF 13C SHIFTS FOR DIMETHYLAMINOMETHYLFERROCENE DERIVATIVES (obsd. (calcd.)) (8 in ppm from TMS) TABLE 3 | Substituents | C(1) | C(2) | C(3) | C(4) | C(5) | දු | CH_2 | NCH ₃ | Others | |---------------------------|----------|----------|--------|----------|--------|------|--------|------------------|-----------------------| | н а | 83.9 | 70.0 | 67.8 | 67.8 | 70.0 | 68.6 | 58.3 | 44.8 | | | H a.b | 6.77 | 72.4 | 20.6 | 70.6 | 72.4 | 9.69 | 67.3 | 52.8 | ı | | 2-SnMe ₃ | 90.3 | 70.9 | 74.1 | 69.7 | 72.0 | 68.3 | 59.9 | 44.6 | Me, Sn -8.27 | | | (90.2) | (70.8) | (74.3) | (40.6) | (72.6) | | | | 0 | | 2,-1-(SnMe ₃) | 90.5 | 71.1 | 72.3 | 8.89 | 75.3 | ı | 60.3 | 44.9 | $Me_2Sn(C(2)) - 8.61$ | | | [9.89] ر | [74.2] ° | [72.3] | [71.3] ° | [73.7] | | | | Me, Sn (C(1)) - 11.7 | | 2-SnBu ₃ | 9.06 | 71.3 | 74.9 | 8.69 | 72.2 | 9.89 | 60.5 | 45.0 | Bu 10.6, 13.7, | | | (30.2) | (70.8) | (74.3) | (70.6) | (72.6) | | | | 27 5 29 4 | ^a Data from ref. 20. ^b Data for methiodide. ^c These values are assigned to the monosubstituted Cp ring. 57Fe AND ¹¹⁹Sn MÖSSBAUER PARAMETERS (isomer shift (IS), quadrupole splitting (QS) and linewidths (LW) all in mm s⁻¹) AND ¹¹⁹Sn NMR CHEMICAL SHIFTS (8(¹¹⁹Sn) ° (ppm) from Me₄Sn) FOR STANNYLATED DIMETHYLAMINOMETHYLFERROCENES AND N.N-DIMETHYLBENZYLAMINES TABLE 4 | Substituents | | | 57Fe | | | 119Sn | | | δ(¹¹⁹ Sn) | |-----------------------------------|------------------------------|----------------------|---------|---------|---------|---------|---------|---------|-----------------------| | 2 | 4 | 1, | IS | sõ | LW b | SI | sõ | TM P | | | Dimethylamin | imethylaminomethylferrocenes | S | | | | | | | | | Me ₃ Sn | ı | 1 | 1 | J | I | 1.08(1) | 0.00 | 0.92(6) | -15.0 | | n-Bu ₃ Sn | 1 | | 0.54(2) | 2.36(3) | 0.33(6) | 1.15(1) | 0.00 | 1.04(4) | - 26.3 | | n-Bu ₃ Sn° | 1 | 1. | 0.52(1) | 2.34(1) | 0.28(1) | 1.19(1) | 0.00 | 1.04(2) | -26.7 | | Me ₃ Sn | 1 | Me ₃ Sn | | 1 | | | 1 | ı | -6.6, -15.4 | | n-Bu ₃ Sn | n-Bu ₃ Sn | 1 | 0.54(1) | 2.33(1) | 0.34(2) | 1.18(1) | 0.00 | 1.18(4) | -23.7 | | n-Bu ₃ Sn | n-BuSn | ı | 0.52(1) | 2.32(1) | 0.26(1) | 1.14(1) | 0.00 | 1.49(7) | -26.7 | | Ph ₃ Sn | ı | Ph ₃ Sn | 0.52(1) | 2.32(1) | 0.35(1) | 1.10(1) | 0.00 | 1.08(2) | -107.9, -116.1 | | Ph ₃ Sn | i | Ph ₃ Sn | t | ı | | 1.16(1) | 0.00 | 0.96(2) | -73.9, -114.0 | | n-Bu ₃ Sn | n-Bu ₃ Sn | n-Bu ₃ Sn | 0.54(1) | 2.33(1) | 0.32(2) | 1.22(1) | 0.00 | 1.26(4) | -11.4, -18.7, -23.8 | | n-Bu ₃ Sn ^c | n-Bu ₃ Sn | n-Bu ₃ Sn | 0.53(1) | 2.28(1) | 0.26(1) | 1.07(1) | 0.00 | 1.01(5) | | | N,N-dimethylbenzylamines | benzylamines | | | | | | | | | | n-Bu ₃ Sn | ı | 1 | I | i | ı | 1.19(1) | 0.00 | 1.44(4) | -49.5 | | n-Bu ₃ Sn ° | 1 | ı | ı | ŧ | ı | 1.21(1) | 0.61(1) | 0.89(2) | -41.2 | | Ph ₃ Sn | ı | ı | ı | • | ı | 1.11(1) | 0.00 | 1.40(4) | -164.4 | | Ph ₃ Sn ^c | ì | 1 | 1 | ı | 1 | 1.16(1) | 0.00 | 1.12(4) | -134.9 | ^a Positive value downfield from Me₄Sn. ^b Full width at half height. ^c Values for the corresponding methiodide. as a result of enforced conformational changes of the two bulky 1,2-substituents. The corresponding data for the DMAMF series appear in Table 3. One of the problems in ¹³C NMR of substituted ferrocenes is the unambiguous identification of the C(2, 5) and C(3, 4) resonances, but this has now been achieved by the use of specific deuterium-labelled (H(2), H(5)) derivatives [20]. This has enabled correlations be made which show that substituent effects at the 3,4-position in ferrocenes are qualitatively similar to those at the *para*-position in benzene. Similar correlations between the 2,5-position in ferrocenes and the *ortho*-position in benzene (bz) are also found. These can be summarised as follows, using ferrocene and benzene as references for each system. $$\Delta Fc(3, 4) = 0.775 \, \Delta bz \, (para) + 0.69$$ (1) (number of points $N = 8$, $r = 0.985$) $$\Delta Fc(2, 5) = 0.888 \, \Delta bz \, (ortho) + 0.07$$ (2) (N = 8, r = 0.989) Values of Δ bz for the Me₃Sn substituent have been obtained by Adcock et al. [21] which has enabled Δ Fc(3, 4) and Δ Fc(2, 5) to be evaluated (0.5 and +6.6 ppm respectively), i.e. The C(2), C(5) are less shielded than C(3), C(4) which is also true for the Me₃Si substituent [22]. Using the above additivity factors the spectra of the mono-stannylated DMAMF derivatives can be readily assigned (Table 3). For the di- and tri-stannylated compounds, unambiguous assignments were not possible owing to the narrow range of most of the Cp shifts. The C(1) quaternary carbons, however, can be readily identified from their intensities, and appear at 90.5 and 90.2 ppm, respectively. It is noteworthy that where the second Cp ring is also substituted the C(3) and C(4) and the C(2) and C(5) resonances are not identical (see ¹¹⁹Sn NMR). In the case of the bis-Bu₃Sn compound, the appearance of an intense signal at 68.5 ppm indicated a free Cp ring. The calculated values of C(1) shifts for the [1,2,5]-, [1,2,4]- and [1,2,3]-substituted derivatives are 96.3, 92.6 and 92.6 ppm, respectively, which again seems to rule out the symmetrical species. (The [1,2,3] compound is also unlikely for steric reasons.) There is also a multiplicity in the Bu resonances which would not be observed for a symmetrical species. The above was confirmed by the appearance of highly characteristic IR bands at 820, 1000 and 1100 cm⁻¹ for unsubstituted Cp rings and also a sharp resonance at 4.00 ppm in the ¹H NMR spectrum. In addition the CH₂ protons are still magnetically non-equivalent, which would not be the case for the symmetrical 2,5-(Bu₃Sn)₂DMAMF. It is thus likely that the tris(Bu₃Sn) derivative is, in fact, 2,4,1'-(Bu₃Sn)₃DMAMF. In contrast the bis(Ph₃Sn) derivative is 2,1-(Ph₃Sn)₂DMAMF, since both ¹H NMR and ¹³C NMR spectra show no free Cp ring resonances. This compound can be very readily mercurated with HgCl₂ to give 2,1' bis chloromercuri-DMAMF, redolent of the reaction with bis(Ph₃Sn)-ferrocene [1]. One further point of interest is the rate of quaternisation of the NMe₂ group. For 2-stannylated DMAMF derivatives, reaction with MeI occurred fairly readily although noticably slower than for DMAMF. Distannylated DMAMF reacted even more slowly, and 2,4,1'-tris Bu₃Sn DMAMF only with difficulty. These results are readily understandable in terms of increasing steric hindrance to approach to the NMe₂ group. # 119Sn NMR Values of ¹¹⁹Sn shifts (δ (¹¹⁹Sn)) are listed in Table 4. There are significant differences between the signals from the tin substituents on the two Cp rings. Thus for the Me₃Sn substituents the mono-derivative shows a resonance at -15.0 ppm while the bis derivative shows two signals at -15.4 and -6.6 ppm. The latter is thus assigned to the lower monosubstituted ring. This difference in δ (¹¹⁹Sn) has proved useful in assigning the resonances of the other bis and tris derivatives. For 2,1'-bistriphenylstannyl DMAMF, the two observed resonances differ by 8.2 ppm, a value almost identical with that of the bis-Me₃Sn compound. The low field signal (-107.9) is therefore assigned again to the lower ring. This is supported by the δ (¹¹⁹Sn) of bis-triphenylstannylferrocene of -105.2 ppm [1]. 2,4-bis-Bu₃Sn DMAMF shows only one signal (although the signal is rather broad), whereas 2,4,1'-tris-Bu₃Sn DMAMF displays three peaks of equal area. It is probable that there is restriction of Cp ring rotation, and that the molecule exists in a fixed conformation. The signal at -23.8 ppm is quite close to that for 2-Bu₃Sn DMAMF (-26.3) and may be assigned as such. Since 1,1'-bis-tributylstannylferrocene absorbs at 0.0 ppm [1], it is likely that the downfield signal is due to the 1-Bu₃Sn substituent. This leaves the tin resonance of the 4-substituent at -18.7 ppm. Quaternisation has little effect on the value of $\delta(^{119}\mathrm{Sn})$ for the Bu₃Sn derivatives of both the DMAMF and the DMBA systems, but marked changes occur when Ph₃Sn substituents are present. A downfield shift of almost 30 ppm occurs on quaternising 2-Ph₃Sn DMBA, and there is an even greater downfield shift (42 ppm) for the DMAMF analogue. (This deshielding is probably due to a thorough space interaction of the positive charge. CH₂NMe₂ substituents themselves cause variable upfield shifts. For the Bu₃Sn series, this shift is about 26 ppm in the ferrocenes and about 5 ppm for the benzylamines. For the Ph₃Sn series the reverse is true, upfield shifts for the ferrocenes (\sim 10 ppm) being smaller than those for the benzylamines (\sim 25 ppm). # ⁵⁷Fe, ¹¹⁹Sn Mössbauer spectra The data are listed in Table 4. In the ⁵⁷Fe Mössbauer spectra there are no significant variation in the isomer shift (IS). Quaternisation had no measurable effect on quadrupole splittings (QS) except for the tristannylated derivative, for which there is a significantly smaller QS. However QS values for the stannylated ferrocenes were all below that of ferrocene itself, indicating electron-withdrawal by the organotin moiety. Such a reduction is the result of electron-withdrawal via ligand based orbitals (e_1) on the ferrocene, and is well documented [24]. With the exception of those for 2-Bu₃Sn DMBA the ¹¹⁹Sn spectra show zero QS values, and indicating no pentacoordination involving the NMe₂ group. The linewidths for the three singlet spectra are all broad. The detected QS for the quaternised Bu₃DMBA is thus likely to have its origin in steric effects, since only tetraorganotin derivatives containing bulky substituents or substituents having differing group electronegativities have hitherto shown measurable quadrupole splittings, (see Ref. 25 for a discussion of steric effects on linewidth tetraorganotins). Through-bond inductive effects would be small since the effect would have to be transmitted through four bonds. It is possible that the positive charge on the nitrogen is affecting the electric field gradient at the tin. However, this charge is at least 5 Å from the tin atom, and is therefore unlikely to have a significant effect. In addition the parent derivative also has a broad signal. The isomer shifts for the triphenyltin derivatives are less than those for Ph_4Sn . The disubstituted phenyl ring does not appear to donate as much electron density to the tin atom as the other phenyl groups. The low IS values in conjunction with the observed broad lines support a steric origin of the phenomenon. It is appropriate to recall that the $\delta(^{119}Sn)$ from NMR spectra for the Ph_3Sn DMBA species show marked upfield shifts which are probably related to these steric compressions. The above effects are also apparent for the tributylstannyl derivatives (c.f. IS for $Bu_ASn\ 1.35\ mm\ s^{-1}$, ref. 26). For the DMAMF series, the ¹¹⁹Sn IS values for all the non-quaternised derivatives are all smaller than the corresponding symmetrical tetraorganotin compounds, R₄Sn, indicating that the ferrocenyl substituent is a poorer electron donor than the corresponding substituents in R₄Sn. IS values increase with the number of R₃Sn substituents (1.15, 1.18 and 1.22 mm s⁻¹ for mono, bis and tris-tributylstannyl DMAMF derivatives respectively). Such a trend is due to increased S electron density at the tin sites as a result of electron-withdrawal from the Cp rings by the R₃Sn substituents (c.f. the reduced QS values in the ⁵⁷Fe Mössbauer spectra). # **Experimental** Synthesis of monostannylated derivatives The DMAMF and DMBA compounds were prepared by first lithiating DMAMF or DMBA with n-BuLi in dry hexane, then adding R₃SnCl. A typical procedure is described below. Preparation of 2-tributylstannyldimethylaminomethylferrocene Dimethylaminomethylferrocene (DMAMF) (12.2 g, 0.05 mol) in dry ether (50 ml) was treated with n-BuLi (80 ml, 1.5 M in hexane, 0.125 mol) under N₂. The mixture was stirred for 1 h then refluxed for 15 min to complete the lithiation. Bu₃SnCl (38.4 g, 32 ml, 0.118 mol) in dry ether (50 ml) was added dropwise. After the addition, the mixture was allowed to stand 24 h then decomposed with water. The organic layer was separated and washed with saturated KF solution to remove any unreacted Bu₃SnCl. The organic phase was dried and evaporated to give an oil which was chromatographed on neutral alumina, eluting first with petroleum ether (40-60°C) then with CH₂Cl₂/EtOAc (10/1). The main orange-brown fraction was collected and evaporated to give 8 g (30%) 2-Bu₃Sn DMAMF as a brown oil. Analysis: Found: C, 57.1; H, 8.3; N, 2.6. $C_{25}H_{43}$ FeNSn calcd.: C, 56.4; H, 8.1; N, 2.6%. ¹H NMR (CDCl₃) 0.5–2.3 m (27H), 2.13 s (6H), 3.2 q (2H), 4.05 s (6H), 4.28 ppm tr. (2H). 2-Bu₃Sn DMAMF (0.6 g, 1.1 mmol) was dissolved in dry benzene (5 ml) and MeI (2 ml) added. The mixture was left at room temperature for 2 h. The golden plate like crystals of the methiodide were filtered off and dried. Yield 0.6 g (79%). M.p. 185°C (dec.). Analysis: Found: C, 46.1; H, 7.0; N, 2.0. $C_{26}H_{46}$ FeINSn calcd.: C, 46.3; H, 6.9; N, 2.1%. ¹H NMR (CDCl₃) 0.5–2.0 m (27H), 3.42 s (9H), 3.92 d (1H), 4.20 tr (1H), 4.30 s (5H), 4.70 tr (1H), 5.05 br.s (1H), 5.58 d (1H). The following derivatives were prepared in the same way: $2\text{-Ph}_3\text{Sn}$ DMAMF (17%) oil. Analysis: Found: C, 62.5; H, 5.1; N, 2.2. $C_{31}H_{31}\text{FeNSn}$ calcd.: C, 62.9; H, 5.3; N, 2.4%. ¹H NMR (CDCl₃ int. TMS) 1.77 s (6H), 3.1 q (2H), 4.05 s (5H), 4.1–4.35 m, (3H), 7.1–7.9 m (15H). The methiodide was prepared as above. ## Preparation of 2,1'-bistriphenylstannyldimethylaminoethylferrocene n-BuLi (80 ml, 1.5 in hexane, 0.125 mol) was treated with TMED (14.5 g, 18.8 ml, 0.125 mol). A solution of DMAMF (12.2 g, 0.05 ml) in dry hexane (50 ml) was added dropwise and the mixture stirred at room temperature for 1 h. Ph₃SnCl was added portionwise as a solid over a period of 15 min. After stirring for 10 h at room temperature the solution was deep red. Water (5 ml) was added and the whole filtered to give an orange solution. This was evaporated and chromatographed on neutral alumina eluting with $CH_2Cl_2/EtOAc$ (10/1) to give 33 g (70%) of an orange solid, m.p. 125°C. Analysis: Found: C, 62.1; H, 4.8; N, 1.1. $C_{49}H_{45}FeNSn_2$ calcd.: C, 62.5; H, 4.8; N, 1.5%. ¹H NMR (CDCl₃) 1.73 s (6H), 3.0 q (2H), 4.0-4.4 m (7H), 7.2-7.8 m (30H). The product was converted to the methiodide in 65% yield. Also prepared by the same method: $2,1'-(Me_3Sn)_2DMAMF$ (20%). Analysis: Found: C, 40.7; H, 6.1; N, 2.5. $C_{19}H_{33}FeNSn_2$ calcd.: C, 40.1; H, 5.8; N, 2.5%. ¹H NMR (CDCl₃) 0.28 s (9H), 0.32 (9H), 2.07 (6H), 3.2 q (2H), 3.8–4.3 m (8H). In addition, a small quantity of 2-Me₃Sn DMAMF (< 5%) was isolated from later fractions in the chromatographic separation. This was characterised by its ¹H NMR spectrum. ¹H NMR (CDCl₃) 0.25 s (9H), 2.03 s (6H), 3.15 q (2H), 3.97 s (6H), 4.2 brs (3H). 2,4,1'-(Bu₃Sn)₃ DMAMF (9%). This was obtained by rechromatography of the main fraction from the first column treatment. The compound was isolated as a brown oil from the first band eluting with petroleum ether. Analysis: Found: C, 52.3; H, 9.3; N, 1.2. $C_{49}H_{95}NFeSn_3$ calcd.: C, 53.0; H, 8.6; N, 1.3%. ¹H NMR (CDCl₃) 0.2–2.3 m (81H), 2.05 s (6H), 3.15 q (2H), 3.7–4.3 m (6H). The other major band from the rechromatography was the fifth in sequence of elution, and from this was isolated 2,4-(Bu₃Sn)₂ DMAMF in 5% yield as a brown oil. Analysis: Found: C, 53.5; H, 8.5; N, 1.3. $C_{37}H_{69}NFeSn_2$ calcd.: C, 54.1; H, 8.5; N, 1.7%. ¹H NMR (CDCl₃) 0.6–2.4 m (54H), 2.01 s (6H), 3.2 q (2H), 4.0 s (5H), 3.8–4.3 m (2H). Both products were converted to the methiodides as above but required several days and yields were low. Reaction of 2,1'-(Ph,Sn), DMAMF (I) with HgCl, 0.5 g I (0.5 mmol) in acetone (5 ml) was treated dropwise with HgCl₂ (0.14 g, 0.5 mmol) in acetone (2 ml). An immediate yellow precipitate occurred. This was filtered off to give 0.25 g (69%) 2,1-(HgCl)₂ DMAMF. Analysis: Found: C, 20.7; H, 2.3; N, 1.9. $C_{13}H_{15}Cl_2FeHg_2N$ calcd.: C, 19.1; H, 2.2; N, 2.0%. #### Preparation of stannylated N,N-dimethylbenzylamines The general preparative method for these derivatives is given. 2-Lithio-N, N-dimethylbenzylamine was prepared from DMBA (13.6 g, 15 ml, 0.1 mol) and n-BuLi (65 ml, 1.5 M in hexane 0.1 mol) using the method of Hauser et al. [2]. R₃SnCl (0.1 mol) in Et₂O (50 ml) was added and the whole left for 2 h. The mixture was quenched with KF (aq) to remove any unreacted R₃SnCl. After conventional work-up the compounds were isolated in excellent yields. (2-Bu₃Sn DMBA (75%) colourless oil, 2-Ph₃SnDMBA (85%) white solid m.p. 75°C). ¹H NMR data are listed in Table 1. Analysis of 2-Ph₃SnDMBA: Found: C, 66.7; H, 6.0; N, 2.5. $C_{27}H_{27}NSn$ calcd.: C, 67.0; H, 5.6; N, 2.9%. ## Quaternisation of 2-Bu₃SnDMBA (II) II (5 g, 11.8 mmol) was dissolved in AR benzene (20 ml) and MeI (5 ml) added. The solution became turbid almost immediately. After standing overnight the solvent was removed and the resultant oil triturated with hexane at 0°C to give a white solid (5 g, 75%), m.p. 91°C. The solid was very soluble in CHCl₃ and benzene. Analysis: Found: C, 46.6; H, 7.6; N, 2.4. C₂₂H₄₂INSn calcd.: C, 46.7; H, 7.5; N, 2.5%. Adopting a similar method 2-Ph₃SnDMBA was quaternised in 70% yield and obtained as white plates, m.p. 199°C. Analysis: Found: C, 53.8; H, 4.9; N, 2.0. C₂₈H₃₀INSn calcd.: C, 53.7; H, 4.8; N, 2.2%. # Spectroscopic instrumentation ¹H NMR spectra were recorded with a Varian EM 360 instrument housed in a constant temperture room. ¹³C and ¹¹⁹Sn were recorded with a Bruker WP80 FT spectrometer. Mössbauer data were obtained as described previously [24]. # Acknowledgements One of the authors (J.A.) wishes to thank the University of Shahid Chamran for financial support during this work. The authors are indebted to Joanne Warmsley for running the ¹³C and ¹¹⁹Sn NMR spectra and to Mr. Chris Frampton for running and fitting the Mössbauer spectra. #### References - 1 Part XV. J. Azizian, R.M.G. Roberts and J. Silver, J. Organomet. Chem., 303 (1986) 387. - 2 F.N. Jones, M.F. Zinn and C.R. Hauser, J. Org. Chem., 28 (1963) 663. - 3 D.W. Slocum, B.W. Rockett and C.R. Hauser, J. Amer. Chem. Soc., 87 (1965) 1241. - 4 M. Hadlington, B.W. Rockett and A. Nelhans, J. Chem. Soc. (C), (1967) 1436. - 5 D.W. Slocum and T.R. Engelmann, J. Organomet. Chem., 24 (1970) 753. - 6 D.A. Lemenovskii, I.R. Urazowski, T.V. Baukova, I.L. Arkhipov, R.A. Stukan and E.G. Perevalova, J. Organomet. Chem., 264 (1984) 283. - 7 S. Crawford and H.D. Kaesz, Inorg. Chem., 16 (1977) 3193. - 8 G. Longoni, P. Fantucci, P. Chini and F. Canziani, J. Organomet. Chem., 39 (1972) 413. - 9 V.I. Sokolov, K.S. Nechaeva and O.A. Reutov, J. Organomet. Chem., 253 (1983) C55. - 10 G. van Koten and J.G. Noltes, J. Amer. Chem. Soc., 98 (1976) 5393. - 11 G. van Koten, J.G. Noltes and A.L. Spek, J. Organomet. Chem., 118 (1976) 183. - 12 M.D. Rausch and D.J. Ciappenelli, J. Organomet. Chem., 10 (1967) 127. - 13 P. Smith, J.J. Mcleskey and D.W. Slocum, J. Org. Chem., 30 (1965) 435 and references therein. - 14 G.M. Whitesides, D. Holtz and J.D. Roberts, J. Amer. Chem. Soc., 86 (1964) 2628. - 15 D.W. Slocum and F.E. Stonemark, J. Org. Chem., 38 (1973) 1677. - 16 M. Onishi, K. Hiraki and A. Iwamoto, J. Organomet. Chem., 262 (1984) C11. - 17 R.R. McGuire, R.E. Cochoy and J.A. Winstead, J. Organomet. Chem., 84 (1975) 269. - 18 T.D. Turbitt and W.E. Watts, Tetrahedron, 28 (1972) 1227. - 19 D.F. Ewing, Org. Mag. Res., 12 (1979) 499. - 20 A.A. Komidze, P.V. Petrovskii, A.I. Mokhov and A.I. Lutsenko, J. Organomet. Chem., 136 (1977) 57. - 21 M. Bullpitt, W. Kitching, W. Adcock and D. Doddrell, J. Organomet. Chem., 116 (1976) 161, 187. - 22 A.N. Nesmeyanov, P.V. Petrovskii, L.A. Fedorov, V.I. Robas and E.I. Fedin, Zh. Strukt. Khim., 14 (1973) 49. - 23 Y. Nagai, J. Hooz and R.A. Benkeser, Bull. Chem. Soc. Jap., 37 (1964) 53. - 24 G. Neshvad, R.M.G. Roberts and J. Silver, J. Organomet. Chem., 260 (1984) 319 and references therein. - 25 C.S. Frampton, R.M.G. Roberts, J. Silver, J.F. Warmsley and B. Yavari, J. Chem. Soc. Dalton Trans., (1985) 169. - 26 V.I. Goldanskii, V.Yz. Rochev and V.V. Khrapov, Dok. Phys. Chem., 156 (1964) 571.