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Abstract: Furanoid glycals 3, 4 and 9, containing a 3-0O-silyl protecting
group, are readily epoxidized with DMD to give the respective shelf-
stable «-1,2-anhydrofuranoses 7, 8 and 10. The latter oxiranes react
smoothly and stereoselectively under the agency of ZnCl, with a variety
of primary and allylic secondary glycosyl acceptors (e.g. 1, 11-13)
resulting in the exclusive formation of B-linked disaccharides (e.g. 14-
18) in yields comparable to those obtained starting from 1,2-
anhydropyranoses. Furthermore, the dimeric glucofuranoside 18 was
transformed into the corresponding 2'-deoxyfuranoside 20, the §-
mannofuranoside 21 and the (1—2)-branched furanoside 22.

During the past decades, glycals have been the subject of considerable
interest in carbohydrate chemistry1 and natural product synthesis.2 The
use of glycals in oligosaccharide synthesis gained a new impetus by the
advent of the stereoselective two-step glycosylation approach of
Danishefsky er al® Thus, conversion of a pyranoid glycal with 3,3-
dimethyldioxirane (DMD) is followed by ZnCl,-mediated condensation
of the resulting 1,2-anhydropyranose with a glycosyl acceptor. The
merit and usefulness of this methodology was nicely illustrated in the
synthesis of various complex oligosaccharides in solution* and on a
solid support.5

In contrast, no examples of oligosaccharide synthesis via oxidative
coupling of furanoid glycals have been reported. The latter is mainly
due to the intrinsic lability of the 1,2-epoxide function in 1,2-
anhydrofuranose derivatives.

We here report an approach towards the synthesis of furanoside-
containing  oligosaccharides  using  3-O-silyl-protected  1,2-
anhydrofuranoses 7, 8 and 10 as stable furanosyl donors.

Initially, the stability of the 3-O-benzyl-protected «-1,2-
anhydrofuranose derivative 6 (see Scheme 1) was explored. To this end,
known glucal 16 was benzylated and the resulting fully protected glucal
27 was epoxidized8 with DMD® to give the 1,2-anhydroglucofuranose 6.
NMR-analysis revealed that epoxide 6 slowly degraded upon storage.

Moreover, ZnCl,-mediated condensation of freshly prepared oxirane 6
with glucal acceptor 1110 provided only negligible amounts of the
expected disaccharide (14, R = Bn in Scheme 2).11 It was reasoned that
the presence of an electron-withdrawing benzoyl substituent at the 3-OH
function of glucal 1 would increase the stability of the corresponding
1,2-anhydrofuranose (6, R = Bz). Treatment, however, of 1 with benzoyl
chloride in pyridine resulted in the isolation of furan 5.12 On the other
hand, silylation of 1 with ters-butyldimethylsilyl chloride (TBDMSCI)
followed by epoxidation of glucal 313 led to the 0-1,2-0xirane 7, which
could be stored at room temperature without any appreciable trace of
decomposition. Moreover, glycosylation of the pyranoid glucal acceptor
11 with 1,2-epoxide 7 in the presence of ZnCl, provided exclusively the
B-linked dimer 14 (see Scheme 2) in 40% yield (60% based on
consumed acceptor). It was also established that the more acid-stable
tert-butyldiphenylsilyl (TBDPS)-group had a beneficial effect on the
yield of the glycosylation. Thus, treatment of the 3-O-TBDPS-protected
glucal 4 with DMD gave the stable o-1,2-oxirane 8. ZnCl,-promoted
condensation!* of epoxide 8 with acceptor 11 yielded the B-linked
disaccharide glucal 15 in 62% yield (81% based on consumed
acceptor). Similarly, reaction of 8 with secondary furanoside glucal
acceptor 1 afforded exclusively the PB-linked dimer glucal 16 in an
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Scheme 1: (i) TBDPSC], imidazole, DMF, 12 h, 95%; (ii) BzCl, pyr, 1
h, 88%; (iii) DMD, CH,Cl,/acetone, 0 °C, 5 min, 94-96%.

acceptable yield (25%, 71% based on recovered acceptor). Apart from
this, 3,5-di-O-TBDPS-protected furanoid xylal 9, prepared by the
method of Castillén et al.,'® was epoxidized with DMD to give the o-
1,2-anhydro derivative 10. Coupling of oxirane 10 with mannopyranosyl
acceptor 127 furnished the B-linked disaccharide 17 (54% yield, 78%
referring to consumed acceptor).

At this stage, it is of interest to note that the generation of a free 2'-OH
group is an additional feature of the oxidative coupling approach. The
latter aspect is exploited in the conversion of the dimeric
glucofuranoside 18, readily accessible by coupling of 8 with 13, into the
2'-deoxyfuranoside 20, the B-mannofuranoside derivative 21 and the
(152)-linked trimer 22 by the following sequence of events.
Condensation of the primary hydroxyl in glucosyl acceptor 13'8 with
1,2-anhydroglucofuranose 8 gave the §-linked disaccharide 18 in 53%
yield (74% based on reacted acceptor). Deoxygenation of 18 was readily
effected according to Barton!® to afford the 2'-deoxy-glucofuranoside
20 in 74% yield over the two steps. Moreover, disaccharide 18 was
transformed?” into its Cy-epimer 21 in an overall yield of 48% by
Albright-Goldman oxidation?! and subsequent NaBH 4-reduction of the
intermediate 2'-ulose derivative. The identity of B-D-mannofuranoside
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Scheme 2: (i) ZnCl,, THF, 0 °C, 5-15 min; (ii) PhOC(S)Cl, DMAP,
CH;CN, 10 h, 94%; (iii) EtzNH3PO,, AIBN, dioxane, reflux, 1 h, 79%;
(iv) a. DMSO/Ac,0 (2:1, v/v), 12 h; b. NaBH,, CH,Cl,/MeOH (1:1, v/v),
0 °C, 1 h, 48%; (v) NIS, cat. TfOH, CICH,CH,CVTHF (3:1, v/v), 1 h,
51%. ? yields based on consumed acceptor.

dimer 21 was unambiguously ascertained by mass spectrometry as well
as 'H NMR and !3C NMR spectroscopy. Finally, the free 2'-hydroxyl in
18 was glycosylated with the thioethyl L-arabinofuranosyl donor 2322 ip
the presence of the promoter N-iodosuccinimide (NIS) and catalytic
triflic acid (TfOH)? to give the a-(1—2)-linked trisaccharide 22 in 51%
yield.

In conclusion, the results presented in this paper demonstrate that the
oxidative coupling of furanoid glycals presents a useful approach
towards the stereoselective construction of furanoside-containing
oligosaccharides. A major drawback of the latter methodology, i.e. the
intrinsic lability of the intermediate 1,2-anhydrofuranose derivatives,
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can be overcome by protection of the 3-hydroxyl function with a silyl
group. The resulting shelf-stable glycosyl donors can be coupled under
the agency of ZnCl, with both primary and allylic secondary glycosyl
acceptors to form exclusively B-linked furanosides in yields comparable
to those of 1,2-anhydropyranose coupling reactions. Moreover, the free
2'-OH group, formed in each coupling step, can be further processed to
construct 2'-deoxy furanoside derivatives, P-mannofuranosides and
(1-2)-linked furanosides.
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and ZnCl,-catalyzed condensation with 12) providing the
respective 3-(1—6)-linked trisaccharide in 56% overall yield.
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