4,4'-Dinitro-2,2'-diphenic Anhydride.—As described previously, methyl 2-bromo-5-nitrobenzoate (130 g) and Cu powder (40 g) were allowed to react at 200–205° for 40 min giving 46 g (51.2%) of 4,4'-dinitro-2,2'-diphenic acid dimethyl ester which was refluxed for 26 hr in a mixture of AcOH (670 ml), H₂SO₄ (400 ml), and H₂O (200 ml) giving 35.8 g (85%) of the dinitrodiphenic acid, mp 255–257° dec (lit.⁸ mp 257–258°). The diphenic acid (18.4 g) was then heated in an open flask with Ac₂O (100 ml) until the temperature of the mixture reacthed 160°. It was cooled and the product was separated by filtration, giving 14.5 g (83.5%), mp 231–233° (C₆H₆). Anal. (C₁₄H₆N₂O₇) C, H, N.

5.7-Dichlorofluoren-2-amine. A mixture of 2,4-dichloro-7nitro-9-oxofluorene^{6a} (7.3 g), 85% N₂H₄·H₂O (40 ml), and 2,2'oxydiethanol (400 ml) was refluxed gently for 24 hr. The solution was evaporated until its temperature reached 210°. Upon H₂O dilution there was obtained 5.7 g (91%), mp 124-125° (EtOH). Anal. (C₁₃H₈Cl₂N) C, H, N.

N-2-Fluorenyl-4',4''-dichloro-2',2''-diphenamic Acid (Ia),— Fluoren-2-amine (1.1 g), 4,4'-dichloro-2,2'-diphenic anhydride (1.8 g), and CH_2Cl_2 (175 ml) were refluxed for 24 hr and the mixture was stripped of solvent giving 2.9 g (100%), mp 132–135° (glassy melt). Anal. (C₂₇H₁₇Cl₂NO₃) C, H, Cl, N.

N-2-(5,7-Dichlorofluorenyl)-4',4''-dichloro-2',2''-diphenamic Acid (Ib).—Similarly, 5,7-dichlorofluoren-2-amine (2.5 g) and 4,4'-dichloro-2,2'-diphenic anhydride (2.9 g) gave 5.3 g (98%), mp 256–261° dec (C₆H₆-CH₂Cl₂-Me₂CO). Anal. (C₂₇H₁₅Cl₄NO₃) C, II, Cl, N.

 $\begin{array}{lll} N-2-Fluorenyl-4',4''-dinitro-2',2''-diphenamic Acid (Ic).---Fluoren-2-amine (1.8 g) and 4,4'-dinitro-2,2'-diphenic anhydride (3.1 g) were treated in like manner to give 4.8 g (98%), mp 259-260° (Me₂CO). Anal. (C₂₇H₁₇N₃O₇) C, H, N. $$N$-2-Fluorenyl-4',4''-dichloro-2',2''-diphenimide (IIa).---Ia$

N-2-Fluorenyl-4',4''-dichloro-2',2''-diphenimide (Ha),--1a (1 g), freshly fused NaOAc (0.5 g), and Ac₂O (10 ml) were mixed and heated with vigorous shaking on a steam bath for 15 min, cooled, and the Ac₂O was destroyed with H₂O giving 0.9 g (94%), mp 311-312° (Me₂CO). Anal. (C₂₇H₁₅Cl₂NO₂) C, H, Cl, N.

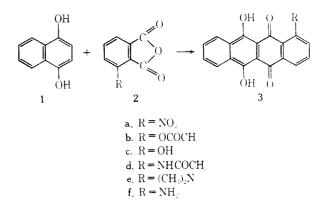
N-2-(5,7-Dichlorofluorenyl)-4',4''-dichloro-2',2''-diphenimide (IIb).--Likewise, Ib (1.5 g) and fused NaOAc (0.5 g) in Ac₂O (15 ml) gave 1.4 g (100%), mp 298-299° (AcOH). Anal. (C₂₇H₁₃-Cl₁NO₂) C, H, Cl, N.

N-2-Fluorenyl-4',4''-dinitro-2',2''-diphenimide (IIc).---Heating Ic (2.5 g) with NaOAc (0.5 g) in Ac₂O (15 ml) gave 2.4 g (100%), mp 302-303° (PhMe). *Anal.* (C₂₇H₁₅N₈O₈) C, H, N.

Acknowledgment.—We thank Miss Alice C. Lee for determining the ir spectra.

(8) R. Kuhn and O. Albrecht, Justus Liebigs Ann. Chem., 455, 272 (1927).

Synthesis of Potential Anticancer Agents. 5,12-Naphthacenequinones


JACOB FINKELSTEIN AND JOHN A. ROMANO

Chemical Research Department, Hoffman-La Roche Inc., Nutley, New Jersey - 07110

Received December 12, 1969

This report describes the syntheses and biological activities of several naphthacenequinones, an area of increasing interest.¹

In a Friedel-Crafts type of reaction, 1,4-dihydroxynaphthalene (1) was allowed to react with several 3substituted phthalic anhydrides (2) according to the B_2O_3 method of Weizmann and coworkers,² or in the

presence of anhydrous AlCl₃, to give the compounds $\mathbf{3}$ listed in Table I.

TABLE 1						
INFRARED	AND	ULTRAVIOLET	SPECTRAL	DATA		

No.	Derivative of 5.12- naphthacenequinone	γC± (), em ⁻¹	$\lambda_{\max}, \ m\mu(\epsilon)$
	5,12-Naphthacene-	1680	265, 275, 293, 373,
	$quinone^a$		395, 415, 440, 468
			(7,400; 2,400; 1,200;
			2,400; 4,500; 7,600;
			9,900)
3	6,11-(OH) ₂	1629, 1585	
			(24,800; 5,200; 7,200;
		1.010.00	6,800)
30	$1,6,11-(OH)_{5}$	1600	265, 460, 490, 525
			(54,000; 14,4000;
	1	1000 1700	26,000; 26,800)
За	$1-NO_2-6, 11-(OH)_2$	1631, 1580	264, 487, 517 (47,900; -12,000; -700)
3f	1 NH # 11 (011)	1595	12,000; 8,700)
-01	$4-NH_2-6, 11-(OH)_2$	1000	254, 374, 393, 507, 539 (50,800; 1,800;
			-1,900; -20,350; -1,800; -1,600)
2.1	1-AcNH-6,11-(OH);	1580 boost	248, 271, 468, 497,
	1*/AC/ALL=0,11=(C/11)2	10.00 010/040	534 (39,800; 54,200; -500; -54,200; -54,200; -54,200; -54,200; -54,200; -
			15,050; 26,300;
			28,200)
Зе	1-Me ₂ N-6,11-(OH) ₂	1582, 1567	266, 520-530 sh, 550
.,0	1 010220 0,112(01172		(59,200; 16,000;
			18,400)
			- ,

^a The authors are grateful to Dr. H. Vollmann, Bayer, A. G., Leverkusen, West Germany for an authentic sample of 5,12naphthacenequinone, *Justus Liebigs Ann. Chem.*, **669**, 43 (1963).

For preparation of the larger amounts of **1** required, we found that the Fieser³ method of reductive acetylation of naphthoquinone followed by hydrolysis was rather tedious. We discovered that 1.4-dihydroxynaphthalene (**1**) could be prepared easily and in good vield by hydrogenation of naphthoquinone at low pressure.

When $2(\mathbf{a}, \mathbf{c}, \mathbf{d})$ was fused with 1 at 190° in the presence of B_2O_3 , the corresponding 3 was obtained. However, when $2\mathbf{b}$ was used under similar conditions, *in situ* deacetylation took place, and the resulting 1,6,11-trihydroxynaphthacenequinone ($3\mathbf{c}$) was obtained, identical with the product obtained from 1 and $2\mathbf{c}$. Upon hydrolyzing 1-acetamido-6,11-dihydroxynaphthacenequinone ($3\mathbf{d}$) in HCl, 1-amino-6,11-dihydroxynaphthacenequinone ($3\mathbf{f}$) was obtained. Compound $3\mathbf{e}$ was prepared by the AlCl₃ fusion procedure of 1 with 3-dimethylaminophthalic anhydride ($2\mathbf{e}$), which was

 ^{(1) (}a) F. Arcamone, C. Franceschi, P. Orezzi, and S. Penco, *Tetrahedron Lett.*, 3349 (1968); (b) J. R. D. McCormick, J. Reichenthal, S. Johnson, and N. O. Sjolander, *J. Amer. Chem. Soc.*, **85**, 1694 (1963); (c) H. Brockmann and J. Niemeyer, *Chem. Ber.*, **101**, 2409 (1968); (d) H. Brockmann, R. Kunker, and H. Brockmann, J. Justus Liebigs Ann. Chem., **696**, 145 (1966), and other references cited therein.

⁽²⁾ C. Weizmann, L. Haskelberg, and T. Berlin, J. Chem. Soc., 398 (1939).

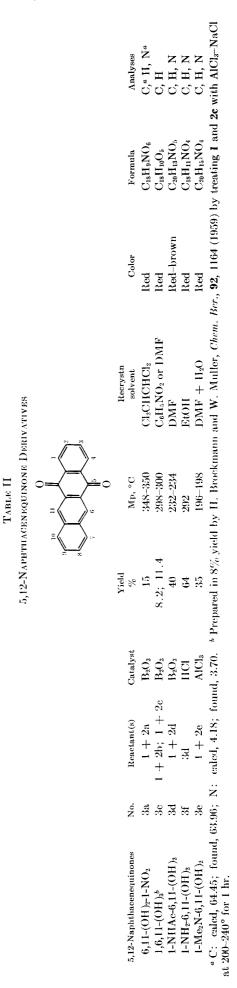
⁽³⁾ L. Fieser, J. Amer. Chem. Soc., 70, 3165 (1948).

Notes

obtained by the reductive methylation of 3-nitrophthalic acid followed by thermal dehydration.

The CO ir stretching frequencies of the naphthacenequinones are listed in Table I. There is a marked lowering as a result of the substitutions in the molecular environment. This shift is consistent with that observed in the related hydroxyquinones,⁴ hydroxynaphthoquinones,⁵ and hydroxyanthraquinones.⁶

The uv data listed in Table I reveal the bathochromic shift upon the introduction of the substituents adjacent to the quinoid nucleus of the naphthacenequinones. This shift is also in agreement with the reported findings for hydroxnaphthoquiones⁷ and hydroxyanthraquinones.⁸


Biological Results.—The oral LD_{50} of 3c, d, and e, as determined in mice, was >2000 mg/kg po, while 3f had an LD_{50} of >4000 mg/kg po. Intraperitoneally the LD_{50} for 3c, d, and f were >2000, >2000, and >1000 mg/kg, respectively. Compounds 3c, d, e, and/or f showed no significant activity against *Diplococcus* pneumonia type I,⁹ Streptococcus pyogens,⁹ Salmonella schottmuelleri,⁹ and Candida albicans⁹ at 500–1000 mg/kg po.

Compound **3c** exerted marked activity against the solid form of Ehrlich carcinoma¹⁰ but was inactive against Sarcoma 180 and Ehrlich ascites.¹⁰ Compound **3d** demonstrated a slight but definite activity against Sarcoma 180¹⁰ and Ehrlich solid carconoma¹⁰ but was inactive against leukemia L1201 ascites.¹⁰ Compound **3c** was ineffective against Ehrlich ascites;¹⁰ **3f** was appreciably active against Sarcoma 180¹⁰ and Ehrlich solid carcinoma.¹⁰

Experimental Section

Melting points were determined on an electro-thermal melting point apparatus and are corrected. Ir spectra were determined in KBr on a Beckman IR-5 double beam spectrophotometer with NaCl optics. Uv spectra were determined in *i*-PrOH on a Cary spectrophotometer (Model 14M). Where analyses are indicated by the elements, results obtained were within $\pm 0.4\%$ of the theoretical values. Since our main objective was to obtain material for preliminary screening purposes, no attempt was made to optimize the yields. The properties of the naphthacenequinones prepared are listed in Table II.

1.4-Dihydroxynaphthalene (1).—A solution of 25 g of 1.4naphthoquinone (Tech)¹¹ in 130 ml of DMF was stirred and warmed gently with charcoal for 1 hr and filtered. The filtrate was hydrogenated under 3 atm of H₂ over 0.5 g of PtO₂, and the H₂ uptake was rapid. After filtering the catalyst, the solution was evaporated to dryness *in vacuo* under N₂. The residue was triturated with H₂O, filtered, and recrystallized from boiling H₂O containing a small amount of SnCl₂ and HCl. Upon cooling, the product was obtained as colorless glistening needles: mp 188–190°; yield 20 g (79%). Anal. (C₁₀H₈O₂) C, H.

⁽⁴⁾ A. W. Johnson, J. R. Quayle, T. S. Robinson, N. Sheppard, and A. R. Todd, J. Chem. Soc., 2633 (1951).

⁽⁵⁾ M. Jasien, N. Fuson, J. Lebas, and T. M. Gregory, J. Chem. Phys., 21, 331 (1953).

 ⁽⁶⁾ B. H. Howard and H. Raistrick, *Biochem. J.*, **59**, 475 (1955); M.
 St. C. Flett, J. Chem. Soc., 1441 (1948); H. Bloom, L. H. Briggs, and B. Cleverly, *ibid.*, 178 (1959).

⁽⁷⁾ R. A. Morton and W. T. Earlam, ibid., 159 (1941).

⁽⁸⁾ H. Birkinshaw, Biochem. J., 59, 485 (1955); A. I. Scott, "Interpretation of the Ultraviolet Spectra of Natural Compounds," Pergamon Press, New York, N. Y., 1964, p 291.
(9) E. Grunberg, J. Berger, G. Beskid, R. Cleeland, H. N. Prince, and

⁽⁹⁾ E. Grunberg, J. Berger, G. Beskid, R. Cleeland, H. N. Prince, and
E. Titsworth, *Chemotherapia*, **12**, 272 (1967).
(10) E. Grunberg, H. N. Prince, E. Titsworth, G. Beskid, and M. D.

⁽¹⁰⁾ E. Grunberg, H. N. Prince, E. Titsworth, G. Beskid, and M. D. Tendler, *ibid.*, **11**, 249 (1966).

⁽¹¹⁾ Distillation Products Industries, Eastman Organic Chemicals Department, Rochester, N. Y. 14603.

Synthesis of 5,12-Naphthacenequinones with Boric Anhydride. --Compound 1 was treated with a slight excess of 2a,¹¹ 2b,¹² 2c,¹² and $2d^{13}$ in the presence of a 50% mol excess of B₂O₃ at 190° for 2 hr. The solid mass was pulverized and extracted with several portions of boiling $\mathrm{H_{2}O},$ filtered, washed with EtOH, dried, and recrystallized. Table I lists the pertinent data for the compounds.

1-Amino-6,11-dihydroxy-5,12-naphthacenequinone (3f). Compound 3d (2 g) was hydrolyzed by refluxing in 20 ml of coned HCl for 2 hr. When cool, a reddish crystalline product was obtained and recrystallized.

3-Dimethylaminophthalic Acid.—A solution of 10.55 g of 3nitrophthalic acid and 10 ml of formalin in 160 ml of EtOH was reduced under 3 atm of H_2 in the presence of 0.5 g of PtO_2 until the theoretical amount was absorbed. The filtered solution was evaporated in vacuo, and the solid recrystallized from EtOH as yellow crystals: mp 138-140°; yield 6.5 g ($65^{c_{c}}$). Anal. ($C_{30}H_{11}$ -NO₄) C, H, N.

3-Dimethylaminophthalic Anhydride (2e).--3-Dimethylaminophthalic acid (3 g) was heated at 150-160° for 0.5 hr, cooled, and the product recrystallized from C₆H₆: mp 140-142°; yield 2.4 g (89%). Anal. (C₁₀H₉NO₃) C, H, N.

Synthesis of 6,11-Dihydroxy-1-dimethylamino-5,12-naphthacenequinone (3e) .-- An intimately ground mixture of 7.6 g of 2e and 6.4 g of 1 was added portionwise during 1 hr to a molten mixture of 53.3 g of anhyd AlCl₃ and 11.7 g of NaCl at 150°. The temperature was then raised to 220°, and maintained for 0.5 hr. When cool, the fused mass was pulverized with a mixture of 500 ml of H₂O and 500 ml of coned HCl, and the mixture refluxed for 4 hr to decompose the complex. After cooling, an ashfree product was obtained, and recrystallized from DMF plus a small amount of H₂O, Anal. (C₂₀H₁₅NO₄) C, H, N.

Acknowledgment.—We are indebted to Dr. Al Stevermark and his staff for the microanalyses, to Dr. V. Toome for the ultraviolet spectra, and to Mr. S. Traiman for the infrared spectra and for their interesting discussions. The biological data were obtained under the direction of Dr. E. Grunberg, Director of the Department of Chemotherapy.

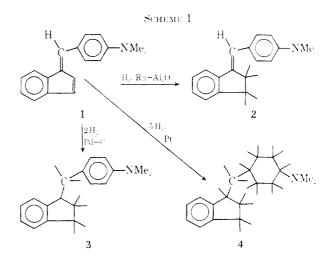
(12) H. Muklemann, Pharm. Acta Helc., 23, 257 (1948).

(13) C. L. Eliel, A. W. Burgstabler, D. E. Rivard, and L. Haefele, J. Amer. Chem. Soc., 77, 5092 (1955).

Reduction of 1-(4-Dimethylaminobenzylidene)indene^{1a,b}

CARL T. BAHNER,¹⁸ DAVID BROTHERTON, THOMAS HARMON,

Department of Chemistry, Carson-Newman College, Jefferson City, Tennessee 37760


AND B. L. STUMP

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220

Received May 19, 1969

The synthesis of 1-(4-dimethylaminobenzylidene)indene (1) was reported² recently as a result of our continuing search for compounds which have antitumor activity. Compound 1 was found to have definite effect against the Walker 256 tumor in rats, but the rats which recovered from their tumors sometimes developed mammary tumors, an effect noted particularly in female rats.³ Further investigation revealed that tumors developed also in healthy rats treated with 1.4

In an attempt to diminish or exclude the carcinogenic effect and at the same time retain the antitumor activity, various reduced derivatives were prepared by the catalytic hydrogenation of **1** (Scheme I). Based

on the amount of H_2 consumed in each reaction, structures 2, 3, and 4 represent the expected products. Analyses confirmed the postulated structures. Changes in the nmr spectra in going from 1 to 2, 3, and 4 are in agreement with those expected for the structures shown.

These compounds were tested against the Walker tumor by the single i.p. dose method. Compound 2showed a slight antitumor activity, but **3** and **4** showed no antitumor effect. We conclude that the conjugated double bond system is necessary for antitumor activity in compounds of this type.

Experimental Section⁵

 α -1-Indanylidene-N, N-dimethyl-p-toluidine (2). Compound 1 (5.0 g, 0.02 mol) in 100 ml of EtAc was hydrogenated over 0.5 g of $5C_{c}$ Rh–Al₂O₃. The reaction stopped after *ca*. 1.3 mol of H₂/ mol of 1 had been absorbed. The catalyst and solvent were removed and the residue was recrystallized from i-C₄H₁₄ and MeOH. A 54% yield of a pale yellow solid, mp 123°, was recovered. Anal. (C₁₈H₁₉N) C, H.

α-1-Indanyl-N,N-dimethyl-p-toluidine (3).-- Compound 1 $(5.0~{\rm g},\,0.02~{\rm mole})$ in 100 ml of EtAc was hydrogenated over $0.5~{\rm g}$ of 5% Pd–C. The reaction stopped after exactly 2 mol of $H_2/$ mol of 1 had been absorbed. The catalyst and solvent were removed and the residue was recrystallized from MeOH. An almost 100% yield of an off-white crystalline solid was obtained, mp 36.5–37.0°. Anal. $(C_{18}H_{21}N)$ Č, H.

4-(1-Indanylmethyl)-N, N-dimethylcyclohexylamine (4). Compound 1 (20 g, 0.08 mol) in 200 ml of HOAc was hydrogenated over 0.5 g of Adams' $Pt(PtO_2)$. The reaction stopped when

(3) R. M. Folk and M. A. Sheridan, Proc. Amer. Ass. Cancer Res., 9, 23 (1968).

(4) F. J. C. Roe, R. L. Carter, and N. A. Barron, Nature, 222, 383 (1969). (5) Melting points were determined in an oil bath and are uncorrected. Elemental analyses were carried out by Galbraith Microanalytical Laboratory, Knoxville, Tenn. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within $\pm 0.3\%$ of the theoretical values. Uv spectra were determined in CHzOH on a Perkin-Elmer Model 202 spectrophotometer, ir spectra in KBr, except 4, which was taken as a thin film on a NaCl crystal; a Perkin-Elmer Model 337 spectrophotometer was used. Reactions were carried out in a standard Parr hydrogenator which has been calibrated, so that in the pressure range 2.8-3.5 kg (cm², a H₂ pressure drop of 0.57 kg cm² corresponded to an uptake of 0.1 mol of H₂.

^{(1) (}a) This investigation was supported in part by Public Health Service Research Grants CA-03717-09-10. (b) Presented before the Division of Organic Chemistry at the 29th Southeastern Regional Meeting of the American Chemical Society, Tallahassee, Florida, December, 1968. (c) To whom inquiries should be addressed.

⁽²⁾ C. T. Bahner, H. Kindler, D. Brotherton, J. Spiggle, and L. Gutman. J. Med. Chem., 8, 390 (1965).