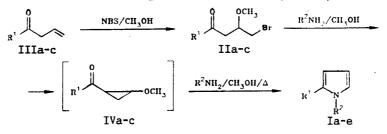
SYNTHESIS OF 1-ALKYL-2-ARYLPYRROLES FROM ARYL(3-BROMO-2-METHOXYPROPYL)KETONES

V. L. Sorokin, A. A. Azzuz, and O. G. Kulinovich


UDC 547.742'589.07

Aryl(3-bromo-2-methoxypropyl)ketones have been obtained by bromination of allylarylketones using Nbromosuccinimide. When treated with primary amines, good yields of 1-alkyl-2-arylpyrroles were obtained via 1,3-dehydrobromination and subsequent opening of the tricyclic ring in the intermediate aryl(2methoxycyclopropyl)ketones.

At this time a series of efficient methods have been developed for the synthesis of pyrroles from γ -halocarbonyl compound [1, 2]. One convenient version is the preparation of 2-alkylpyrroles by 1,3-dehydrochlorination of the readily available alkyl(3-chloro-2-methoxypropyl)ketones and subsequent treatment of the alkyl(2-methoxycyclopropyl)ketones with aqueous ammonia or primary amines [3]. However, preparation of 2-arylpyrroles by this route is hindered by the poor availability of the corresponding halocarbonyls [4, 5]. We now report a convenient method for synthesizing 2-arylpyrroles Ia-e from the aryl(3-bromo-2-methoxypropyl)ketones IIa-c.

Compounds IIa-c were prepared by bromination of the allylarylketones IIIa-c with N-bromosuccinimide in methanol [6, 7]. Ketones IIa-c are unstable and attempts to separate them in a pure state were unsuccessful. However, solutions of IIa-c in diethyl ether can be kept at 0°C for several days without significant change.

Conversion of ketones IIa-c to pyrroles Ia-e was carried out by refluxing methanol solutions with primary amines. The yields of 2-arylpyrryoles Ia-e, based on starting IIIa-c, were 48-54% (Table 1).

I **a** $R^1 = C_6H_5$, $R^2 = CH_3$; **b** $R^1 = p$ -CH₃OC₆H₄, $R^2 = CH_4$; **c** $R^1 = p$ -ClC₆H₄, $R^2 = CH_3$; **d** $R^1 = C_6H_5$, $R^2 = C_4H_9$; **e** $R^1 = C_6H_5$, $R^2 = C_6H_5CH_2$; II-IV **a** $R^1 = C_6H_5$; **b** $R^1 = p$ -CH₃OC₆H₄; **c** $R^1 = p$ -ClC₆H₄

TABLE 1. Parameters for 1-Alkyl-2-arylpyrroles (Ia-e)

Com- pound	mp, °C; bp, °C	n _D ²⁰	PMR spectrum, δ, ppm	Yield, %
la	53 54		3,43 (3H, s); 5,765,91 (2H, m); 6,266,41 (1H,	53
١p	5960	_	m); 7.017,33 (5H, m) 3,42 (3H, s _j ; 3,63 (3H, s); 5,735,90 (2H, m); 5,640 (4H, m);	51
Ic	39 40	-	6.266.42 (1H, m); 6.506,70 (4H, m) 3.43 (3H, s); 5.835,96 (2H, m); 6.336,50 (1H, m); 7.13 (4H, s)	49
Id		1,4816	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48
le	_	1,4628	7,34 (5H, m) 4,97 (2H, s); 5,966,90 (2H, m); 6,406,52 (1H, m); 6,907,30 (10H, m)	54

*Compounds Id, e were separated chromatographically on a silica-gel column using hexane eluent.

**Yield based on compounds IIa-c.

V. I. Lenin State University, Minsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 334-336, March, 1991. Original article submitted July 21, 1989; revision submitted June 1, 1990.

The scheme proposed in [8, 9] for conversion of γ -haloketones to pyrroles in the presence of primary amines does not include a stage leading to rearrangement of the carbon skeleton. In our work on the synthesis of 1-methyl-2phenylpyrrole from ketone IIa, the phenyl(2-methoxycyclopropyl)ketone (IVa) was shown to be the intermediate. Its structure was confirmed by identity with a sample obtained by an independent synthesis [10] (see Experimental).

EXPERIMENTAL

PMR spectra were recorded for 10% solutions in CCl_4 on a Tesla BS-467A (60 MHz) with HMDS internal standard. The purity of the compounds obtained was determined by TLC on Silufol plates and visualized by iodine vapor.

Allylarylketones IIIa-c were obtained by oxidation of the corresponding allylarylcarbinols [6] using a mixture of sodium dichromate and H_2SO_4 at room temperature [7]. The physical parameters and spectral data for IIIa-c agree with those reported in [11, 12].

Aryl(3-bromo-2-methoxypropyl)ketones IIa-c. A mixture of N-bromosuccinimide (1.78 g, 0.01 mole), allylketone IIIa-c (0.01 mole), and methanol (10 ml) was stirred at room temperature for 6 h (the succinimide precipitate being filtered off) and used to prepare the 2-arylpyrroles Ia-e (see below). The PMR spectra of IIa-c were recorded after exchange of the methanol solvent for CCl₄. PMR spectra (δ , ppm) for IIa: 3.21 (3H, s), 3.05-3.61 (4H, m), 4.2-4.6 (1H, m), 7.0-7.5 (3H, m), 7.6-7.9 (2H, m); for ketone IIb: 3.22 (3H, s), 3.0-3.6 (4H, m), 3.71 (3H, s), 4.2-4.6 (1H, m), 6.73 (2H, d, J = 8 Hz), 7.60 (2H, d, J = 8 Hz); for ketone IIc: 3.2 (3H, s), 2.9-3.5 (4H, m), 4.2-4.6 (1H, m), 7.26 (2H, d, J = 8 Hz).

1-Alkyl-2-arylpyrroles Ia-e. The primary amine (0.03 mole) in methanol (15 ml) was added to the methanol solution of IIa-c (see above) obtained from the allylarylketone IIIa-c (0.01 mole) and the mixture refluxed for 1 h. The methanol was removed in vacuo, water was added to the residue, and the product extracted with ether (3×15 ml). The combined ether extracts were dried (Na₂SO₄), the ether removed, and the residue chromatographed on a silica gel column (40/100) with hexane eluent.

Phenyl(2-methoxycyclopropyl)ketone (IVa). Methylamine (0.03 g, 1 mmole) and methanol (0.5 ml) were added in one portion to a solution of ketone IIa obtained from IIIa (1 mmole) in methanol at 0°C. Methanol was removed in vacuo, ether added to the residue, and the ether washed with water and dried (K_2CO_3). The drying agent was filtered off and the ether exchanged for CCl₄. PMR spectrum for IVa, δ , ppm: 0.8-1.6 (2H, m), 3.0-3.5 (2H, m), 3.30 (3H, s), 7.0-7.5 (3H, m), 7.7-8.0 (2H, m). Compound IVa was also obtained by treating 1-benzoyl-2-chlorocyclopropane with sodium methylate in methanol using the method in [10]. The PMR spectrum of the product was virtually identical to that given above.

LITERATURE CITED

- 1. L. N. Sobenina, A. I. Mikhaleva, and B. A. Trofimov, Usp. Khim., 58, 275 (1989).
- 2. J. M. Patterson, Synthesis, No. 5, 281 (1976).
- 3. Yu. N. Romashin, N. Al' Mokhana, and O. G. Kulinkovich, Khim. Geterotsikl. Soedin., No. 10, 1334 (1990).
- 4. I. I. Ibragimov, A. N. Kost, M. M. Guseinov, and R. A. Gadzhily, Khim. Geterotsikl. Soedin., No. 6, 790 (1976).
- 5. I. I. Ibragimov, A. N. Kost, M. M. Guseinov, R. A. Gadzhily, V. L. Dzhafarov, and S. P. Godzhaev, *Khim. Geterotsikl. Soedin.*, No. 10, 1434 (1973).
- 6. Yu. K. Yur'ev, Practical Studies in Organic Chemistry [in Russian], Moscow State University, No. 1/2, Moscow (1961), p. 282.
- 7. C. P. Gard, J. Am. Chem. Soc., 83, 2352 (1961).
- 8. I. I. Ibragimov, Investigations in the Synthesis of Polymeric and Monomeric Products [in Russian], Elm, Baku (1977), p. 76.
- 9. R. M. Rodebaught, Tetrahedron Lett., No. 30, 2859 (1967).
- 10. O. G. Kulinkovich, I. G. Tishchenko, and V. L. Sorokin, Zh. Org. Khim., 20, 2548 (1984).
- 11. M. T. Reetz, B. Wonderoth, and R. Urs, Chem. Ber., 118, 348 (1985).
- 12. S. Jayaraman, N. Rajn, and K. Rajagopalan, Steroids, 40, 267 (1982).