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Abstract: Conformational preferences within the tBuMe2SiOCH(Me)C=N unit in 
3-acetoxyaminoquinazolinone 3 lead to well defined site preferences for H, Me and OSiMe2tBu in 
the transition state for, and hence high diastereoselectivity in, its reaction with 
13-trimethylsilylstyrene 4 to give aziridine 5. Copyright © 1996 Elsevier Science Ltd 

3-Acetoxyaminoquinazolinones 2, prepared, in situ, by acetoxylation of 3-aminoquinazolinones 1 are 
. . . . .  I versatde azlndmatmg agents for alkenes. The presence of the heterocyclic ring has enabled us to probe into 
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the mechanism and transition state for aziridination using 2 in a 
• 2 ' way not possible for epoxidation of alkenes using peroxyactds; 

both 3-membered ring-forming reactions have much in common) 

The 2-position of the quinazolinone ring also allows the 

introduction ofa  chiral centre (2, R=R *) which can then be used 

to bring about asymmetric induction in aziridination of prochiral alkenes. 4 Thus reaction of 

13-trimethylsilylstyrene 4 with enantiopure 3-acetoxyaminoquinazolinone 3 (Q*NHOAc), bearing a 

l'-(t-butyldimethylsilyloxy)ethyl group in the 2-position, 5 gives a 11:1 ratio of diastereoisomers of the 

aziridine 5 (Scheme I). The absolute configuration of the major diastereoisomer of 5 was proved by 

chemical correlation with the phenylalanine derived compound 7 via the Q*-free aziridine 6. 6 
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This high diastereoselectivity in aziridination of vinylsilane 4 with Q*NHOAc 3 is superior to that 

using (racemic) 3-acetoxyaminoquinazolinone 8 (Scheme 2); the ratio of aziridine diastereoisomers 9 

produced was 1.5:1 with the major diastereoisomer having the relative configuration shown from an X-ray 

crystal structure determination (Fig. 1). 7 
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major 
diastereoisomer 
(I .5:1 d.r.) Fig. ! X-Ray crystal structure ofaziridiae 9 

(major diastereoisomer) (The pher~I group on 
the aziridine is oriented towards the viewer) 

The poor diastereoselectivity from the aziridination in Scheme 2 suggests that the high 

diastereoselectivity obtained in Scheme 1 is not the result of simple steric effects arising from the 

substituents on the chiral centre in Q*NHOAc 3. 

The work of Gung et a/s has shown that in allylic alcohols, there is a preference for a conformation 

having the hydroxy group eclipsed with the C--C bond (Fig. 2; R 2 = H) which is increased in 

y-hydroxy-cq~-unsaturated esters (R 3 = CO2R ) and in t-butyldimethylsilyl ethers (R 2 = tBuMe2Si). These 

authors have suggested that this conformational preference may account for the sense of  diastereoselectivity 

of addition reactions to double bonds of 3,-hydroxy-cql3-unsaturated esters; there is however always the 

possibility that the reacting conformation is not the most stable one. 

Fig. 2 Fig. 3 

We rationalise the high diastereoselectivity in the aziridination in Scheme I by assuming that an 

analogous preference also exists in Q*NHOAc 3 for a conformation of the 2-substituent having the C-O 

bond of the silyloxy group eclipsed with the C=N of the quinazolinone ring. Thus our transition state 

model 2 for the aziridination reaction in Scheme I is shown in Fig. 3; the Si-O bond is inclined to the plane 

containing the Q*CHMe-O bond and the methyl group on the chiral centre has the orientation shown to 

avoid adverse 1,3-interaction with the gem-dimethyl groups on silicon. Approach of  the alkene is from the 

face of the quinazolinone opposite to this methyl group on the chiral centre, with the alkene and the 

quinazolinone in parallel planes and endo overlap of the phenyl ring. 9 
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The presumed conformational preferences within the tBuMeeSiOCH(Me)C=N sub-unit in this 

transition state for aziridination (Fig. 3) are reproduced in the crystal structure of aziridine 11 (Fig. 4), the 

minor diastereoisomer obtained in aziridination of 13-triphenylsilylstyrene 10 with Q*NHOAc 3. When 

viewed from the perspective shown, the orientation around the bonds to the chiral centre is as illustrated in 

Fig. 3 with the MeCH-O bond lying close to I° the plane of the quinazolinone ring, the O-SiMe2tBu bond 

inclined to this plane and the tBuMe2Si group trans to the methyl group on the chiral centre.~n 
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Fig. 4 X-Ray crystal structure of aziridine 11 
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Gung et a l  s have also shown that the preference for the conformation in Fig 2 is eroded when a bulky 

substituem (Rt=tBu) is present on the silyloxy-substituted carbon. Likewise we find (Scheme 3) that 

aziridination of vinylsilane 4 with 3-acetoxyaminoquinazolinone 12 having a t-butyl group instead of a 

methyl group on the chiral centre in Q*NHOAc 3 gives a product 13 with poorer diastereoselectivity (4:1) 
(51%). n2 
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Scheme 3 
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To summarise, the magnitude and the preferred sense of  diastereoselectivity in aziridination of  

vinylsilane 4 with 3-acetoxyaminoquinazolinone 3 can be accounted for by the conformational preferences 

within the (chiral) tBuMe2SiOCH(Me)- substituent on the 2-position of  the quinazolinone. These 

conformational preferences are revealed in the crystal structure of  aziridine 11 and are those anticipated by 

analogy with the work of  Gung et al on y-silyloxy-o~,l$-unsaturated esters. 
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