MYRICETIN METHYL ETHERS FROM SOLANUM PUBESCENS

G N KRISHNA KUMARI, L JAGAN MOHAN RAO and N S PRAKASA RAO*

Department of Chemistry, Nagarjuna University, Nagarjunanagar 522 510, Andhra Pradesh, India

(Revised received 5 April 1984)

Key Word Index—Solanum pubescens, Solanaceae, flavonols, 3,7,3',5'-tetramethyl ether and 3,7,3'-trimethyl ether of myricetin

Abstract—3,7,3',5'-Tetramethoxy-5,4'-dihydroxyflavone and a novel flavonol 3,7,3'-trimethoxy-5,4',5'-trihydroxy flavone were isolated from the leaves of Solanum pubescens and characterized by both physical and chemical methods

INTRODUCTION

Angiosperm families often have characteristic flavonoid patterns [1] and in the Solanaceae the pattern is based mainly on kaempferol and quercetin [2] Flavonoids with B-ring trihydroxylation such as myricetin were thought to be absent from leaves, although myricetin appeared occasionally as a by product of delphinidin synthesis in flowers [2] However, myricetin 3-methyl ether and several methylated 8-hydroxy myricetin derivatives have since been reported from Solanum section androceras [3, 4] and myricetin glycosides have been found in some tuber bearing Solanum species [5] We now report the isolation of two myricetin methyl ethers 3,7,3',5'-tetramethyl ether (1) and 3,7,3'-trimethyl ether (2), from the leaves of Solanum pubescens Willd Compound 1 was first reported from Ledum palustre L (Ericaceae) [6] and this is the second report of this compound from nature Compound 2 is a new compound

RESULTS AND DISCUSSION

From the methanol extract of leaves of Solanum pubescens 1 and 2 were isolated by chromatographic methods Compound 1 (C19H18O8, mp 185-187°, permethyl ether, mp 154°) was identified as 3,7,3',5'-tetra-Omethyl myricetin by ¹H NMR and mass spectral data Compound 2 (C₁₈H₁₆O₈, mp 197°) gave a positive Shinoda test for a flavonoid and a green ferric reaction Permethylation with dimethyl sulphate yielded a hexamethoxy flavone identical with myricetin hexamethyl ether ¹H NMR (in acetone- d_6) of 2 showed the presence of three methoxyl groups at δ 3 94 (s, 6H) and 3 92 (s, 3H) and its acetate gave three acetyl signals at $\delta 2$ 35 (s, 6H) and 248 (s, 3H) indicating 2 to be a trimethyl ether of myricetin The signal at $\delta 12.74$ is due to the chelated 5hydroxyl The protons at the 6 and 8 positions appeared at $\delta 6 26 (d, J = 25 \text{ Hz})$ and $\delta 63 (d, J = 25 \text{ Hz})$, respectively The only other signal in the aromatic region is the singlet at δ 74 (2H) assigned to the 2',6'-protons in the B-ring

A bathochromic shift of $+\Delta\lambda 58$ nm in band I (360-418 nm) on addition of sodium methoxide without decrease in intensity suggested the presence of a free 4'-hydroxyl The lack of degeneration in the spectrum ruled out the possibility of a free 3-hydroxyl and thus one methoxyl must be at the 3-position The shift in band I (360-405 nm) on the addition of aluminium chloride-hydrochloric acid and the larger bathochromic shift (360-437 nm) with aluminium chloride indicated the presence of a free 5-hydroxyl and an *ortho*-dihydroxy system in ring-B [7] A larger shift of band I with sodium acetate ($\Delta\lambda$ 69 nm) than with sodium methoxide ($\Delta\lambda$ 58 nm) indicated the presence of a free 4'-hydroxyl and the absence of a free 7-hydroxyl (also supported by the absence of a shift with sodium acetate in band II) [7]

Table 1 ¹³C NMR data for 2, 3 and myricetin 3-galactoside

с	Myricetin 3-O-galacto- side	Myricetin 3,7,3'- trimethyl ether (2)†	Myricetin 3,7,3'- trimethyl ether acetate‡
2	156 2	155 8	152 2
2 3 4	133 9	1380	141 7
4	177 4	177 9	172 9
5 6	161 2	160 9	1504
	98 6	976	108 3
7	164 0	165 1	163 4
8	93 3	92 2	98 5
9	1562	156 2	1576
10	104 0	104 5	111 2
1′	120 2	1196	128 6
2'	108 8	105 1	109 8
3′	145 3	148 1	1521
4′	1366	138 1	133 7
5'	145 3	145 6	143 3
6′	108 8	109 8	1153
		59 6	60 2
OMe		56 2	56 4
		56 0	56 0
			(1694
OAc		$\underline{COCH}_{3} \begin{cases} 169 \ 4 \\ 168 \ 0 \\ 167 \ 3 \end{cases}$ $\underline{COCH}_{3} \begin{cases} 21 \ 1 \\ 20 \ 6 \\ 20 \ 2 \end{cases}$	
			L 167 3
		$COCH_3 \begin{cases} 21 \\ 20 6 \end{cases}$	
		CO <u>C</u> H ₃ { 206	
		(20 2	

*Ref [8] †In DMSO- d_6

‡In CDCl₃

The molecular ion at $[M]^+$ 360 confirmed the trimethoxy trihydroxy flavone system In support of the above observation, a fragment ion at m/z 167 (65) for a dihydroxy monomethoxy substituted B-ring was observed The other methoxyl was placed at position 3' Hence, 2 is assigned the structure 3,7,3'-tri-O-methyl myricetin The ¹³C NMR of 2 and its acetate (Table 1) are consistent with the proposed structure

Myricetin derivatives are rare in the Solanaceae, there being only two previous reports [3-5] The present discovery of myricetin methyl ethers in *S* pubescens is also taxonomically significant in that this species is in the same subgenus of *Solanum*, i.e. *heptostemonum*, in which they were previously found [3, 4]

EXPERIMENTAL

Plant material of Solanum pubescens Willd was collected near Nagarjuna Sagar (Andhra Pradesh) India, in 1983 Vouchers are deposited in Nagarjuna University Herbarium (No NUH NSP001) The powdered air dried leaves were successively extracted with *n*-hexane and MeOH The concd MeOH extract was chromatographed over silica gel eluting with C_6H_6 and C_6H_6 -Me₂CO mixtures Compound 1 was obtained in the C_6H_6 -Me₂CO (19 1) fraction and 2 in the C_6H_6 -Me₂CO (17 3) fraction

Myricetin 3,7,3'-*trimethyl* ether (2) The chromatographic fractions containing 2 were purified by prep TLC over silica gel (C_6H_6 -Me₂CO, 7 3) and cryst from Me₂CO–*n*-hexane, [PC R_f 0 28 (15 % HOAc), with solvent front (BAW 4 + 1 + 5),] mp 197°, UV λ_{mac}^{MeOH} nm 360, 300 sh, 268, 253, NaOMe 418, 301 sh, 262, AlCl₃ 437, 312 sh, 274, 235 sh, AlCl₃ + HCl 405, 365, 310 sh, 273, NaOAc 429, 300 sh, 266, 253, NaOAc + H₃BO₃ 383, 300 sh, 258 MS *m/z* (rel int) [M]⁺ 360 (83 %), 359 (43), 345 (92), 342 (10), 331

(13), 329 (23), 317 (100), 167 (65), 151 (30), 164 (9), 149 (23), 167 (65), 152 (9) Compound 2 was acetylated with Ac₂O in pyridine The acetate was cryst from CHCl₃-*n*-hexane to give white needles mp 195° ¹H NMR (CDCl₃) δ 2 35 (s, 6H), 2 48 (s, 3H), 3 84 (s, 3H), 3 92 (s, 6H), 6 60 (d, J = 25 Hz, 1H), 6 80 (d, J = 25 Hz, 1H), 7 5 (d, J = 25 Hz, 1H), 7 68 (d, J = 25 Hz, 1H) Methylation of 2 (Me₂SO₄, Me₂CO, K₂CO₃) yielded 3,5,7,3',4',5'-hexamethoxy flavone, mp 154° ¹H NMR (Me₂CO-d₆) 3 84 (s, 3H), 3 88 (s, 3H), 3 93 (s, 12H), 6 50 (d, J = 25 Hz, 1H), 6 75 (d, J = 25 Hz, 1H), 7 45 (s, 2H)

Acknowledgements—We thank the authorities of Central University, Hyderabad for 13 C NMR spectra Two of us (LJMR and GNKK) thank the CSIR, New Delhi for the award of Research Fellowships

REFERENCES

- 1 Harborne, J B (1977) Biochem Syst Ecol 5, 7
- 2 Harborne, J B and Swain, T (1979) in The Biology and Taxonomy of Solanaceae, Linn Soc Symp Series 7 (Hawkes, J G, Lester, R N and Skelding, A D, eds) p 261 Academic Press, London
- 3 Whalen, M D and Mabry, T J (1979) Phytochemistry 18, 263
- 4 Whalen, M D (1978) Syst Botany 3, 257
- 5 Weitschel, G and Reznic, H (1980) Z Pflanzenphysiol 99, 149
- 6 Michailova, N S and Rybalko, K S (1980) Khim Prir Soedin 2, 175
- 7 Markham, K R and Mabry, T J (1975) The Flavonoids (Harborne, J B, Mabry, T J and Mabry, H, eds) pp 45-77 Chapman & Hall, London
- 8 Geiger, H, Schucker, U, Waldrum, H, Vander Velde, G and Mabry, T J (1975) Z Naturforsch 30C, 296