
 http://jvc.sagepub.com/
Journal of Vibration and Control

 http://jvc.sagepub.com/content/7/5/729
The online version of this article can be found at:

 
DOI: 10.1177/107754630100700507

 2001 7: 729Journal of Vibration and Control
Antonino Morassi and Matteo Rollo

Measurements
Identification of Two Cracks in a Simply Supported Beam from Minimal Frequency

 
 

Published by:

 http://www.sagepublications.com

 can be found at:Journal of Vibration and ControlAdditional services and information for 
 
 
 

 
 http://jvc.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://jvc.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://jvc.sagepub.com/content/7/5/729.refs.htmlCitations: 
 

 What is This?
 

- Jul 1, 2001Version of Record >> 

 at CLEMSON UNIV on November 19, 2014jvc.sagepub.comDownloaded from  at CLEMSON UNIV on November 19, 2014jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/
http://jvc.sagepub.com/content/7/5/729
http://www.sagepublications.com
http://jvc.sagepub.com/cgi/alerts
http://jvc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://jvc.sagepub.com/content/7/5/729.refs.html
http://jvc.sagepub.com/content/7/5/729.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://jvc.sagepub.com/
http://jvc.sagepub.com/


Identification of Two Cracks in a Simply Supported Beam
From Minimal Frequency Measurements

ANTONINO MORASSI
MATTEO ROLLO

Department of Civil Engineering, University of Udine, Via delle Scienze 208, 33100 Udine, Italy

(Received 30 March 2000; accepted 5 December 2000)

Abstract: This paper presents a diagnostic technique for the identification of two cracks of equal severity in
a simply supported beam under flexural vibrations. The crack is simulated by a rotational spring connecting
the two adjacent segments ofthe beam. The analysis is based on an explicit expression of the frequency sensi-
tivity to damage, and the damaged system is considered as a perturbation of the virgin system. By measuring
the changes of the first three natural frequencies, it is possible to study the inverse problem&mdash;identification
of crack location and severity. The inverse problem is ill-posed; namely, even by leaving symmetrical posi-
tions aside, cracks with different severity in two sets of different locations can produce identical changes in
the first three natural frequencies. Numerical results show that if the natural frequencies used as data in iden-
tification are affected by errors relatively small with respect to the frequency-induced changes, then damage
identification leads to satisfactory results.

Key Words: Damage detection, bending vibrating beams, inverse problems, cracks

1. INTRODUCTION

In this paper, we seek to detect two open cracks of equal severity in a simply supported beam
from a minimum number of frequency measurements.

Despite the very extensive literature on damage identification (see Ruotolo, 1997;
Salawu, 1997 for recent and complete state-of-the-art), most of the previous work dealing
with cracked beams considers the damage sizing and location just if a single crack is present.
Only recently, researchers have turned their attention to damage assessment in multicracked
beams. The direct problem was considered in Ostachowicz and Krawczuk (1991) and in
Ruotolo and Shifrin (1999). Ostachowicz and Krawczuk (1991) studied the effect of two
open cracks upon the natural frequencies of the flexural vibration in a cantilever beam.
Ruotolo and Shifrin (1999) presented an efficient technique for solving the eigenvalue
problem related to the free bending vibration of a multicracked beam. The inverse problem
of damage identification in multicracked beams has been considered in Liang, Hu, and Choy
(1992); Ruotolo and Surace (1997); and Vestroni and Capecchi (1996). Liang, Hu, and
Choy (1992) developed a diagnostic technique based on frequency sensitivity to localized
damage for detecting and assessing multiple cracks in beam structures. Ruotolo and Surace
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(1997) formulated the inverse diagnostic problem in optimization terms and used a solution
procedure employing genetic algorithms to identify two cracks in a cantilever beam. With the
aim of reducing the indeterminacy of the diagnostic problem, Vestroni and Capecchi (1996)
presented a damage identification procedure of variational type that is based on the a priori
information that the damage is located in only a few sections of the beam.

The present paper deals with the identification of two small open cracks of equal severity
in a simply supported uniform beam from the knowledge of the damage-induced shifts in first
lower bending frequencies. As in Freund and Herrmann (1976), every crack is simulated
by an equivalent massless rotational spring, of stiffness K, connecting the two segments of
the beam adjacent to the damaged cross section. Assuming that the undamaged system is
completely known, only three parameters need to be determined, namely, the stiffness K of
the spring and the abscissas Sl, S2 of the cracked cross sections. Therefore, we considered as
a minimal set of data the first three natural frequencies of the beam. By using this set of data,
the diagnostic problem is generally ill-posed, namely, even by leaving symmetrical solutions
aside, cracks in different locations and of different severity can still produce identical changes
in the first three natural frequencies. In spite of this ill-posedeness, the effects of the
nonuniqueness of the solution are not so dramatic, because it is found that the stiffness K and
the location variables x = cos 27rs11 L,y = cos 27rS2/L (where L is the length of the beam)
are solutions of polynomial equations of second degree. Therefore, in all cases, closed form
expressions are deduced for x, y, and K in terms of the data. Our analysis is based on an
explicit expression of the frequency sensitivity to damage derived by Morassi (1993), and
our results are an extension of part of those obtained by Narkis (1994) and Morassi (1999)
for the single crack identification problem. Some of the results are also valid for cracked rods
in axial vibration.

Dynamic tests performed on simulated cracked beams supported the proposed method for
the solution of the diagnostic problem in practical situations. Numerical results show that if
the natural frequencies used as data in identification are affected by (model or measurement)
errors relatively small with respect to the variations of the frequencies induced by the damage,
then damage identification leads to satisfactory results.

2. FREQUENCY SENSITIVITY TO DAMAGE

The physical model, which will be mainly investigated in this paper, is a simply supported
uniform Euler-Bernoulli beam with two cracks of equal severity located at cross sections
of abscissa sl and s2. We assume that 0 < s, < S2 < L, where L is the length of the
beam. Assuming that cracks remain always open during the flexural vibration, every crack is
represented by inserting a massless rotational spring, as in Freund and Herrmann (1976). As
it is well-known, the stiffness K of the spring can be related in a precise way to the geometry
of the damage, as suggested, for example, by Dimarogonas and Paipetis (1983). Denoting by
E the Young’s modulus of the material and by y the volume mass-density, the mth eigenpair
(wm (s) , Vdm - C02 dm m = 1, 2, ... , of the bending vibrations of the cracked beam satisfies
the following boundary value problem:
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where the jump conditions

hold at the cross sections of abscissa s = s, and s = S2 where cracks occur. In the equations
above, I and A represent the moment of inertia and the area of the cross section of the beam,
respectively. In equations (3) through (4), (~(s)~ - (~(s+) - ~(s-)) denotes the jump of
the function 0 at s. The undamaged system corresponds to K ~ 00 or E m 1/K ~ 0.

If cracks are small, namely, E is small enough, then we may find the first-order variation
of the natural frequencies with E as shown in Morassi (1993) or in Ruotolo (1997) (Section
5.2, equation (5.7)). By taking

we find that the first variation of the mth eigenvalue is given by

where the normalizing condition fo yAwm (s) ds = 1 has been taken into account. Note
that the change in a natural frequency produced by a single crack may be expressed as the
product of two terms, the first of which is proportional to the severity and the second of which
depends only on the location of the damage. In particular, this second term is the square of
the bending moment

in the mth mode shape of the undamaged beam evaluated at the cracked cross section. We
will see in the next section that the explicit expression (6) for the damage sensitivity of natural
frequencies plays a crucial role in our analysis. Finally, we observe that the assumption of
small damages confines the range of application of the method to cracked configurations that
are a perturbation of the undamaged one. However, this is not a severe limitation because in
most practical situations it is crucial to be in position to identify the damage right as it arises.

3. THEORETICAL RESULTS

We can now pose the problem of identifying the positions sl, s2 of the cracks and their severity
K from the knowledge of the changes in the lower natural frequencies of the beam. Since
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only three parameters need to be determined, it is reasonable to investigate to what extent the
measurement of the first three natural frequencies can be useful for identifying the damage.
The system is symmetrical with respect to s = L/2, and therefore a crack located at any one
of a set of symmetrically placed points will produce identical changes in natural frequencies.
It follows that, without affecting the character of generality of the analysis, we can assume
that the two cracks are located on the interval (0, L/2) corresponding to the left half of the
beam, for example, 0 < s, < s2 < L/2. Let us denote by Cm the quantity

where m > 1 is an integer and B is the constant

The eigenpairs of the simply supported uniform beam in bending vibrations are

m = 1, 2, ....
Inserting the expression of wm(s), for m = 1, 2, 3, into equation (6), we obtain the

following system of three nonlinear equations:

to be solved with respect to (Sl, s2, K). Note that Cm > 0, m = 1, 2, 3, since 0 < s, < s2 <
L/2. By using standard trigonometric identities, we can rewrite the system ( 11 a) through
(lie) in the following equivalent form:

where
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Since 0 < s, < s2 <_ L/2, functions x = x (~i) y = y (s2 ) are one-to-one correspondences
and x # y. By using the algebraic identities X3 + y3 = (x + y) (x2 + y2 - xy) and
2xy = (x + y) 2 - (x2 + y2 ) in equation ( 12c), and by expressing (x + y) and (x2 + y2 ) by
means of equations (12a) through (12b), we can deduce the following polynomial equation
in the unknown K:

L x / -i

By neglecting the trivial solution K = 0 (which clearly does not correspond to the assumption
of small damage), we now prove that the polynomial of second degree enclosed in square
brackets in equation (14) always has two real positive solutions Kl , KZ for every set of data
(Ci, C2, C3). Recalling that C1 > 0, we start showing that the coefficient of K is negative
and the coefficient of the term of order zero is positive. In fact, from equations (12a) through
( 12c), we have

for x E ~-1,1 ) and y E ~-1,1 ) . Moreover, a simple computation shows that

for x c ~-1, 1 ) and y c [- 1, 1). Finally, we show that the discriminant A of the polynomial
in the variable K is nonnegative: 1

In fact, by using the expressions (12a) through ( 12c) for Cl , C2, C3, we have the following:
I- ~ 2

where

We order f (x, y) with respect to the variable x:
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Observing that

we can rewrite f (x, y) as follows:

that is,

which clearly is a nonnegative quantity.
Taking into account conditions (15), (16), and (17), we can conclude that there exist two

real positive (possibly equal) roots of the polynomial in the variable K, that is, there exist two
values of the stiffness K of the spring simulating the damage:

where indexes 1 and 2 correspond to + sign and - sign, respectively.
By inserting the expression (24) of K into equations ( 12a) through ( 12b), we can localize

the damage. Note that the role of variables x and y in system ( 12a) through ( 12c) is completely
interchangeable, namely, if (I~ x, y) is a solution of the diagnostic problem, then (~ y, x) is
also a solution. Then, it is enough to determine the position variable x. By using equations
(12a) through (12b), we can deduce the following polynomial equation of second degree in
the variable x: .

The polynomial in equation (25) has two distinct real roots; in fact, the discriminant A is
strictly positive:

because x # y. To prove that two roots xl, X2 of equation (25) belong to the interval (-1, 1),
and then they correspond to physically reasonable damage locations (see definition (13)),
it is enough to verify (i) that the value of the polynomial g(x) of equation (25) evaluated at
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x = -1 andx = 1- is nonnegative and positive, respectively, and (ii) thatg(x) has minimum
atxm;n E (-1, 1). Recalling equations (12a) through (12c), we have the following:

and

for every x c (-1, 1 ) and y E (-1, 1 ) . Then, the condition (i) is satisfied. A direct

computation shows that g(x) has minimum at xmin = 1 - KCI. Then, using equation ( 12a)
and recalling that x C (-1, 1) and y E [-1, 1), it turns out that xmin E (-1,1) and (ii) is
proved. Hence, we can evaluate

where indexes 1 and 2 represent + sign and - sign before the square root, respectively.
Finally, the complete set of solutions of the system ( 12a) through ( 12c) with reference to

cracks located on the left half of the beam is given by

In fact, once the value of the stiffness of the rotational spring simulating the crack is
determined (via expression (24)), let’s say K, we can evaluate the possible damage locations
xl, X2 of one crack via expression (29). Given one x-unknown, let’s say xl, we can evaluate
the corresponding value of the y-unknown, let’s say yl, via equation ( 12a). It turns out that

and, similarly, Y2 = xi . Then, for one fixed value of the stiffness K, there is a pair of solutions
of the inverse problem:

Since the relations x = cos 2Jrf and y = cos 2Jrf are one-to-one correspondences for
0 < s < L/2, by solving with respect to the s-variable, we obtain
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These two damage configurations clearly coincide, and then there exists only one solution of
the inverse problem corresponding to a given value of K, for example, (I~ sl (K) , s2 (K)).
That is, we have shown that two cracks of same severity Kl (evaluated via expression
(24}-with plus sign) located at the cross sections of abscissa sl (Kl ) , s2 (K¡) (evaluated
via expressions (29) and (13)) produce changes in the first three natural frequencies identical
to those induced by two cracks of the same severity K2 (expression (24)-with minus sign)
located at the cross sections of abscissa s, (K2 ) , S2 (K2 ) (expressions (29) and ( 13)).

In conclusion of the section, it should be noted that the present method can be adapted to
identify two small cracks in an axially vibrating beam with free ends. To show this, suffice to
observe that the mth eigenpair, (um (s) ,11m (02 m M = 0,1, 2, ... , of a free-free uniform
beam in axial vibration are

&dquo; I .

and then repeat the same procedure used for the bending vibration case to formulate the
inverse problem. According to Freund and Herrmann (1976), here a crack is represented by
the insertion of a massless translational spring, of stiffness K, at the damaged cross section. If
cracks are small and of equal severity, namely, K is large enough, on proceeding as in Morassi
(1993) and with the above notation, the first-order variation of the mth eigenvalue with 1/K
is given by

where Nm (s) m EA d&dquo;~S is the axial force at the cross section of abscissa s in the mth

(normalized) axial mode of the undamaged beam. In equation (35), s, and S2 denote the
abscissas of the damaged cross sections. Taking the expression (34) of vibrating modes
into account and considering as data the variations of the first three natural frequencies
(rigid mode is omitted, e.g., m = 1, 2, 3), we obtain a system of three nonlinear equations
formally coincident with the previous system ( 12a) through ( 12c). By repeating now the same
procedure used for the bending vibration case, we can solve the inverse problem.

4. APPLICATIONS

In the preceding section, it was elucidated how to employ the measurement of the first three
bending frequencies of a simply supported beam with two cracks of equal severity so as to
assess the location as well as the magnitude of the damage. Aiming to account for the practical
use of the results above within the analysis of real cases, the present section is devoted to
outlining some applications of numerical character.

The inverse problem of damage detection is solved for different cases, using pseudo-
experimental data, that is, the frequencies are obtained from the direct problem in undamaged
conditions and in some damaged conditions defined by the three damage parameters K, Sl, s2.
The beam for the case study is a double T steel beam of the series IPE 300 with the

following geometrical and mechanical characteristics: length L = 5 m, bending stiffness
EI = 1.721 ~ 107 Nm2, and linear mass density p - yA = 42.2 kg/m.
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Table 1. Frequencies for the undamaged beam and their values associated to the cases of
damage (cases free of error). Values in Hz. 0% _ ~,fundamaged -,/damaged ~ /,/undamaged ~ 100.

Table 2. Results of damage identification (cases free of error). Determination of the

spring stiffness K (Nm/rad, equation (24)) and of corresponding damage locations Sl, S2
(m, equations (29) and (13)).

Two main different cases of damage among several studied are presented: they are
illustrative of the main features of the inverse problem and of the identification technique.
The first case is characterized by &dquo;small&dquo; damage, that is, the value of the stiffness K is such
that the variations of the first three frequencies are about 0.5% to 1.7% of the initial values for
a different set of damage locations. For the other case, &dquo;moderate&dquo; damage corresponding
to variations of the same frequencies about 1.7% to 6% is considered. In both cases,
identification results are presented for a set of two damage locations: s, = L14, S2 = L13
(close cracks, Case C) and s, = L/5, S2 = 2L/5 (separate cracks, Case S).

The frequency values for the undamaged beam and their values associated with the cases
of damage are shown in Table 1; the latter are obtained by solving in exact way the eigenvalue
problem ( 1 ) through (4), as shown, for example, in Ostachowicz and Krawczuk ( 1991 ).
The results of identification are presented in Table 2. It is possible to observe that in the
absence of errors, the pair of two solutions (30) predicted by the theory for the mathematical
problem contains (a satisfactory estimate of) the real solution of the damage problem. The
deviations from the exact damage parameters, which are exclusively due to the perturbation
assumption-see equations (5) and (6~are negligible for damage locations and are of order
4% to 15% for damage severity. Discrepancies are smaller for less severe damages, and this
behavior is expected because the inverse diagnostic problem is formulated on the assumption
that the damaged system is a &dquo;small&dquo; perturbation of the virgin system.

We have developed the damage analysis in absence of errors so far, but, as it is well-
known, the results of most identification techniques strictly depend on possible measurement
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Table 3. Results of damage identification for Case C (small damage) with errors on the
data. Determination of the spring stiffness K (Nm/rad, equation (24)) and of corresponding
damage locations SI, S2 (m, equations (29) and (13)). err% f = (~,., -~~) //~~ 100.
The symbol (*) means imaginary solution.

Table 4. Results of damage identification for Case C (moderate damage) with errors on the
data. Determination of the spring stiffness K (Nm/rad, equation (24)) and of corresponding
damage locations sl, S2 (m, equations (29) and (13)). err% f = (ferror -,lexact) - 100.

and modeling errors. To take the effect of errors in the experimental data into account, we
considered a series of cases in which the natural frequencies were corrupted by some noise.
To give an example, Tables 3 and 4 refer to the previous Case C-with small and moderate
damage-in presence of increasing errors of the same sign or of an alternate sign. As a general
remark, it is possible to observe that if the natural frequencies used as data in identification are
affected by errors relatively small with respect to the variations of the frequencies induced by
the damage, then damage identification leads to satisfactory results. However, in the inverse
problem solution, the noise in the data is usually amplified strongly and the estimates of the
damage parameters seem to be rather sensitive to input errors.
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5. CONCLUSIONS

In this paper, we have focused on detecting two cracks of equal severity from the knowledge of
the damage-induced changes in the first three natural frequencies of a simply supported beam
under bending vibration. The analysis is based on an explicit expression of the frequency
sensitivity to damage and the damaged system is considered as a perturbation of the virgin
system. It was found that, even by leaving symmetrical positions aside, cracks with different
severity in two sets of different locations can produce identical changes in the first three
natural frequencies. The theoretical results are confirmed by a comparison with numerical
tests performed on cracked beams.

NOTE

1. This argument was pointed out to us by Michele Di Lena.
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