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The focus of this paper is on the development of weighted minimum power/jerk control profiles for the rest-
to-rest maneuver of a flexible structure. To account for modeling uncertainties, equations, which represent the
sensitivity of the system states to model parameters, are derived. The original state-space model of the flexible
structure is augmented with the sensitivity state equations with the constraint that the sensitivity state variables
are forced to be zero at the end of the maneuver. This requirement attenuates the residual vibration at the end
of the maneuver caused by errors in system parameters. A systematic procedure for the design of the controller
is developed by representing the linear-time-invariant system in its Jordan form. This decouples the modes of
the system permitting us to address smaller-order dynamical systems. The proposed technique is illustrated via a

benchmark floating oscillator problem.

I. Introduction

HE control of the benchmark two-mass/spring/damper system
undergoing a rest-to-rest maneuver is to be considered in this
paper. This problem, representative of many flexible structures, has
one flexible mode and one rigid-body mode. A fairly comprehen-
sive treatment of this family of problems has been presented by
Junkins and Turner.! In previous research on this topic, time opti-
mal control profiles have been derived by Singh et al.,> Ben-Asher
etal.,’ Farrenkopf,' and Hablani’ Desensitizing the control profiles
to modeling errors has been addressed by Swigert,® Liu and Wie,’
and Singh and Vadali.® Closed-form solutions have been obtained
for the optimal control of the rest-to- rest maneuver using minimum
power and minimum jerk cost functions by Bhat and Miu.* ' Min-
imum power solutions are obtained by minimizing f u? dr, while
minimum jerk solutions are obtained by minimizing f(du /dn)? dr.
The u term in these cost functions is the control effort. Recently, it
has been of interest to develop optimal solutions using a weighted
cost function, such as the weighted fuel/time optimal control con-
sidered by Singh.!! Here, the closed-form solution for the opti-
mal control of the rest-to-restmaneuver using a weighted minimum
power/jerk cost functionis of interest. In the weighted cost function
considered here, the user can select the relative importance of mini-
mum power (or equivalently, minimum control effort) to minimum
jerk (or equivalently, the minimum rate of change of control effort).
The solution for the control profile obtained for linear-time-
invariantsystems, like the system considered in this paper, often as-
sumes known constant system parameters. With this assumption the
simulated system response for a rest-to-rest maneuver will meet the
required endpoint conditions with zero residual vibration. In actual
physical systems it is impossible to know the exact values of the
system parameters. Thus, any solution using the control profile ob-
tained assuming constantsystem parameters will have zero residual
vibration only when the actual system parameters exactly match the
design parameters used to obtain the control profile. With this in
mind, it is the goal of the researchers to obtain a solution that is
robust to errors in system parameters (for example, damping ratio,
natural frequency). To do this, sensitivity equations are derived and
added to the state-space equations before transforming them into
Jordan canonical form. It will be shown that with the addition of
these equations, which force the sensitivity state variables to zero
at the end of the maneuver, there is a reductionin residual vibration
caused by errors in system parameters.
The paper begins with the problem formulation in Sec. II.
Section III gives a numerical example with results presented. The
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topic of sensitivity equation formulation is considered in Sec. IV.
Section V gives the same numerical example consideredin Sec. II1,
with the addition of sensitivity equations. A comparison between
the robust and nonrobust solutions is also drawn in this section. Fi-
nally, the paper concludes with a summary of the results obtained
in Sec. VL.

II. Problem Formulation
The weighted minimum power/jerk cost function

1 [ du\’
minz/(: §2u2+(5> dr 1)

is considered,! subject to the constraint
Mi+&x + Kx = Pu 2)

where M is the mass matrix, £ the damping matrix, and K is the
stiffness matrix. P is the control influence vector, and u# and x are
the scalar control input and state vector, respectively. In Eq. (1) T
is the specified final time, and ¢ is the weighting parameter to be
varied. The equations of motion for this system can be given in
state-space form as

oo I 0 .
il VR T YT L PSP ®)

A B

y=Cw+ Du )

Transformingthis system of equations [Egs. (3) and (4)] into Jordan
canonical form gives

t=J 4 b ®
Vuw VB
y = \S,_/z + Du (6)
cv-!

where J is the Jordan canonical form of A and V is the transforma-
tion matrix. The solution of Eq. (5) is given as

n

ezt —e M z(t) = / e ""hu(r)dr ™

1

To obtain the optimal control for this problem, calculus of vari-
ations will be used in order to perform the function optimization.
Using this method, for the chosen cost function [Eq. (1)] to be min-
imized, the following performance criteria must be minimized:
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where A* in this equation represents the Lagrange multipliers.
Equation (8) is derived by assuming the maneuver time to be T,
the initial time and initial conditionsto be zero, and by augmenting
the cost function with Eq. (7). By taking the first variation of this
equation and setting it equal to zero, the u that minimizes Eq. (1)
can be obtained. The first variation is expressed as

T d?u du ’
51 = 2y — — —Te b |sud —3 9
/(;|:§u i a")"e }ur+(dt u)u )

For this equation to be equal to zero for all §u, the quantities inside
the brackets must be equal to zero. This requirement results in a
differential equation in u, which is

dTZ —u=—0HTe (10)

The control u in this equation can be determined by solving for the
homogeneous and particular parts of this equation and then adding
these solutionstogetherto obtain the total solution for u. The bound-
ary conditions for u are obtained from the necessary conditions for
optimality. From Eq. (9), the conditions for optimality require that
the second bracketed term must be equal to zero. Because du is
arbitrary, this implies that du/d¢ at the initial and final time must
beequalto zero. There is no requirement that the control u be forced
to zero at the initial and final time, as is done in the minimum jerk
solution obtained in Ref. 10. In that paper the control is forced to
zero at the initial and final times in order to make the control practi-
cal to input on a real physical system, although the cost function is
not minimized. Thus, the minimum jerk solutionobtainedin Ref. 10
is suboptimal. Here, the optimal solution of the weighted minimum
power/jerk solution will be considered, and it will be shown that
as ¢ goes to zero the solution converges to the optimal minimum
jerk solution; conversely, the optimal minimum power solution is
obtained as ¢ goes to infinity.

A general closed-form solution for the weighted minimum
power/jerk control can be found by solving Eq. (10) with the nec-
essary condition for optimality that the derivative of the control at
initial and final time is set equal to zero. The form of the solution
will depend on the size of the system as well as the number of
modes present. The general closed-form solution for a system with
one rigid-body mode and p flexible modes, for ¢ > 0, is given as

u() = Ay + Aot + Azet’ + rge™

p
+ Y [harane ™ sin(b0) + hysane @ cosy)] (1D

i=1

where a; is the real part of the ith complex conjugate pole and b; is
the imaginary part of the ith complex conjugate pole of the system.
For ¢ = 0 the solution of Eq. (10) is

M(t) = )\,1 +)\,2t + )\,31’2 + )\,41’3

p
+ Z [)\.(3+2[)€_ai1 sin(b[t) + )\.(4+ 2[)€_ai1 COS(b[t)] (12)

i=1

which corresponds to the minimum jerk solution. The parameters
(1;) in Eq. (11) are found by simultaneously solving Eq. (7) and the
boundary conditionsfrom Eq. (9). The number of parameters (A;) in
this solutionis n, which in a general case depends on the size of the
system. For the system considered here with one rigid-body mode,
n =4+ 2p, where the scalar p is the number of flexible modes of
the system. The value obtained for n can be broken down as follows:

n= 2 + 2 + 2
g (13)
(for 1 rigid-body mode) (#0fB.C.s) (for p flexible modes)
= dimension(A*) + 2
( ) (# of B.C.s) (14)

The cost function used here is the same as used by Junkins and
Turner.! Junkins and Turner convert the problem to a standard form
for Pontryagin’s Principle, whereas here the calculus of variations
is used for the function optimization. Also, Junkins and Turner de-
rive closed-form solutions for the case of rigid-body motion only,
whereas a system with rigid-body and flexible modes is addressedin
this paper. The procedure for obtaining the control using the method
developed here will be demonstrated in the next section.

III. Numerical Example 1

The benchmark two-mass/spring/damper problem will now be
considered. This system is a model of a flexible structure with one
rigid-body mode and one flexible mode. Figure 1 shows the system
tobe considered, with the two masses m, and m,, the spring constant
k,andaviscousdamperc. Inthe figure xy and x; are the displacement
of the first and second mass, respectively. The input force is denoted
as u and the outputas y.

The differential equation that governs this system is given by

M3 +&i+ Kx = Pu (15)

where

k=| % 16
= c & (16)

£= ,ox= , P = a17)
—c c X 0

The linear ordinary coupled differential equation from Eq. (15) can
be written in the state-space form as

w = Aw + Bu (18)

y=Cw+ Du (19)

[XU] lr 0 0 1 0 —l
X1 0 0 0 1
w=1{. |, A (20)

X - —k/my  k/my —c/my c/myg
Lle k/m, —k/m;, c¢/m —c/m
—u —>y

%)% — X,

Fig.1 Two-mass/spring/damper system.
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0
B = L, | c=[0 1 0 o],

0

D=0 2D

When the state-spaceequations are converted into Jordan canonical
form, Eq. (18) can be rewritten as

2 01 O 0 21 by,
Z 00 0 O Z b
.2 _ 2 n ), (22)
23 00 p O 23 b3,
LZ4J 00 O PzJ IJ4J b41J
S —— e e e
J Vuw VB=b

where J is the Jordan canonical form of the A matrix, V is the
transformation matrix, and p, and p, are the complex conjugate
poles of the flexible mode.

The rest-to-rest maneuver of the undamped two-mass/spring/
damper benchmark problem is considered here. For simplicity, the
following parameters are used:

, c=0,

my=m; =1, k= t; = 0 (initial time)

(ST

t, = 47 (final time), =1 (23)

The input is on m, and the output is the position of m,. The initial
positions of m, and m, are both zero, and the final positions are
chosen (arbitrarily) to be one. For this system the natural frequency
of the elastic mode is equal to 1. Using the parameterized closed-
form solution of u [Eq. (11)], the solution is found by rewriting

Eq. (7) as
[e—1<4ﬂ>z(4n)‘|
L 0 J =S (24)
0
where S is given as

n
/ e "bu(r)dr
n

S = Jacobian W.I.t. A 25)

du )
dr

du )
ar

The S matrix for this undamped system under considerationis given
analytically as

From Eq. (24) the unknown A vector is determined using

[6_1(4")2(4n)]

Loget| 7

L 0 J (27
0

Using the numerical values for this example, X is given as

0.106437
—0.016940

Lo | 0.15E—6 28)

—0.043842
—0.026902
0

These A values are substituted into Eq. (11), and the solution is
obtained. The control for the rest-to-rest maneuver given in this
example is then

u(t) = 0.106437 — 0.01694f + (0.15E—6)e'

—(0.043842)¢™" — 0.026902 sin(t) (29)

It can be noted from Eq. (26) that there exist large variations in
the magnitude of the elements of the S matrix, which might lead to
numerical instabilitiesbecause the S matrix requiresinversion. This
is as a resultof the e’ term in the control profile, which can become
inordinately large for large maneuver times. This can be remedied
by normalization of the maneuver time to one.

Figure 2 is a plot of the control profile [Eq. (29)] and the position
of both masses (1, and m ) using the values chosen in Eq. (23). The
rest-to-restmaneuver is completed without any residual vibration.

The next point of interest is the effect varying the weighting pa-
rameter ¢ has onthe values of A. First, the general form of the control
[Eq. (11)] for this example is given as

u(t) = h + Aot +rzet +re™ + Ase ™ sin(bt) + rge " cos(bt)
(30)
where

b=1 (3D

With these values of A clearly defined, the effect of varying ¢ on the
parameters can be determined and is illustrated in Figs. 3-5. The
parameter ¢ is not shown because it is zero or negligible for all ¢
values for this undamped system under consideration. The smallest
value of ¢ plotted for all cases is ¢ =0.01, which is chosen to be
a small number greater than zero because the weighted solution is
not valid for ¢ =0. Recall that in the case of ¢ =0, the minimum
jerk solution is obtained [Eq. (12)].

It will be shown here thatas ¢ goes to zero the weighted minimum
power/jerk control profile converges to the minimum jerk control
profile. This will be shown for the example system considered here.
The convergence of the weighted minimum power/jerk control to
the minimum power control as ¢ tends toward infinity will also be

—8 72 _6_347,3 _dmget ;64” +1 4714“6_4”;6_4” L o
_1 4 _1 —4n

4r 82 % —++ 0 0
—1+4 't —e ™ 4]

_ 0 —4J/"Trn _—re - 2/=1n 27

s V] V] (26)

—1+4 't —e ™ 4]

0 4/—1rn — _— —2J/=1r 2n

=1 C+V/—1
0 1 re*t —re ¢ 1 0
0 1 ¢ - 1 0]
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Fig.2 Undamped system minimum power/jerk rest-to-rest maneuver.
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Fig.3 A and )\, vs weighting parameter ¢ for undamped system minimum power/jerk control.

demonstrated for this two-mass/spring/damper example. Before the
convergence of the solution in the limits of ¢ can be shown, the
minimum power and minimum jerk solutions must be stated. The
minimum power control profile for this system, which is determined
using the closed-form minimum power solution given by Bhat and
Miu, ' is

u(t) = 0.08961 — 0.01426t — 0.02852 sin(r) (32)

while the minimum jerk solution is
u(t) = 0.05017 + 0.02026t — 0.00674+2

+0.00036> — 0.02026 sin(t) (33)

The minimum jerk solution is obtained using the same procedure
as in Ref. 10, except that the derivative of the control is forced
to zero at initial and final time. Bhat and Miu'® require the con-
trol to be zero at initial and final times, resulting in a suboptimal
solution. These solutions are shown here for demonstration of the
convergence of the weighted minimum power/jerk to the minimum
power and minimum jerk solutions in the limits of the weighting
parameter ¢ . Figures 6 and 7 show the convergenceof the weighted
minimum power/jerk solution in the limits of £. A ¢ value of 10 is
chosen to demonstrate the convergence of the weighted minimum
power/jerk solution to the minimum power solution as ¢ goes to
infinity. Figure 6 plots the solution obtained for this case along with
the minimum power solution given by Eq. (32). A ¢ value of 0.005
is chosen to demonstratethe convergenceof the weighted minimum



Downloaded by UNIVERSITY OF CAMBRIDGE on January 23, 2015 | http://arc.aiaa.org | DOI: 10.2514/2.4783

820 HINDLE AND SINGH

5 6 7 8 9 10

Fig.4 ); and \4 vs weighting parameter ¢ for undamped system minimum power/jerk control.

2

-10 ? ! ! !

Fig.5 s vs weighting parameter ¢ for undamped system minimum power/jerk control.

power/jerk solution to the minimum jerk solution as ¢ goes to zero.
Figure 7 plots the solution obtained for this case along with the min-
imum jerk solution of Eq. (33). In both Figs. 6 and 7 there appears
to be only one curve because the two curves in each plot lie on top
of each other.

Following the same procedure used to determine the con-
trol in Fig. 2, the control for the damped benchmark two-mass/
spring/damper problem can be obtained. Using the values given in
Eq. (23) for this system, this time with ¢ = 0.25 instead of ¢ = 0,
the control for the rest-to-rest maneuver is found to be

u(t) = 0.108260 — 0.019430r + (0.40E—6)e’
—(0.023246)¢~" — 0.003277"/ sin [ (V15 /4)1]

—0.002571e"“/% cos [ (V15 /4)1] (34)

where for this case

a=—1 (35)

b=+15/4 (36)

Figure 8 is a plot of the control profile [Eq. (34)] and the position
of both masses (m, and m ) for the system using the values given
for this damped system. As with the undamped case, the rest-to-rest
maneuver is completed without any residual vibration.

This section has demonstrated the validity of the weighted min-
imum power/jerk control determination as applied to a rest-to-rest
maneuver of a flexible structure, with and without the inclusion of
damping. The next section extends this idea to develop a robust
solution when there are errors present in system parameters.
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Fig. 6 Minimum power control vs weighted minimum power/jerk control when ¢ = 10.
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Fig.7 Minimum jerk control vs weighted minimum power/jerk control when ¢ = 0.005.

IV. Robust Solution — Sensitivity Equations

The goal of this paper is to formulate a control that minimizes
a weighted minimum power/jerk cost function while being robust
to errors in system parameters. The motivation comes from the fact
that in real physical systems the values which are assumed to be
constant (e.g., stiffness or natural frequency) are not known exactly
or have been estimated. When this is the case, for the rest-to-restma-
neuver considered here the control profile determined using known
constant system parameters will bring the system to rest only when
the actual system parameters are exactly the same as those assumed
to obtain the control profile. When the actual system parameters are
notthe same, residual vibrationwill existat the end of the rest-to-rest
maneuver. The goal is to minimize this residual vibration. To do this,
sensitivity equations are derived, which represent the sensitivity of
the system to model parameters. This procedure can be applied to

desensitize the system with respect to the stiffness k, the damping
¢, or the natural frequency (taking into consideration both errors in
mass and stiffness). Here, the sensitivity with respect to the stiffness
is of interest (thereby the natural frequency). It will be shown that
the control profile obtained with the addition of these sensitivity
equations reduces residual vibration when errors in the value of k
(stiffness) are present. The equations of motion for the benchmark
two-mass/spring/damper problem considered in Sec. III are

Xo = (—k/my)xy + (k/mo)x; + (—c/mg)xo + (¢/mo)x, +u/mg
(37)
X = (k/m)xy + (=k/m)x; + (c/m)%y + (—c/my)x; (38)

By taking the derivative of these two equations with respect to &,
the following equations are obtained:
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+—(—‘>+—”——‘=0 (39)
my \ d my  my
d)‘C’l k d_XU dx1 + —C d)&()
dk m; \ d dk m; \ dk
c (dx X X
+—(—)-—=+—=0 (40)
m; \ dk m;  m

To simplify formulation while still demonstrating the benefit of this
method, the values of the two masses are assumed to be equal as
in the preceding example (imo =m,). This does not have to be the
case, but it makes for simple understanding of the procedure. If
this assumption is not made, instead of having the single sensitiv-
ity equation given in Eq. (44), Egs. (39) and (40) would represent
the sensitivity equations with which the original state-space model
would be augmented. Using the equal mass assumption, the follow-
ing equation is obtained using Egs. (39) and (40):
dx, dx,

T “n

Substituting into Eq.(39) gives

djé() C d.XU k d.XU Xo X
P +m(2 dk>+m(2 dk>+m—m =0 (42

Defining a new state variable by

dx
& =" (43)

gives the sensitivity equation, from Eq. (42), to be
Xy +2(c/m)xy +2(k/m)xy +xo/m — x; /m =0 (44)

Now, this equation will be added to the dynamical equations of the
system and written in state-space form. The new system equations
are (assuming my =m )

Time

where
[0 0 0 1 0 0 |
0 0 0 0 1 0
A 0 0 0 0 0 1
—k/m  k/m 0 —c/m  c/m 0
k/im  —k/m 0 c/m —c/m 0
| —1/m 1/m  =2k/m 0 0 —2¢/m |
47
0
0
0
B = U | c=[0 100 0 0], D=0 (48)
0
Lo
Xo
X1
w=|" (49)
Xo

Lo

Once the sensitivity equations are added and the system equations
are placedin state-spaceform, the same procedureused to determine
the control (from Sec. II) can be used. It can be shown for this
case that the same control profile will be obtained if the sensitivity
istaken withrespectto the dampingc. This implies thatdesensitizing
the system with respect to stiffness simultaneously desensitizes the
system with respect to damping. By forcing the sensitivity states to
zero at final time, the residual vibration is reduced. The example
considered in Sec. III will be considered in the next section, this
time with the addition of the derived sensitivityequations. A general
closed-form solution for the robust weighted minimum power/jerk
controlcan be found by solving Eq. (10) with the necessarycondition
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Fig.9 Undamped system nonrobust and robust control without error in k.

for optimality that the derivative of the control at initial and final
time is set equal to zero. Also, the J matrix given in Eq. (10) must be
augmented with the sensitivity equations to analytically obtain the
robust minimum power/jerk closed-form solution given in Eq. (50).
The form of the solution will depend on the size of the system
as well as the number of modes present. The general closed-form
solution for the benchmark problem having one rigid-body mode
and p flexible modes with the addition of the derived sensitivity
equationsis given as

p
w(t) = o+ hot + ha€ + hge ™+ Y [hane sinb1)

i=1
+ X rane " cos(bit) + Ag 1 apte” ! sin(b;t)

+)\.(4+4[)t€_a” COS(b[l‘)] (50)

where a; is the real part of the ith complex conjugate pole and b; is
the imaginary part of the ith complex conjugate pole of the system.
This general closed-form solution is only valid when the sensitivity
is taken with respect to the stiffness (or damping) for the system
considered. The next sectionuses this closed-formsolution to obtain
the weighted minimum power/jerk control for the example discussed
in Sec. [II with the inclusionof the sensitivityequationsderivedhere.
Both the undamped and damped systems will be addressed.

V. Numerical Example 2

Using the general closed-form solution given in Eq. (50), the
robust weighted minimum power/jerk control will be determined for
the benchmark problemalready consideredwith system values given
by Eq. (23) and the addition of the sensitivity equationderivedin the
preceding section. First the undamped system will be considered,
followed by the damped system. Following the same procedureused
in Sec. I1I, the following A valuesare given for the undampedsystem:

[ 0.106792 ]
—0.016996
0.14E—6
—0.042876
A= (5D
—0.026739
—0.005400
0
| 0.000859 |

and the control is given as
u(t) =0.106792 — 0.016996¢ + (0.14E —6)e’ — (0.042876)e™"
—0.026739sin(t) —0.005400cos(t) + 0.00085% cos(t)  (52)

Figure 9 is a plot of the control (input) and position of m; (out-
put) for both the nonrobust solution [Eq. (29)] and robust solution
[Eq. (52)] when there are no errors in the system parameter k. Both
solutions reach the final position without any residual vibration.
Figure 9 does not show the position of m, for clarity, but it can be
inferred from the displacementof m, that the residual energy of the
system after the completion of the maneuveris zero because the two
masses are statically coupled. In the following plots the position of
mq will not be shown for the aforementioned reason.

Figure 10 is a plot of the same control input for the nonrobust
and robust solutions shown in Fig. 9, this time when there is a 20%
high error in k[(k=1.2 * (%)]. The figure shows a reduction in the
residual vibration as a result of the error in the system parameter k
with the robust solution.

Figure 11 is a plot of the residual energy in the system at the
specified final time vs the actual system k value using a design k
value of % for both the nonrobust and robust solutions. The residual
energy in the system at the final time is a scalar quantity defined as

residual energy = \/% (gc,Kgcf +1%Mg'cT) (53)

where K is the stiffness matrix, M is the mass matrix, x is the vector
of velocities, and x, is a vector of residual positions defined as

X, =X (tZ) — Xdesired (tz) (54)

From this figure the robust solution for this system reduces residual
vibration when the actual system k values are less than approxi-
mately 0.405 and/or greater than approximately 0.48, with the ex-
ception that both the nonrobust and robust solutions will have zero
residual vibration at the design value of k = % In the region where
0.405 < k <0.48, the nonrobust solution has a smaller residual vi-
bration as compared to the robust solution.

Next, the robust solution for the damped system considered in
Sec. III will be considered. The values for this system are given by
Eq. (23) with the value of ¢ = 0.25 instead of ¢ = 0 for this damped
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Fig. 10 Undamped system nonrobust and robust control with 20% error in k.
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Fig. 11 Residual energy at final time vs k value for nonrobust and robust control (undamped).

system. Following the same procedure as just stated, the A values and the control is given as

for this system are
u(t) =0.115933 — 0.023130¢ + (0.83E —6)e’ — (0.011278)e™"

[ 0.115933 ]
—0.023130 +0.011957/¥ sin [ (v/15/4)1] + 0.005039/»
0.83E—6 (GOPY
x cos [ (V15/4)t] —0.001404¢ "Dt sin [ (V15 /4)1]
5= —0.011278 (55)
0.011957 —0.000987¢"/Vt cos [ (V15 /4)1] (56)
0.005039
—0.001404 Figure 12 is a plot of the control (input) and position of m; (out-
: put) for both the nonrobust solution [Eq. (34)] and robust solution
| —0.000987 | [Eq. (56)] for this damped system when there are no errors in the
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Fig. 13 Damped system nonrobust and robust control with 20 % error in k.

system parameter k. Both solutions reach the final position without
any residual vibration. Figure 13 is a plot of the same control input
for the nonrobust and robust solutions shown in Fig. 12, this time
when thereisa20% higherrorink [k =1.2% (%)]. The figure shows
areductionin the residual vibrationcaused by the errorin the system
parameter k with the robust solution.

Figure 14 is a plot of the residual energy in the system at the
specified final time (f, =4m) vs the actual system k value using a
design k value of % for both the nonrobust and robust solutions.
From this figure the robust solution for this damped system re-
duces residual vibration for all actual system k values shown in

Fig. 14, with the exception that both the nonrobust and robust
solutlions will have zero residual vibration at the design value of
k==s.

Tﬁis section has demonstrated the benefit of the derived sen-
sitivity equations when there are errors present in system param-
eters. Both the undamped and damped systems considered dis-
play reduced residual vibration with the addition of sensitivity
equations. Though this technique may not reduce residual vi-
bration for all actual system k values (as seen in Fig. 11), it
does prove to be a useful method to locally reduce the residual
vibration.
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Fig. 14 Residual energy at final time vs k value for nonrobust and robust control (damped).

VI. Conclusions

A systematic procedure to obtain the closed-form solution for
the rest-to-rest maneuver of the benchmark problem has been in-
troduced, which minimizes the weighted power/jerk cost function.
It has been shown that using the closed-form solution obtained for
the minimum power/jerk control the minimum jerk and minimum
power solutions are approached as the weighting parameter ¢ ap-
proaches zero and infinity, respectively. The concept of sensitivity
equations has been introduced, which, when added to the system
state equations, gives a control that is robust to errors in system
parameters. It has been shown that this robust control reduces resid-
ual vibration when the actual system parameter is in the vicinity
of the design parameter used to derive the control. Though the ro-
bust solution obtained may not be an improvement for all possi-
ble errors in the system parameters, particularly when the param-
eter error is large, it does prove to be a useful technique for small
perturbations thus giving a locally robust solution. Extensions of
this work will include a study of the effect of varying damping
as well as the application of this technique to more complicated
systems.
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