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Suzuki coupling reactions of 2,6-diiodo-8-Mesityl-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene  and
2-anthracen(anthraquinon)-2-yl-4,4,5,5-tetramethyl-[1,3,2] dioxaborolane gave severa novel core-expanded Bodipy
chromophores along the long axis. Their properties were investigated by spectroscopy, el ectrochemistry and quantum chemical

calculations, and an intramolecular charge-transfer process was proved.
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ABSTRACT
A series of anthracenyl(anthraquinonyl)-substituttiluoroboron dipyrromethene dyes were
synthesized through a Suzuki cross-coupling reactibhe crystal structure combined with
geometric optimization reveals a moderate dihegingle between the anthracenyl(anthraquinonyl)
plane and the connected pyrrolyl plane. Photophysitaracterization shows that the introduction
of anthracenyl(anthraquinonyl) moiety to the BODIRYre effectively tunes the emission
properties of BODIPY while retaining the separatesaption properties of BODIPY and
anthracene(anthraquinone). High fluorescent quariefds of up to 0.70 and a large Stokes shift
(ca. 1707 crl) were noted. Electrochemical characterization esgg that the
anthracenyl(anthraquinonyl) linkage and BODIPY ulgad to rich and tunable potentials.
TD-DFT calculation proved a moderate intramolecuttiarge-transfer process between the
BODIPY core and anthracenyl(anthraquinonyl) moiety.
Keywords:
Anthracene; Anthraquinone; BODIPY; Donor-accept@aussian calculation; Intramolecular

charge-transfer



1. Introduction

Recently, BODIPY (4,4-difluoro-4-bora-3a,4a-disgzardacene) has drawn widespread attention

in the chemical and biological society due to tiveide applications as biological labels,[1, 2]

chemosensors,[3-8] fluorescent switches,[9, 10] erlasdyes,[11] drug delivery,[12]

electroluminescent films,[13] and as dye-sensitgadr cells.[14, 15] Similar te-indacene dyes,

a proximate coplanar geometry for the central setiered ring and the adjacent five-membered

ring is found in BODIPY dyes, which facilitate ireldcalizing then-electron over the entire

BODIPY core. Different substitution reaction pattgras well as different reactive sites on the

core enrich the modifications to BODIPY. To BODIRIYe of which alkylation and arylation are

the most common. The meso site favors an orthogamdbrmation for aryl groups because of the

steric hindrance effect.[16] The restriction of mesyl rotation by introducing alkyl groups to the

1,7-positions is a common route to enhance thediaence quantum yield because it reduces the

energy loss through non-irradiative transition kcited states.[17] Consistent with this, alkyl

groups are also often introduced to the meso-ang. rFor 2- and 6-position, electrophilic

substitution is also likely to occur because thge sites have the least positive charge in the

resonance structures.[18] For the boron, Grigneagients or aryl lithium reagents are needed for

alkylation or arylation. Generally, the B—F bonde mert to Sonogashira, Heck, Suzuki and other

cross-coupling reactions.

BODIPY is intrinsically electron rich, which is uslly served as an electron-donor. Sometimes, it

also plays a part in the scope of electron-accgp®P1] In order to realize the switching

between its dual roles, strong electron-acceptdrdonor are needed to increase the permanent

dipole moment strength of monosubstituted BODIPX][Holding high hole mobilities,



anthracene is recognized as a candidate for p-Bgmaiconductor for organic field-effect

transistors (OFETSs).[23] The extension of @aeonjugation of anthracene unit may provide

efficient charge transportation system.[24] Besidiegtron-donating nature, anthracene is also a

fine chromophore with high fluorescence. These @riigs of anthracene remind us of another

chromophore-anthraquinone, which has the oppos#rifes. 9, 12-anthraquinone (AQ) is highly

electrophilic and easily incorporatedsiteconjugated systems.[25, 26] Besides, AQ showgh hi

intersystem crossing efficiencydisc), thus, it significantly reduces the fluoredcepuantum

yields.[27, 28] The BODIPY derivatives having aedir connection between the BODIPY core

and 9-anthracenyl moiety is apt to adopt a twistedformation, thus the BODIPY core and

anthracene (or anthraquinone) is partly electrdiyicadependent and the conjugation is altered to

some extent.[20]

8-Phenyl-4,4-difluoro-1,3,5,7-tetramethyl-4-borgadiazas-indacene is highly fluorescent.[29]

The attachment of methyl groups to the 1,7-positiohBODIPY and to ortho, para-positions of

the 8-aryl ring restrain the aryl ring from revaigiaround the single bond, contributing to a large

fluorescence  quantum  vyield.[4] Thus, the fluorescenquantum vyield of

8-mesityl-1,3,5,7-tetramethyl-4,4-difluoro-4-bora;8a-diazas-indacene is reported to be

0.97.[30] The introduction of methyl groups at %,3;positions of BODIPY also have an impact

on the orientation of the substituting groups &tf@sitions, leading to a nonplanar conformation.

From the reported 2,6-diiodosubstituted BODIPY [B&37] monosubstituted produc &nd5)

and disubstituted product4 &nd6) are achieved under one-pot condition. (Schen¥khg)aim of

extending the conjugation along the long axis ofCBRY core is to make it still feasible for



charge transfer between BODIPY core and anthracémylanthraquinonyl) part in spite of

nonplanar geometry.[38]

2. Experimental

2.1 Reagents and instruments

Most reagents were purchased from Alfa Aesar origtidand used as supplied unless otherwise

noted. All the solvents used in photophysical mezsents and electrochemical measurements

were of HPLC grade quality. All other solvents welgtained commercially and purified using

standard procedures. Silica gel with 200-300 meshewused in column chromatography, and

precoated silica gel plates were utilized in tlagdr chromatography (TLC) and monitored by UV

light. SHIMADZU GCMS-QP2010 puls spectrometer waspyed in EI mass spectrometric

measurements. Bruker Biflex 1l mass spectrometers vengaged in Matrix-assisted laser

desorption/ionization reflectron time-of-fight (M®I-TOF) mass spectrometry. Nuclear

magnetic resonance (NMR) spectra were measuredrakeBAvance DPS-400 spectrometer at

room temperature (298 K), and chemical shifts weferenced to the residual solvent peaks.

Elemental analyses were recorded on a Carlo-Erbé-lihstrument. UV-Vis spectra were

performed on a Hitachi U-3010 spectrometer, andrelscence emission spectra were monitored

using a Hitachi F-4500, which is corrected for weevelength dependence of the throughput of the

emission monochromator and of the sensitivity efdletector.

Cyclic voltammetry measurements were monitored dDHI660D electrochemical workstation

(CH Instruments, Austin, TX). A dry weighing bottleas served as the container. The working

electrode glassy carbon (3.0 mm in diameter) wdsipm on a felt pad with 0.Q5 alumina

(Buehler, Ltd., Lake Bluff, IL), sonicated in deiead water for 2 min, and then dried before



usage. The counter electrode platinum wire was edblith an abrasive paper, washed with
deionized water and acetone, and dried. The referelectrode saturated calomel electrode (SCE)
was washed with deionized water and also dried. CWeexperiment was conducted under N
atmosphere witin-Bus;NPF; as the supporting electrolyte. The scan rate Was@/s.

2.2 Synthesis procedures and characterizationfoiateew compounds

Synthesis of compoundsand4

To a stirred, degassed solution of compourtl (310 mg, 0.5 mmol) and
2-anthracen-2-yl-4,4,5,5-tetramethyl-[1,3,2]dioxaddane (304 mg, 1.0 mmol) in DMF (35 mL),
K.CGO; (414 mg, 3.0 mmol) dissolved in a minimum amounwater was added. The mixture was
stirred at room temperature under argon for 10 tasirhen Pd (PBh (58 mg, 0.05 mmol) was
added. The mixture was then heated at 80°C for Lider argon. The reaction mixture was
concentrated in vacuo, and the resulting solid dvssolved in CHCI, (50 mL), washed with O
(1x20 mL) and dried over anhydrous J8&,. Concentrated in vacuo and purified by column
chromatography (C¥Cl./petroleum ether=1/1), affording compourglél27 mg, yield 38%) and

4 (180 mg, yield 50%).

For compoundB, m.p. 199-200°C. IR (KBr, ci): 2922.58, 1534.75, 1456.46, 1396.11, 1351.41,
1311.27, 1212.57, 1179.72, 1115.27, 1086.89, 100342NMR (400 MHz, CDC}) § 8.44 (s, 1
H), 8.40 (s, 1 H), 8.03-8.01 (m, 3 H), 7.78 (s,)1 H48-7.46 (m, 2 H), 7.29 (s, 1 H), 6.98 (s, 2 H)
2.68 (s, 3 H), 2.62 (s, 3 H), 2.34 (s, 3 H), 2.466(H), 1.44 (s, 3 H), 1.40 (s, 3 FiC NMR (100
MHz, CDCk) § 156.40, 154.66, 142.79, 142.07, 140.39, 139.16,713 135.03, 134.97, 132.11,
132.03, 131.55, 131.31, 130.73, 130.36, 129.48,3829.29.26, 128.36, 128.33, 128.27, 127.93,

126.38, 126.26, 125.76, 125.68, 21.38, 19.81, 14544, 13.91, 12.10. MS (MALDI-TOF) m/z



668.3 (M+). Anal. Calcd for §H3.N.BF,l, C, 64.69; H, 4.83; N, 4.19; Found C, 64.74; 824

N, 4.15.

For compoundt, m.p. 212-213°C. IR (KBr, ci): 2922.15, 1534.26, 1452.41, 1393.75, 1314.53,
1215.50, 1179.41, 1106.39, 1081.43, 1010.58, 9047RIMR (400 MHz, CDC}) 5 8.45 (s, 2 H),
8.42 (s, 2 H), 8.05-8.01 (m, 6 H), 7.83 (s, 2 H}97¢7.46 (m, 4 H), 7.34 (d,= 8.0 Hz, 2 H), 6.99
(s, 2 H,), 2.67 (s, 6 H), 2.33 (s, 3 H), 2.27 ($J)6 1.45 (s, 6 H)**C NMR (100 MHz, CDG)) 5
154.30, 142.36, 138.89, 138.77, 135.05, 133.41,063231.93, 131.65, 131.62, 130.82, 130.68,
129.31, 129.19, 128.32, 128.26, 128.24, 128.21,3126126.21, 125.68, 125.58, 21.38, 19.96,
13.78, 12.00. MS (MALDI-TOF) m/z 718.5 (M+). AnaCalcd for GoH4iN2BF,, C, 83.56; H,
5.75; N, 3.90; Found C, 83.60; H, 5.74; N, 3.88.

Synthesis of compoundsand6

The procedure was the same with above except that
2-anthraquinon-2-yl-4,4,5,5-tetramethyl-[1,3,2]daporolane (334 mg, 1.0 mmol) was added
instead of 2-anthracen-2-yl-4,4,5,5-tetramethyB2]dioxaborolane. This reaction gave
compounds (122 mg, yield 35%) an@ (175 mg, yield 45%).

For compounds, m.p. 201-202°C. IR (KBr, cif): 2964.77, 2922.35, 1675.17, 1594.68, 1533.38,
1460.25, 1394.98, 1349.22, 1312.57, 1292.45, 1P631228.57, 1180.67, 1116.75, 1080.62,
1006.09'H NMR (400 MHz, CDC}) & 8.36-8.30 (m, 3 H), 8.12 (s, 1 H), 7.82-7.80 (mHR
7.63-7.60 (m, 1 H), 6.99 (s, 2 H), 2.69 (s, 3 H3&(s, 3 H), 2.35 (s, 3 H), 2.14 (s, 6 H), 1.453(s
H), 1.37 (s, 3 H). *C NMR (100 MHz, CDGJ) 5 183.19, 182.94, 156.41, 154.36, 144.23, 142.76,
140.23, 139.79, 139.38, 135.70, 134.92, 134.37,2¥34.33.75, 133.68, 133.66, 132.19, 132.00,

131.18, 131.06, 130.58, 129.48, 128.79, 127.654P2127.38, 21.37, 19.77, 16.16, 15.89, 13.70,



12.00. MS (MALDI-TOF) m/z 698.4 (M+), Anal. Calcaif Cz¢H3oN,O,BFl, C, 61.92; H, 4.33;

N, 4.01; Found C, 61.95; H, 4.30; N, 3.99.

For compound, m.p. 254-255°C. IR (KBr, cif): 2922.83, 1677.08, 1594.55, 1531.61, 1472.26,
1435.55, 1391.94, 1317.13, 1232.19, 1183.27, 1613.295.81, 1011.63, 931.28 NMR (400
MHz, CDCk) 8 8.37-8.31 (m, 6 H), 8.15 (s, 2 H), 7.83-7.80 (nkj}4 7.66-7.64 (m, 2 H), 7.00 (s,

2 H), 2.63 (s, 6 H,), 2.34 (s, 3 H), 2.22 (s, 6 H¥2 (s, 6 H)*C NMR (100 MHz, CDG)) &
183.21, 182.96, 154.14, 143.62, 140.25, 139.29,7B33.34.77, 134.38, 134.28, 133.64, 133.57,
133.56, 132.05, 131.82, 131.06, 130.99, 129.49,7¥28.27.63, 127.39, 127.35, 21.37, 19.89,
13.70, 12.01. MS (MALDI-TOF) m/z 778.5 (M+). Andlalcd for GoHs/N,O4BF,, C, 77.13; H,
4.79; N, 3.60; Found C, 77.15; H, 4.80; N, 3.59.

For compound’, m.p. 246-247°C. IR (KBr, cif): 2921.25, 1675.52, 1593.83, 1539.41, 1466.16,
1437.75, 1398.63, 1312.22, 1293.50, 1264.70, 18291689.61, 1116.68, 1076.33, 1008.14,
985.23, 931.79H NMR (400 MHz, CDC}) & 8.34-8.31 (m, 3H), 8.12 (s, 1 H), 7.82-7.79 (m, 2
H), 7.63-7.61 (m, 1 H), 6.97 (s, 2 H), 6.05 (s, )1 H61 (s, 3 H), 2.58 (s, 3 H), 2.33 (s, 3 H),52.1
(s, 6 H), 1.42 (s, 3 H), 1.37 (s, 3 HfC NMR (100 MHz, CDGJ) 5 183.30, 183.03, 157.45,
152.00, 144.04, 142.65, 140.83, 139.03, 137.80,7933.34.97, 134.32, 134.22, 133.78, 133.71,
133.59, 131.93, 131.81, 131.19, 130.90, 130.11,3P2928.82, 127.56, 127.39, 127.36, 121.98,
21.35, 19.76, 14.95, 13.76, 13.49, 11.77. MS (MAOF) m/z 572.3 (M+). Anal. Calcd for
CseH31N,0.BF,, C, 75.53; H, 5.46; N, 4.89; Found C, 75.50; M85N, 4.91.

3. Results and discussion

3.1. Synthesis of BODIPY dye&s6



As shown in scheme 1, 8-mesityl-1,3,5,7-tetramef@tdifluoro-4-bora-3a,4a-diazindacene
1 and the 2,6-diiodosubstituted oBeare prepared according to the literatures.[30, S4uki
coupling reactions of compound 2 with either
2-anthracen-2-yl-4,4,5,5-tetramethyl-[1,3,2]dioxedlane[24] or
2-anthraquinon-2-yl-4,4,5,5-tetramethyl-[1,3,2]diporolane[39] give the desired
anthracenyl-substituted produc® gnd4) and anthraquinonyl-substituted produdisagd®6). In
the second case, very small amounts of compd@usdbtained as a byproduct (<5%).

3.2. Crystal structures

Single crystal structure for compou@dhas been reported,[31] but that for compodritas not
been reported yet. Although the single crystalscimmpounds3-6 have not been obtained, the
single crystals for compouridand? have been acquired by slow evaporation of dicin@thane
solutions over two months. Compared to compdarmbmpound’ lacks an iodine atom, so it can
be used as a reference for compobnés shown in figure 1 and table S2, the crystatey for
compoundl is orthorhombic, while that for compourdis monoclinic. The orientation of the
2,4,6-trimethylphenyl moiety is rotated out of dlipyrrolyl plane with a dihedral angle of 84.38°
for compoundl and 89.90° for compound For compound, The average BN and B—F bond
lengths are 1.544 and 1.392 A, respectively, andatlerage N-B-N, F-B-N and F-B-F angles are
107.22, 110.10, 109.18°, respectively. The—ONIL and C16-N2 bond lengths are 1.348 and
1.355 A, while C1-N1 and C7-N2 bond lengths are 1.396 and 1.395 A.[40, 41]desnpound
7, The average BN and B—F bond lengths are 1.546 and 1.392 A, respectieelg,the average
N-B-N, F-B-N and F-B-F angles are 106.29, 110.508.34°, respectively. The Ct6N1 and

C26—N2 bond lengths are 1.334 A and 1.351 A, while €0l and C22-N2 bond lengths are



1.385 and 1.411 A. The dihedral angle between aqttinonyl moiety and the connected pyrrolyl
plane is 48.48°. Due to the electron-withdrawinig@fof anthraquinonyl group, the length of the
C16—C17 bond (1.419 A) in compouritlis significantly longer than that of the €4 bond
(1.404 A) in compound. While the length of the C25C26 bond (1.405 A) in compouritlis
similar to that of the C9C10 bond (1.402 A) in compourd22]

The packing diagrams for compouhdand?7 are also shown in figure 1. For compouhdhere
are four molecules in one crystal cell. Intermolacinydrogen bondings between fluorine atoms
and hydrogen atoms are the most important forcleererl are three kinds of-FH hydrogen
bondings. Along a axis, FH hydrogen bonds are formed between the fluoriramabf
difluoroboron moiety and the hydrogen atom of 4+megroup of meso-aryl ring. Along b axis, F
—H hydrogen bonds are formed between the fluorimenadf difluoroboron moiety and the
hydrogen atom of 1(7)-methyl group of BODIPY cofdong c axis, F—H hydrogen bonds are
formed between the fluorine atom of difluoroborooiety and the hydrogen atom of 3(5)-CH
group of meso-aryl ring. For compouiddthere are also four molecules in one crystal édting

a axis, two intermolecular ©H hydrogen bonds are formed between the oxygen satoim
anthraquinonyl moiety and the hydrogen atoms effCgroup of anthraquinonyl group. Also two
intermolecular N-H hydrogen bonds are formed between the nitrogemsabf dipyrrolyl moiety
and the hydrogen atoms of€H group of anthraquinonyl group. Along b axis;-H hydrogen
bonds are formed between the fluorine atom of diftboron moiety and the hydrogen atom of C
—H group of anthraquinonyl group. Also—<€H---z interaction is observed between 2(6)-methyl
group of meso-aryl ring and the carbon atom of mgthinonyl unit. Along ¢ axis, strongn

stacking is observed between the anthraquinonyligmf one molecule and that of the other.



Therefore, the introduction of anthraquinonyl groaip?2(6)-position not only alters the bond

lengths and angles, but also affects the packindesyowhich is also probably attributed to its

electron-withdrawing nature.[42]

3.3. Geometric optimization

The optimization for geometric structures of commasl and3-6 is carried out by Gaussian 03

program at the B3LYP/6-31tG* level.[43] For compdulb, the calculated bond lengths and

angles are in good agreement with the crystalldgcagata except for some small deviations

(Table S3), which suggests that this calculatiothoeis suitable for our BODIPY system. Hence,

it is feasible to investigate the structural infation of compound8-6 under this optimization.

As shown in figure 2, for compounds6, the dihedral angles between 8-mesityl plane &ed t

dipyrrolyl plane are 88.85, 87.46, 88.28 and 89.84Spectively. These proximately perpendicular

geometries assist in alleviating the electronicptiog effect.[44] The dihedral angle between

anthracenyl plane and the connected pyrrolyl planeompound3 is 56.14°, which is 54.87° in

compound. The dihedral angle between anthraquinonyl plamtkthe connected pyrrolyl plane is

51.43° for compoun® and 52.19° for compoun@l These results confirm the twisted geometry

for dipyrrolyl moiety and anthracenyl (or anthragumyl) moiety.

3.4. Photophysical properties

Images demonstrating the color and fluorescencestom of the compound%6 are shown in

Figure S4. Compound3 5 and6 all display a magenta color, while compouhéxhibits a red

color. A light yellow color with strong fluoresceatnission is observed in compoufdwhile a

dark orange color with very weak fluorescence eimisss monitored in compoun8. The

fluorescence emission for compoumndnd6 are hardly discerned.

10



As shown in figure 3 and table 1, in comparisotdampoundl (Amax=501 nm),[30] the UV-Vis
spectra of compound3, 4, 5 and 6 display a combination of a red-shifted BODIPY ufif,ax
around 532 nm) and an anthraceny (=253 nm) or an anthraquinonyl unit (200-300 nm)[45]
Compared to compourg] the UV-Vis spectra of compoun@sand4 show only small red shifts
(2 and 6 nm) but the fluorescence spectra shoviivelya big red shifts (23 and 44 nm). These
phenomena suggest that in the excited state thaxeplanarization of the molecules allowing a
larger electronic interaction between the BODIPYrecand the anthracenyl part. Although
incorporating two high fluorescent anthracenyl rtiee the fluorescent quantum yield of
compound4 (0.70) is conversely smaller than that of compoiir{@.97).[30] The reason for this
is probably due to the intramolecular charge-tn@CT) between two fluorescent moieties.[46]
Maybe this process and the heavy-atom effect coenfoimeduce the fluorescent quantum yield of
compound3 (0.06). To confirm the ICT formation, the absooptiand fluorescence spectra of
compound in different solvents are also investigated (Feg8b-1 in the Supporting Information).
With the polarity increasing in the order of ethyl ethergchdoromethane, THF, acetonitrile and
DMF, theabsorption spectra only show very small redshiftg, thefluorescence spectra show
obvious redshifts. Besides, the fluorescent quanyieids of compoundsl and 1 are also
determined in these solvents. For compodndhe fluorescent quantum vyields in ethyl ether,
dichloromethane, THF, acetonitrile and DMF are D@30, 0.61, 0.21 and 0.18, respectively. For
compoundl, the fluorescent quantum vyields in ethyl ethechtliromethane, THF, acetonitrile
and DMF are 0.99, 0.97, 0.88, 0.76 and 0.72, réisqebec Compounds and6 have the smallest
fluorescent quantum vyield (0.003). These dyes ahilgt considerable molar extinction
coefficients (more than 6x104™- cni®). Specifically, the extinction coefficients forrmpounds,

11



4,5 and6 are 85893 M-cm® (1ma=532 nm), 60268 M-cm' (lma=536 nm), 70670 M-cni’
(lma=532 nm) and 93199 Mcni® (1ma=532 Nm), respectively. The Stokes shift for comutss,
4,5 and6 are 1222, 1707, 615 and 779 tmespectively.

3.5. Electrochemical properties

The photophysical properties of compouhdre reported, but its electrochemical properties a
not reported yet. In our experiments, the redoemindls for compound®-6 are obtained by
cyclic voltammetry (figure 4) and summarized inléath. Compound. is reported to have one
reversible oxidation potential (1.14 V vs. SCE) ame reversible reduction potential (-1.19 V vs.
SCE).[30] In comparison to compoudgthe reversible oxidation potential of compouh(l.49

V vs. SCE) is positively shifted by 0.35 V, and tegersible reduction potential (-0.91 V vs. SCE)
is positively shifted by 0.28 V. Hence, the sulgiin of hydrogen by iodine atom renders the
oxidation harder. Meanwhile, it seems a feasiblegedo improve the photostability of BODIPY
derivatives by attaching iodo group to 2,6-postiai the BODIPY core.[52] For compou3l
two irreversible oxidation potential (1.26, 1.54v¥. SCE) and one reversible reduction potential
(-1.14 V vs. SCE) are monitored. The first oxidatipotential is mostly contributed by
anthracenyl moiety, while the second oxidation ptié is mostly contributed by the BODIPY
core. Compared to compourd] the reduction potential for the BODIPY core ofrgmwund3
negatively migrated by 0.23 V (vs. SCE), indicatihgt the substitution of one iodo group by
anthracenyl unit renders the oxidation easier. Eompound4, two irreversible oxidation
potentials (1.20, 1.58V vs. SCE) and one reversibtiiction potential (-1.21 V vs. SCE) are
discerned. In comparison to compouBdthe first oxidation potential mainly for anthragé
moiety negatively shifted by 0.06 V (vs. SCE), ahé reduction potential for BODIPY core

12



negatively shifted by 0.07 V (vs. SCE), which sugjgen easier oxidation requirement. Compared

to compoundL, the reduction potential for the BODIPY core ohqmund4 negatively shifted by

0.02 V (vs. SCE) due to the enhanced electron gelmgiintroducing anthracenyl group, which is

proved by the calculation results that the HOMO aofthracene gets delocalized over the

BODIPY.[53] Compound shows one reversible oxidation potential (1.31sV SCE) and three

reversible reduction potentials (-0.93, -1.18, 91\Mvs. SCE). Compoun@ shows one reversible

oxidation potential (1.29 V vs. SCE) and three rsNde reduction potentials (-0.92, -1.28, -1.48

V vs. SCE). The first and the third reduction paitda of compound (-0.93 and -1.49 V) and

compound6 (-0.92 and -1.48 V) belong to the anthraquinongiety. The second reduction

potentials of compoun® (-1.18 V) and compouné (-1.28 V) belong to the BODIPY core.

Compared to compound, the oxidation potential of BODIPY core for compou5 and

compoundbs (1.31 and 1.29) all migrate positively, indicatiadiarder oxidation requirement. The

reason for this is that the LUMO+1 of compoufdand LUMO+2 of compound become

delocalized over anthraquinone according to thewtation results.

The HOMO and LUMO energy levels and the energy glapompound<-6 are evaluated from

the cyclic voltammograms. The energy gap of compalris reported to be 2.43 eV.[30] For

compound?, according to the CV results, the energy gap48 2V. Thus, the introduction of the

iodo group stabilizes the BODIPY core and narrdwesenergy gap. The HOMO level, the LUMO

level and the energy gap for compowhdre -5.66, -3.26 and 2.40 eV. Compared to comp@8und

compound shows only slight changes on the HOMO level (-280), the LUMO level (-3.19 eV)

and the energy gap (2.41 eV). When it comes to comg5, the HOMO level, the LUMO level

and the energy gap are -5.71, -3.47 and 2.24 ebrimparison to compourgj the replacement of

13



anthracenyl by anthraquinonyl moiety in compod&niharkedly lowers the LUMO level by 0.21

eV (this value for the HOMO level is only 0.05 eWhich results a smaller energy gap. The

HOMO level (-5.69 eV), the LUMO level (-3.48 eV)athe energy gap (2.21 eV) for compound

6 are very close to those of compound

3.6. TD-DFT calculations

For the BODIPY core, the intrinsic reason for tlamges of photophysical and electrochemical

properties is the inductive effect of the modifyigigpups on the frontier orbits.[54] To obtain the

excited states and molecular orbital energy lesEtsompounds$-6, theoretical calculations were

carried out by TD-DFT method at B3LYP/6-31tG* ley48] (Table S6) For compoung| the

absorption band located at 531 nm is attributeH@MO—LUMO transition. (Table S7-1) The

peak at 243 nm is attributed to HOM@.UMO+3 transition, and these two molecular orbitale

situated at anthracenyl moiety, indicating thiscaps8on band arises from the anthracenyl unit.

(Figure S6) The peak at 384 nm is attributed to HB®4-LUMO transition. Because HOMO-2

orbital is mainly situated at anthracenyl unit, l@HiUMO orbital is situated at BODIPY core, this

transition is a typical ICT process from the antlerayl moiety to the BODIPY core. For

compound4, the absorption band located around 524 nm isbatéd to HOMG-LUMO

transition. (Table S7-2) The peak at 278 nm ishatted to HOMG-LUMO+3 transition, also

arising from anthracenyl unit. The peak at 382 smttributed to HOMO-3>LUMO transition,

which is also an ICT process from the anthracergieiy to the BODIPY core. For compoubd

the absorption band located around 511 nm is atethto HOMG-LUMO transition. (Table

S7-3) The peak at 280 nm is attributed to HOMGEUMO+2 transition, and the peak at 388 nm

is attributed to HOMO-3LUMO transition, and these two transitions arel@l process from

14



the BODIPY core to the anthraquinonyl moiety. Fompound6, the absorption band located

around 518 nm is attributed to HOM&@ UMO transition. (Table S7-4) The peak at 381 nm is

attributed to HOMO-1HLUMO+2 transition, which is also an ICT processnirdhe BODIPY

core to the anthraquinonyl moiety.

4, Conclusions

In summary, a series of anthracenyl(anthraquineswyijstituted BODIPY dyes have been

designed and synthesized based on Suzuki cros$ifgpupeactions. Photophysical

characterization combined with electrochemical abt&rization demonstrates that

anthracenyl(anthraquinonyl) fragment effectivelyeed the emission and electrical properties

while maintaining the absorption properties. Thergetry optimization by Gaussian calculation

matches well with the crystallographic data. Theoaé calculation on the excited states and

molecular orbital energy levels of these compouwargsalso conducted. The results suggest that a

moderate intramolecular charge-transfer process the anthracenyl moiety to the BODIPY core

occurs in compound8 and4, while intramolecular charge-transfer process fribie BODIPY

core to the anthraquinonyl moiety happened in campge5 and6. These characterizations of

anthracenyl(anthraquinonyl)-substituted BODIPY dgbsuld help in development of new dyes

for future applications.
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Figure Captions

Scheme 1 Synthesis route for compounds  3-6. Conditions: a) DMF, A

2-anthracen-2-yl-4,4,5,5-tetramethyl-[1,3,2]dioxedlane, KCO;, Pd (PBP), 80°C, 12 h, b) the same as above except for the

replacement of 2-anthracen-2-yl-4,4,5,5-tetramefthy,2]dioxaborolane by

2-anthraquinon-2-yl-4,4,5,5-tetramethyl-[1,3,2]ddorolane.

Figure 1. The crystal structures of compoufida) and7 (d), the crystal packing diagrams of compodn() and7 (e) in one

crystal cell and those of compouhdc) and7 (f) along different axis.

Figure 2. Calculated geometric structures (a, d, g, j) amhtfer orbitals (b, e, h, k for HOMO, c, f, i, Ifd.UMO) of

compounds-6.

Figure 3. UV-vis absorption and fluorescence eraisspectra of compoun@s6 in CH,Cl,.

Figure 4. Cyclic voltammograms of compourdg vs SCE in CHCl,.
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Table 1.Photophysical and electrochemical data for comps@rgi

Compound 2 3 4 5 6

AbS nax [nM] 530" 532 536 532 532

B ML cm?] 71323 85893 60268 70670 93199

Fluof® Amax [nm] 546 569 590 550 555

@ (%) 7.0 6.5 70.3 0.3 0.3

Stokes shift[cri] 552" 1222 1707 615 779

Eox [V vs SCE}! 1.49 1.26, 1.54 1.20, 1.58 1.3F 1.2¢

Ered[V vs SCE[" —-0.9F -1.14 -1.2F -0.93,-1.18,  -0.92, -1.28,
—1.49 —1.48

HOMO/LUMO [eV]®  -5.89/-3.49  -5.66/-3.26  —5.60/~3.19  -5.71/-3.47  .69/53.48

E, [eV] 2.40 2.40 2.41 2.24 2.21

[a]. Measured in CkCl, solution (1.0 x 18 M). [b]. Measured in CbCl, solution (1.0 x 16 M), upon excitation at 465 nm

(compoundL), 500 nm (compound), and 510 nm (compourRi6). [c]. In CH,Cl,, rodamin 6G®y = 0.76 in HO[47-49] as the

standard. [d]. Performing in GBI, in a N atmosphere, using nBWPFK; (0.05 M) as the supporting electrolyte, platinusrttze

counter electrode, glassy carbon as the work elgetand the saturated calomel electrode (SCE)eaefarence electrode. [e].

Half-wave potential (reversible). [f]. peak potet{irreversible) [g]. HOMO, LUMO and Hevels are obtained directly from

CV according to the method reported in the litea{50, 51] [h]. Values are reported in referente 3



3 Ry=2-anthracenyl, R,=iodine

4 R=R,=2-anthracenyl

5 Ry=2-anthraquinonyl, R,=iodine

6 R=R,=2-anthraquinonyl

7 Ri=2-anthraquinonyl, R,=hydrogen

o gj@

o)
2-anthracen-2-yl- 2-anthraquinon-2-yl-
4,4,5,5-tetramethyl- 4.,4,5,5-tetramethyl-
[1,3,2]dioxaborolane [1,3,2]dioxaborolane







a °
&
T
959
o3 2ot o
235°% o o,
Lt Sa S A
d 9o
rs
? & °
234°9%%8
P e St
9 °
&
oo s
P49
s ibe
3:“ : Y
i
o
f‘
® ) °
o, 2° .f*“*‘..:g.;
P o AN

)
0% o
o A
e °
%
0d%%
~ o
h °
F
ey
9%
LAL i 40+
k
)

(3 ?
&
og%¥ N
%o pre 1
f o
o

239
RO < At



Absorption
o o
r O

o
N
|

0-0 ' | ' | ' I
200 300 400 500 600 700 800
Wavelength (nm)



2:0'1 16'1 12 '0:8'0:4'010'-0'.4'-0.8-1 .2-1.6-2.0
Potential / V



A series of anthracenyl (anthraguinonyl)-substituted Bodipy dyes are synthesized.
Moderate dihedral angles exist in anthracenyl (anthraguinonyl) and pyrrolyl plane.
Rich and tunable emission and electrical properties are obtained.

ICT processis proved between Bodipy core and anthracenyl (anthraguinonyl) moiety.
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S2. Crystallographic data for compound 1

1000 500

1000 500

Table S2. Crystallographic data for compound 1

1 7
Empirical formula G;H>sBFN, Cs6H31BFN-O5
Fw 366.25 572.44
temp (K) 173(2) 100(2)
Crystal description/color block/orange block/orange
Crystal system orthorhombic monoclinic
space group P 2(2)1)2(2) P2(1)/n
a(R) 7.8224(6) 7.9990(16)
b (A) 13.4461(9) 19.843(4)
c(A) 19.2506(14) 18.209(4)
a(deq) 90 90



p(deg) 90 92.56(3)

v(deg) 90 90

Vol (A3 2024.8(3) 2887.4(10)

z 4 4

pcalcul (mgm’®) 1.201 1.317

n C(mmh) 0.082 0.090

F(000) 776 1200

Crystal size(mrf) 0.63x0.33x0.28 0.13x0.11x0.07

0 range (deg) 2.60to 27.51 2.05to 25.00

Reflections collected/unique 1473/4604 [R(int)=@0B 16310/5078 [R(int) = 0.0878]

Absorption correction Semi-empirical fromSemi-empirical from
equivalents equivalents

Data/restraints/parameters 4604/0/251 5078/0/395

GOF on B 1.099 1.194

Final R indices [I>3(1)] R1=0.0421, wR2=0.1092 R1=0.1371, wR2=0.3024

R indices (all data) R1=0.0431, wR2=0.1102 R1=08]1%82=0.3132

Largest diff. peak and hole,0.253 and -0.198 0.483 and -0.330

elA’

S3. Experimental and calculated bond lengths and angles of compound 1

Figure S3. Calculated geometric structure of compound 1, a) front view, b) side view.

Table S3. Experimental and calculated bond lengths and angles of compound 1

Bonds and angles X-ray DFT-cal
B—N(average)(A) 1.544 1.558
B—F(average)(A) 1.392 1.394
C4—N1(A) 1.348 1.347
C10—N2(A) 1.355 1.347
C1—N1(A) 1.396 1.400
C7—N2(A) 1.395 1.400
C3—C4(A) 1.404 1.410
C9—C10(A) 1.402 1.410
N-B-N(deg) 107.22 106.13

F-B-N(average)(deg) 110.10 110.05



F-B-F(deg) 109.18 110.44

4. Images demonstrating the col@ud visual fluorescence color of compounds 3-6

AT T 6 | *4

Figure S4. Images demonstrating the coldayand visual fluorescence color (b) of
compounds 3-6. The visual fluorescence color was obtained with excitation at 365 nm using a

hand-held UV lamp.

S5. The absorption and fluorescence spectra of compound 4 in different solvents and
compounds 3-6 in CH.Cl,
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Figure S5-1. The absor ption and fluorescence spectra of compound 4 in ethyl ether,

dichloromethane, THF, acetonitrile and DMF
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Figure S5-2. The absor ption and fluorescence spectra of compounds 3-6 in CH,Cl,

S6. Calculated molecular orbital diagrams and ener gy levels of compounds 3-6
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Figure S6. Calculated molecular orbital diagrams of compounds 3-6



Table S6. Calculated molecular orbital energy levels of compounds 3-6

Compound 3 4 5 6

LUMO+3(eV) -0.47 -0.41 -0.73 -1.58
LUMO+2(eV) -0.63 -1.68 -1.59 -2.63
LUMO+1(eV) -1.75 -1.70 -2.67 -2.79
LUMO+0(eV) -2.56 -2.43 -2.83 -2.84
HOMO-0(eV) -5.26 -5.13 -5.61 -5.59
HOMO-1(eV) -5.52 -5.24 -6.46 -6.46
HOMO-2(eV) -6.31 -5.44 -6.57 -6.60
HOMO-3(eV) -6.39 -6.19 -6.70 -6.70

S7. Calculated absor ption wavelengths and oscillator strength of compounds 3-6

Table S7-1. Absorption wavelengths and oscillator strength of compound 3 evaluated by the
TD-DFT (B3LYP/6-31tG*) calculation

Excitation energies (eV)  Absorption[nm](oscillagirength)  Assignments (%)

2.33 531.4 (0.07) HOMOLUMO (91)
3.23 384.1 (0.16) HOMO-2LUMO (58)
5.10 242.9 (1.50) HOMOLUMO+3 (14)

HOMO-6—LUMO+1 (13)

Table S7-2. Absorption wavelengths and oscillator strength of compound 4 evaluated by the
TD-DFT (B3LYP/6-31tG*) calculation

Excitation energies (eV)  Absorption[nm](oscillagirength)  Assignments (%)

2.37 523.7 (0.22) HOMOLUMO (84)
3.25 381.6 (0.16) HOMO-3LUMO (74)
4.45 278.5 (0.14) HOMOLUMO+3 (49)

HOMO-2—LUMO+3 (23)

Table S7-3. Absorption wavelengths and oscillator strength of compound 5 evaluated by the
TD-DFT (B3LYP/6-31tG*) calculation

Excitation energies (eV)  Absorption[nm](oscillagirength)  Assignments (%)

2.43 510.7 (0.12) HOMG,LUMO (90)

3.20 388.0 (0.08) HOMO-3:LUMO (28)
HOMO-1-LUMO+1 (25)

4.43 280.1 (0.16) HOMO-:LUMO+2 (37)

HOMO-2—LUMO+2 (31)

Table S7-4. Absorption wavelengths and oscillator strength of compound 6 evaluated by the
TD-DFT (B3LYP/6-31tG*) calculation

Excitation energies (eV)  Absorption[nm](oscillagirength)  Assignments (%)




2.39 517.7 (0.26) HOMGLUMO (90)
3.25 381.1 (0.14) HOMO-1LUMO+2 (46)
HOMO-2—LUMO+1 (21)




