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Taieb Saied,1,2 Noureddine Raouafi,2 and Khaled Boujlel2
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GRAPHICAL ABSTRACT

Abstract The preparation of 2-aryl-3,3-bis((perfluoroalkyl)thio)acrylonitriles is described.
The electrogenerated cyanomethyl base/anion obtained from electroreduction of acetonitrile
promotes reactions between arylacetonitrile, carbon disulfide, and perfluoroalkyl iodides. The
new fluorinated acrylonitriles were obtained in good yields under mild reaction conditions.

Supplementary materials are available for this article. Go to the publisher’s online edition of
Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental
files: Additional figures.

Keywords 2-Aryl-3,3-bis((perfluoroalkyl)thio)acrylonitrile; carbon disulfide; anion EGBs

INTRODUCTION

The reactivity of arylacetonitriles has been widely explored due to their use in the
synthesis of several biologically active molecules such as fungicidals, flavonoid pigments,
and sexual pheromones.1–5 However, in order to avoid the use of polluting solvents and
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2-ARYL-3,3-BIS((PERFLUOROALKYL)THIO)ACRYLONITRILES 1321

to circumvent the difficulties of the experimental protocols involved in classic syntheses,
new approaches under very mild conditions are needed. In the literature, the condensations
of arylacetonitriles with carbonyls, isothiocyanates, and 1,2- and 1,3-dihalogenated alka-
nes are based on the traditional Knovenagel reaction that involves strongly basic alcalin
hydroxides or hydrides.6 Recently, it was found that these bases could be substituted by
electrogenerated bases (EGBs) to promote reactions, sometimes in higher yields and un-
der milder conditions.7–9 EGBs were initially mentioned by Baizer and coworkers10 and
recently used by Feroci et al. for the preparation of carbonates, carbamates, and oxazolines
in a two-compartment cell.11–16

On the other hand, highly fluorinated molecules are of growing importance due to
their pharmacological and industrial uses.17–22 The introduction of perfluoroalkyl groups
into organic compounds particularly functional olefins as possible polymerizable surfactants
could generally be achieved with the use of catalysts.23,24

More recently, we reported on an EGB–promoted synthesis of a series of 3,3-bis
(ethylthiol)-2-arylacrylonitriles and 3,3-bis(ethoxyacetatethiol)-2-arylacrylonitriles start-
ing from arylacetonitrile.25 This work is now being extended to the investigation of the
fluorinated analogs through the introduction of perfluoroalkyl groups using the same
methodology. We report here the synthesis of new 2-aryl-3,3-bis((perfluoroalkyl)thio) acry-
lonitriles.

RESULTS AND DISCUSSION

The current-potential curves of all arylacetonitriles used in this work were recorded
in a solution of acetonitrile and tetrabutylammonium tetrafluoroborate concentration 0.1 M
with a platinum electrode and a reference electrode Ag/Ag+ and show that arylacetonitriles
are not reducible under these conditions. Thus arylacetonitriles can be introduced at the
beginning of electrolysis according to the terminology of Feroci et al.11b.

Electrolysis similarly yields the cyanomethyl carbanions and is stopped approxi-
mately after 3–4 h of reaction. This time is sufficient to permit the formation of 5 × 10−3

mole of EGB. Then, carbon disulfide is added immediately to the solution followed by
perfluoroethyl iodide 15 min later (see Scheme 1).

Scheme 1

The mixture was continually stirred over night at ambient temperature. The products
were isolated following standard workup procedures6–8 and purified by column chromatog-
raphy. All the resulting products 2a–h are reported in Table 1 and were identified on the
basis of their spectroscopic data.
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1322 T. SAIED ET AL.

Table 1 Synthesized 2-aryl-3,3-bis((perfluoroalkyl) thio)acrylonitrile 2a–h

R RF Products 2 Qa (F/mol) Yieldsb (%)

H C6F13 2 a 2 68
C8F17 2 b 2 78

p-F C6F13 2 c 2 79
C8F17 2d 2 81

p-OCH3 C6F13 2e 2 75
C8F17 2f 2 83

p-CH3 C6F13 2g 2 69
C8F17 2h 2 78

aThe consumed quantity of electricity represents the number of faradays per mole of arylacetonitrile.
bYields of isolated product refer to starting arylacetonitrile.

It is worth noting that in addition to its basic role in the formation of products 2, the
cyanomethyl anion can react as a nucleophile with respect to the acetonitrile producing the
crotonitrile anion. This dianion can in turn react with carbon disulfide and the reagent of
alkylation (RF-CH2-CH2-I) leading to the byproducts 3 (see Scheme 2).8

Scheme 2

It was observed that 2F per mole of arylacetonitrile was needed for the preparation of
compounds 2 (see Table 1). The mechanism of formation is also likely to proceed similarly
as their nonfluorinated analogues (see Scheme 3).25

Scheme 3
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2-ARYL-3,3-BIS((PERFLUOROALKYL)THIO)ACRYLONITRILES 1323

CONCLUSION

New 2-aryl-3,3-bis((perfluoroalkyl)thio)acrylonitriles were prepared in high yields
from EGB-promoted condensation of arylacetonitrile, carbon disulfide, and perfluoroalkyl
iodides. This shows again that EGB could provide, under mild reaction conditions, a poten-
tial electrochemical methodology that avoids the use of polluting or hazardous chemicals
or the addition of base or catalyst. The possible biological activity of these new highly
fluorinated compounds is under investigation.

EXPERIMENTAL

Products 2a–h were prepared following our previously reported method.25 In a typical
experiment, a solution of compound 1 (5 mmol) in acetonitrile (100 mL) 0.1 mol/L of
tetrabutylammonium tetrafluoroborate as supporting electrolyte, in an undivided cell fitted
with a consumable magnesium as anode and a stainless steel grid (20 cm2) as cathode,
was subjected to electrolysis at a constant current (80 mA). The cell was cooled to −20◦C
by diving in Lauder refrigerating system. During electrolysis, the system was maintained
under inert atmosphere by continuous nitrogen bubbling. After the flow of 2 faraday, the
electrolysis was stopped, and carbon disulfide (6 mmol) was added into the stirred solution
after 15 min, followed by the addition of a twofold molar of perfluoroalkyl iodides 2.
The amount of acetonitrile was reduced by evaporation and the resulting mixture extracted
with Et2O (3 × 50 mL). The ethereal phase was washed by small amounts of water and
dried over magnesium sulfate. The ether was removed and the residue purified by column
chromatography on silica gel 60 using ethyl acetate/cyclohexane (v:v = 3:7) as eluent.
Products 2 were identified by IR, 1H NMR, 13C NMR, 19F NMR, and elemental analysis.
The Supplemental Materials contain samples of 1H, 13C, and 19F NMR spectra of 2e and
3b (Figures S1–S6).

2a: 2-phenyl-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)thio)acr-

ylonitrile

Yield: 68%, m.p. 56–57◦C. IR (cm−1, CHCl3) ν: 2220 (CN); 1600 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.20 (m, 2H, CH2); 2.60 (m, 2H, CH2); 3.00 (t, 2H, CH2); 3.30
(t, 2H, CH2); 7.20–7.40 (m, 5H, CHarom.). 13C NMR (75.47 MHz, CDCl3), δ: 25.5,
26.3, 30.9, 35.2, 106–122, 127.8, 127.9, 128.8, 128.9, 129.6, 133.1, 150.0. 19F NMR, δ:
−114.9 (m, CF2α , 3JFH = 18.4 Hz), −123.0 (m, CF2β ), −124.9 (m, CF2γ ), −124.1 (m,
CF2δ), −123.2 (m, 2CF2ε), −127.5 (m, CF2� ), −82.3 (t, CF3, 3JCF3 = 9.2 Hz). Elem.
Anal.; Calcd. %: C = /34.23; H = 1.01; N = 1.69; Found %: C = 33.91; H = 1.48;
N = 1.58.

2b: 2-phenyl-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluor-

odecyl)thio)acrylonitrile

Yield: 78%, m.p. 95–96◦C. IR (cm−1, CHCl3) ν: 2222 (CN); 1620 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.10 (m, 2H, CH2); 2.60 (m, 2H, CH2); 3.10 (t, 2H, CH2); 3.20 (t, 2H,
CH2); 7.10–7.30 (m, 5H, CHarom.). 13C NMR (75.47 MHz, CDCl3), δ: 23.2, 24.2, 31.0,
33.2, 104–125, 125.3, 125.9, 126.7, 126.8, 127.5, 131.0, 151.1. 19F NMR, δ: −112.8 (m,
CF2α , 3JFH = 18.4 Hz), −122.1 (m, CF2β ), −123.7 (m, CF2γ ), −123.3(m, CF2δ), −122.4
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1324 T. SAIED ET AL.

(m, 2CF2ε), −127.1 (m, CF2� ), −80.2 (t, CF3, 3JCF3 = 9.3 Hz). Elem. Anal.; Calcd. %:
C = /32.68; H = 0.68; N = 1.38; Found %: C = 32.09; H = 1.21; N = 1.29.

2c: 2-(4-fluorophenyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooct-

yl)thio)acrylonitrile

Yield: 73%, m.p. 66–67◦C. IR (cm−1, CHCl3) ν: 2220 (CN); 1606 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.40 (m, 2H, CH2); 2.80 (m, 2H, CH2); 3.00 (t, 2H, CH2); 3.20 (t, 2H,
CH2); 7.00–7.40 (m, 4H, CHarom.). 13C NMR (75.47 MHz, CDCl3), δ: 24.1, 26.2, 33.9,
37.2, 106–122, 124.1, 124.5, 125.8, 125.7, 126.2, 134.3, 153.0. 19F NMR, δ: −114.2 (m,
CF2α , 3JFH = 18.31 Hz), −123.4 (m, CF2β ), −126.2 (m, CF2γ ), −126.3 (m, CF2δ), −123.5
(m, 2CF2ε), −128.8 (m, CF2� ), −80.3 (t, CF3, 3JCF3 = 9.1 Hz). Elem. Anal.; Calcd. %:
C = 33.76; H = 0.98; N = 1.72; Found %: C = 33.24; H = 1.34; N = /1.55.

2d: 2-(4-fluorophenyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-hepta-

decafluorodecyl)thio) acrylonitrile

Yield: 79%, m.p. 89–90◦C. IR (cm−1, CHCl3) ν: 2224 (CN); 1620 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.2 (s, 3H, CH3); 2.60 (m, 2H, CH2); 2.90 (m, 2H, CH2); 3.20 (t, 2H,
CH2); 3.40 (t, 2H, CH2); 7.00–7.40 (m, 4H, CHarom.). 13C NMR (75.47 MHz, CDCl3),
δ: 16.2, 24.1, 26.2, 33.9, 37.2 (t, 1C), 111–119, 119.8, 120.2, 127.6, 127.9, 129.3, 139.2,
148.9. 19F NMR, δ: −114.2 (m, CF2α , 3JFH = 18.21 Hz), −123.4 (m, CF2β ), −126.2 (m,
CF2γ ), −126.3 (m, CF2δ), −123.5 (m, 2CF2ε), −128.8 (m, CF2� ), −111.3 (s, CF arom),
−80.3 (t, CF3, 3JCF3 = 9.30 Hz). Elem. Anal.; Calcd. %: C = 31.20; H = 0.87; N = /1.43;
Found %: C = 31.56; H = 1.10; N = /1.25.

2e: 2-(4-methoxyphenyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-

octyl)thio)acrylonitrile

Yield: 81%, m.p. 81–82◦C. IR (cm−1, CHCl3) ν: 2220 (CN); 1610 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.30 (m, 2H, CH2); 2.60 (m, 2H, CH2); 3.10 (t, 2H, CH2); 3.30
(t, 2H, CH2); 3.90(s, CH3) 6.90–7.30 (m, 4H, CHarom.). 13C NMR (75.47 MHz, CDCl3),
δ: 27.3, 29.4, 32.8, 36.2, 55.3, 102–119, 122.3, 122.7, 124.6, 124.9, 128.5, 139.3, 156.6.
19F NMR, δ: −113.6 (m, CF2α , 3JFH = 18.31 Hz), −122.5 (m, CF2β ), −125.3 (m, CF2γ ),
−125.3 (m, CF2δ), −122.5 (m, 2CF2ε), −128.1 (m, CF2� ), −83.3 (t, CF3, 3JCF3 = 9.0 Hz).
Elem. Anal.; Calcd. %: C = /33.65; H = 1.13; N = 1.69; Found %: C = 34.11; H = 1.65;
N = /1.53.

2f: 2-(4-methoxyphenyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-hep-

tadecafluorodecyl) thio)acrylonitrile

Yield: 78%, m.p. 105–106◦C. IR (cm−1, CHCl3) ν: 2210 (CN); 1620 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.40 (m, 2H, CH2); 2.60 (m, 2H, CH2); 3.20 (t, 2H, CH2); 3.40
(t, 2H, CH2); 3.80(s, CH3) 7.00–7.40 (m, 4H, CHarom.). 13C NMR (75.47 MHz, CDCl3),
δ: 25.3, 28.6, 33.1, 36.2, 54.0, 110–120, 123.4, 123.7, 125.7, 126.0, 129.6, 140.1, 156.4.
19F NMR, δ: −112.7 (m, CF2α , 3JFH = 18.31 Hz), −124.5 (m, CF2β ), −126.2 (m, CF2γ ),
−126.4 (m, CF2δ), −123.6 (m, 2CF2ε), −127.3 (m, CF2� ), −83.4 (t, CF3, 3JCF3 = 9.0 Hz).
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2-ARYL-3,3-BIS((PERFLUOROALKYL)THIO)ACRYLONITRILES 1325

Elem. Anal.; Calcd. %: C = /32.90; H = 1.15; N = 1.32; Found %: C = 32.30; H = 1.36;
N = 1.25.

2g: 2-(p-tolyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)thio)

acrylonitrile

Yield: 81%, m.p. 76–77◦C. IR (cm−1, CHCl3) ν: 2224 (CN); 1600 (C C). 1H NMR
(300 MHz, CDCl3), δ: 2.30 (m, 2H, CH2); 2.60 (m, 2H, CH2); 3.10 (t, 2H, CH2); 3.30 (t,
2H, CH2); 2.34 (s, CH3) 7.10–7.40 (m, 4H, CHarom.). 13C NMR (75.47 MHz, CDCl3),
δ: 21.5, 26.4, 28.3, 32.6, 35.1, 105–121, 122.1, 122.7, 123.6, 123.9, 127.1, 140.0, 158.5.
19F NMR, δ: −111.1 (m, CF2α , 3JFH = 18.31 Hz), −123.4 (m, CF2β ), −124.8 (m, CF2γ ),
−124.6 (m, CF2δ), −123.4 (m, 2CF2ε), −127.2 (m, CF2� ), −82.6 (t, CF3, 3JCF3 = 9.0 Hz).
Elem. Anal.; Calcd. %: C = /34.41; H = 1.12; N = 1.66; Found %: C = 34.72; H = 1.68;
N = /1.56.

2h: 2-(p-tolyl)-3,3-bis((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluo-

rodecyl)thio)acrylonitrile

Yield: 76%, m.p. 112–113◦C. IR (cm−1, CHCl3) ν: 2220 (CN); 1620 (C C). 1H
NMR (300 MHz, CDCl3), δ: 2.20 (m, 2H, CH2); 2.40 (m, 2H, CH2); 3.00 (t, 2H, CH2);
3.30 (t, 2H, CH2); 2.20 (s, CH3) 7.00–7.60 (m, 4H, CHarom.). 13C NMR (75.47 MHz,
CDCl3), δ: 24.3, 29.0, 32.1, 35.1, 60.1, 111–123, 125.3, 125.7, 126.2, 126.9, 129.8, 137.2,
155.3. 19F NMR, δ: −114.3 (m, CF2α , 3JFH = 18.31 Hz), −123.3 (m, CF2β ), −125.2 (m,
CF2γ ), −126.3 (m, CF2δ), −121.5 (m, 2CF2ε), −126.1 (m, CF2� ), −82.6 (t, CF3, 3JCF3 =
9.0 Hz). Elem. Anal.; Calcd. %: C = /32.92; H = 0.95; N = 1.41; Found %: C = 32.77; H
= 1.38; N = 1.27.

3a: 2-(1-aminoethylidene)-6,6,7,7,8,8,9,9,10,10,11,11,11-tridecafluoro-3-

thioxoundecane nitrile

M.p. 42–43◦C. IR (cm−1, CHCl3) ν: 3334 (NH2); 2224 (CN); 1610 (C C); 1190
(C S). 1H NMR (300 MHz, CDCl3), δ: 2.26 (s, 3H, CH3); 2.40 (m, 2H, CH2); 3.20 (t,
2H, CH2); 6.20 (s, 2H, NH2). 13C NMR (75.47 MHz, CDCl3), δ: 14.0; 23.3; 30.1; 88.0;
111–122; 164.2; 210.8. 19F NMR, δ: −110.0 (m, CF2α , 3JFH = 18.31 Hz), −120.2 (m,
CF2β ), −124.3 (m, CF2γ ), −125.0 (m, CF2δ), −126.3 (m, 2CF2ε), −128.6 (m, CF2� ),
−86.4 (t, CF3, 3JCF3 = 9.0 Hz). Elem. Anal.; Calcd. %: C = /31.08; H = 1.20; N = 5.38;
Found %: C = 30.96; H = 1.80; N = 5.55.

3b: 2-(1-aminoethylidene)-6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-he-

ptadecafluoro-3- thioxotridecanenitrile

M.p. 92–93◦C. IR (cm−1, CHCl3) ν: 3332 (NH2); 2222 (CN); 1604 (C C); 1188
(C S). 1H NMR (300 MHz, CDCl3), δ: 2.24 (s, 3H, CH3); 2.46 (m, 2H, CH2); 3.30 (t,
2H, CH2); 7.10 (s, 2H, NH2). 13C NMR (75.47 MHz, CDCl3), δ: 13.9; 24.0; 32.0; 89.1;
108–124; 160.0; 212.0. 19F NMR, δ: −112.1 (m, CF2α , 3JFH = 18.31 Hz), −122.0 (m,
CF2β ), −123.1 (m, CF2γ ), −125.3 (m, CF2δ), −126.2 (m, 2CF2ε), −129.1 (m, CF2� ),
−84.9 (t, CF3, 3JCF3 = 9.0 Hz). Elem. Anal.; Calcd. %: C = /30.16;%H = 1.34;%N =
5.02; Found %: C = 29.81; H = 1.50; N = 4.64.
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Gambaretto, G. P.; Napoli, M.; Conte, L. PCT Int. Appl. WO 49 715, 1997 [128:102340q].
20. Brace, N. O.; Mull, S. G. J. Fluorine Chem. 2006, 127, 108-125.
21. Gambartto, G.; Conte, L.; Fornasieri, G.; Zarantonello, C.; Tonei, D.; Sassi, A.; Bertani, R. J.

Fluorine Chem. 2003, 121(1), 57-63.
22. Kostov, G. K.; Améduri, B.; Brandstadter, S. Collect. Czech. Chem. Commun. 2008, 73, 1747-

1763.
23. Mekni, N.; Hedhli, A.; Baklouti, A. J. Fluorine Chem. 2002, 114, 43-46.
24. Brace, N. O. J. Org. Chem. 1979, 44, 212-217.
25. Saied, T.; Raouafi, N.; Boujlel, K. J. Sulfur Chem. 2012, 33, 513-520.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 0

8:
27

 0
9 

Se
pt

em
be

r 
20

13
 


