KAURANE SUCCINATES AND PRENYLATED AROMATICS FROM ODIXIA ANGUSTA AND OZOTHAMNUS OBCORDATUS

C. ZDERO, F. BOHLMANN and A. ANDERBERG*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, Germany; *Swedish Museum of National History, Department of Phanerogamic Botany, P.O. Box 50007, S-10405 Stockholm, Sweden

(Received 15 November 1990)

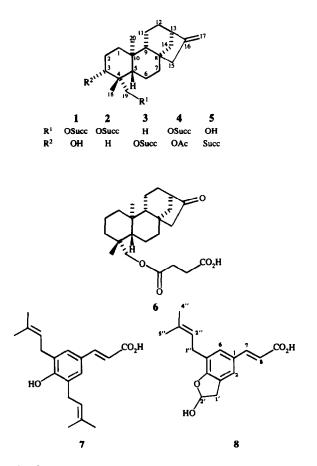
Key Word Index—Odixia angusta; Ozothamnus obcordatus; Compositae; diterpenes; kauranes; nor-kaurane; prenylated coumaric acids.

Abstract—The aerial parts of Odixia angusta afforded five ent-kaurane succinates and a nor-derivative as well as diprenyl p-coumarate and a hemiacetal derived from the latter. Ozothamnus obcordatus gave five prenylated p-hydroxybenzoic acids probably formed by oxidative cleavage of the coumarates. The structures were elucidated by high field NMR techniques.

INTRODUCTION

Odixia is an Australian genus placed in the tribe Gnaphalieae (Compositae) closely related to Cassinia and Ozothamnus [1]. As nothing was known on the chemistry we have studied Odixia angusta and Ozothamnus obcordatus.

RESULTS AND DISCUSSION


The extract of the aerial parts of Odixia angusta (Wakef.) Orch. gave the ent-kaurane derivatives 1–5, the nor-kaurane 6, 3,5-diprenyl-p-coumaric acid 7 [2] and the derived acid 8, all isolated as their methyl esters (1a–8a). The ¹H NMR spectral data of 1a (Table 1) indicated that we were dealing with an ent-kaur-16-ene derivative where one of the methyl groups is substituted with a succinyloxy group. A double doublet at δ 3.25 showed that a secondary hydroxy group was also present. This was supported by the ¹³C NMR spectrum (Table 2). The positions of the oxygen functions and the stereochemistry was established by NOED [H-20 with H-19 (7%) and H-19' (4%); H-18 with H-3 (4%)]. The resulting structure is identical with that given for a diterpene isolated from a Goodeniaceae [3] where, however, no NMR data are presented.

The ¹H NMR spectrum of the methyl ester of the main constituent (2a) (Table 1) was close to that of 1a. However, the low field signal at $\delta 3.25$ was missing and some chemical shifts were slightly different. In agreement with the molecular formula (C₂₅H₃₈O₄) and the ¹³C NMR spectrum (Table 2), therefore, the 3-desoxy derivative of 1a was present.

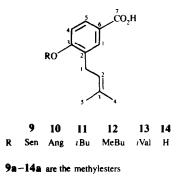
The ¹H NMR spectrum of **3a** (Table 1) which had the same molecular formula as **2a**, showed that now the oxygen function is at C-3. The couplings of H-3 indicated the α -orientation of the ester group. The ¹H NMR spectrum of **4a** (Table 1) showed that most likely the acetate of **1a** was present. This was established by acetylation of **1a**.

The ¹H NMR spectrum of **5a** (Table 1) indicated that an isomer of **1a** must be present with a free hydroxy group at C-19 and the ester group at C-3. Accordingly, the chemical shifts differed in the expected way from those of **1a**.

The molecular formula of 6a (C₂₄H₃₆O₅) already indicated the presence of a *nor*-diterpene as the ¹H NMR

1a-8a are the methylesters

н		1a	2a		3a		4a		5a	6 a	
3α 3β	}	3.25 dd	1.84 0.78	}	4.49 dd	}	4.55 dd	}	4.65 dd	1.84 0.83	br d dt
13		2.63	2.62	-	2.64	•	2.64	-	2.64	2.40 ddd	br s
14		1.91	1.93		1.96		1.92		1.92	2.26	dd
14′		1.07	1.08		1.10		1.12		1.11	1.43 m	br dd
15 15'	}	2.04 br s	2.07 2.02		2.08 2.03	}	2.06 br s	}	2.06 br s	1.98 dd 1.93 d	dt dt
17		4.79	4.78		4.79		4.80		4.80	-	br s
17'		4.73	4.72		4.73		4.74		4.74		br s
18		1 1 2	1.02		1.04		1.05		1.05	1.09	S
19 19′		4.39 4.10	4.27 3.88	}	0.86		4.35 4.19		4.12 3.38 br d	4.27 3.91	d dd
20		1.00	0.93		0.85		0.99		0.99	0.96	s
OMe		3.69	3.66		3.69		3.70		3.70	3.69	S
OCOR		2.63	2.62		2.64		2.64		2.64	2.24	br s
OAc							2.04		_		S


Table 1. ¹H NMR spectral data of compounds **1a-6a** (400 MHz, CDCl₃, δ -values)

J [Hz]: 5,19' ~ 1; 13,14 ~ 1; 13,14' = 5; 14,14' = 11; compounds 1a and 4a: 2 α ,3 = 11; 2 β ,3 = 5; compounds 2a and 6a: 2 α ,3 β = 3 α ,3 β = 14; 2 β ,3 β = 4; compound 3a: 2 α ,3 = 10; 2 β ,3 = 6; compound 4a: 2 α ,3 = 9.5; 2 β ,3 = 7; compound 5a: 2 α ,3 = 8.5; 2 β ,3 = 9.5; compound 6a: 12,13 = 13,14 ~ 3; 13,14' = 5; 14,15 = 2.5.

Table 2. ¹³C NMR spectral data of compounds **1a**, **2a** and *ent*-kaur-16-ene (100.6 MHz, CDCl₃, δ -values)

С	1a	2a	ent-Kaurene
1	41.2	41.4	41.3
2	27.1	20.3	18.7
2 3	79.0	36.2	42.0
4	38.7	37.0	33.3
5	55.8	56.7	56.1
5 6 7	20.4	20.3	20.3
7	39.4	40.2	40.4
8	43.8	44.0	44.2
9	55.7	56.0	56.1
10	38.7	39.0	39.3
11	18.2	18.1	18.1
12	33.0	33.0	33.3
13	43.7	43.8	44.2
14	39.3	39.5	39.9
15	48.7	48.9	49.2
16	155.4	155.7	156.0
17	102.1	102.9	102.8
18	22.4	27.4	33.7
19	65.4	67.3	21.7
20	17.6	17.9	17.6
OCOR	172.3	172.3	
	29.2	29.1	
	28.9	28.9	
	172.7	172.7	
OMe	51.8	51.7	

spectrum (Table 1) shows that again a 19-succinyloxy derivative had to be proposed. The absence of the characteristic exomethylene proton signals led to the assumption that **6a** is a 16-oxo derivative formed by oxidative cleavage of **2a**. This was supported by spin decoupling which shows that the signal at $\delta 2.40$ was due to H-13, those at $\delta 1.98$ and 1.93 to H-15 and those at $\delta 2.26$ and 1.43 to H-14. The latter assignment followed from the presence of a *W*-coupling between H-14 and H-15. Finally, the structure was confirmed by oxidative degrada-

tion of **2a** by epoxidation, hydrolysis to the diol and periodate splitting. The resulting ketone was identical with the methyl ester of the natural product. A positive Cotton-effect of the ketone agrees with the presence of *ent*-kauranes.

The structure of **8a** followed from its molecular formula $(C_{17}H_{20}O_4)$ and its ¹H NMR spectrum (Experimental) which in part was close to that of **7a**. However, only one prenyl group was present. The second substituent of the coumaric acid caused a pair of double doublets at δ 3.40 and 3.06 which both showed a vicinal coupling with a three-fold doublet at δ 6.13. The latter was further coupled with a doublet at δ 3.18 which disappeared after addition of D₂O while the signal at δ 6.13 became a clear double doublet. We have named compound **8** odixia acid.

The extract of aerial parts of Ozothamnus obcordatus DC. afforded aromadendrene and a mixture of the acids 9-13. After addition of diazomethane the methyl esters 9a-11a could be separated by HPLC while the esters 12a and 13a were obtained as a mixture. The ¹H NMR spectrum of 9a (Table 3) indicated that a senecioate of a prenylated methylhydroxybenzoate was present. The chemical shifts of the aromatic protons were in agreement with a prenylated o- or p-hydroxybenzoate. Partial saponification gave methyl-3-prenyl-4-hydroxybenzoate

н	9a	10a	11a	12a	13a	1 4 a	
1	7.92	7.94	7.92	7.91		7.82	d
4	7.10	7.13	7.07	7.07	7.08	6.83	d
5	7.89	7.91	7.90	6.89		7.81	dd
ľ	3.28	3.28	3.26	3.26		3.38	br d
2′	5.22	5.22	5.24	5.22		5.31	qqt
4′	1.72	1.73	1.75	1.74)	1 70	br s
5'	1.68	1.68	1.69	1.69	}	1.78	br s
OCOR	5.94 qq	6.31 <i>qq</i>	2.34 qq	1.86 dtq	2.47 d		
	2.23 d	2.08 dq	1.34 d	1.63 dtq	2.25 dqq	-	
	2.01 d	2.06 dq		1.03 t	1.07 d	—	
				1.32 d			
OMe	3.90	3.91	3.90	3.91	3.91	3.88	s

Table 3. ¹H NMR spectral data of compounds 9a-14a (400 MHz, CDCl₃, δ-values)

J [Hz]: 1,5 = 2; 4,5 = 8.5; 1',2' = 7; 1',4' = 1',5' = 2',4' = 2',5' = 1.5.

as clearly followed from the absence of a hydrogen bonded hydroxy proton signal in the ¹H NMR spectrum. The ¹³C NMR data (Experimental) also agree with the proposed structure **9a**.

The ¹H NMR spectra of 10a-13a (Table 3) show that the corresponding angelate, isobutyrate, 2-methylbutyrate and isovalerate were present. It is interesting that the nature of the ester residues shows a small but clear influence on the chemical shifts of all protons. The acids 9-13 most likely are formed by degradation of the corresponding prenylated *p*-coumarates.

The chemistry of the Odixia and the Ozothamnus species does not show a very close relationship. The diterpene succinates may be of chemotaxonomic relevance as these esters are relatively rare in Compositae. In the Gnaphalieae they have been observed from Australian Helipterum [4], Helichrysum [5], Craspedia [5] and Myriocephalus species [6]. However, in these cases esters of beyeranes or pimaranes were present. From Relhania species labdane succinates were isolated [7].

The p-hydroxybenzoic acid derivatives 9-13 may be an indication of a relationship of Ozothamnus to Odixia as prenylated p-coumarates, the possible precursors of 9-13, are present. The latter have been reported from H. diosmifolium (= Ozothamnus diosmifolius) together with several very different compounds. The proposed relationship to Cassinia is not supported by our chemical results.

EXPERIMENTAL

The air-dried aerial parts of Odixia angusta (70 g, voucher Nordenstam and Anderberg 1342, deposited in the Herbarium of Stockholm, collected in autumn 1989 in Australia) were extracted with MeOH-Et₂O-petrol (1:1:1). The extract obtained was defatted with MeOH and sepd as reported previously [9]. CC gave 3 frs. The first one gave, after addition of CH₂N₂, by TLC (Et₂O-petrol, 1:3), 450 mg **2a** (R_f 0.65) and a mixt. which afforded by TLC (EtOAc-petrol, 1:19) 5 mg **7a**, identified by comparing the 400 MHz ¹H NMR spectrum with that of authentic material and a mixt. of **2a** and **3a** which gave by HPLC (MeOH-H₂O, 9:1, always RP 8, flow rate 3 ml min⁻¹), 30 mg **3a** (R_f 9.1 min) and 50 mg **2a** (R_f 9.8 min). The second CC fr. gave, after addition of CH₂N₂, by TLC (Et₂O-petrol, 1:1) 30 mg **4a** (R_f 0.60) and 2 mixts (2/2 and 2/3). HPLC of 2/2 (MeOH-H₂O, 9:1) gave 2 mg **8a** (R_i 1.3 min) and 3 mg **6a** (R_i 2.3 min). HPLC of 2/3 (MeOH-H₂O, 9:1) afforded 8 mg **5a** (R_t 3.9 min) and 10 mg **1a** (R_t 4.1 min). TLC (Et₂O-petrol, 1:1) of the last CC fr. gave, after addition of CH₂N₂, 190 mg **1a** (R_f 0.42).

The extract of the aerial parts of O. obcordatus (68 g, voucher Nordenstam and Anderberg 1107 Herb. Stockholm, collected in Autumn 1989 in Australia) gave 2 frs by CC. The first one yielded by TLC 20 mg aromadendrene and the second fr. a complex mixt. of acids. TLC gave the acid 9 still containing 10. After addition of CH_2N_2 HPLC (MeOH-H₂O, 4:1) afforded 10 mg 11a and a mixt. One-tenth of the latter gave by repeated HPLC 33 mg 9a R_i (9.2 min), 30 mg 10a (R_i 9.6 min) and 6 mg 12a and 13a ca 1:2, (R_i 10.0 min).

 3α -Hydroxy-19-succinyloxy-ent-kaur-16-ene (1). Isolated as its methyl ester 1a; IR $\nu_{max}^{\rm cCL_4}$ cm⁻¹: 3600 (OH), 1740 (CO₂R), 1660, 890 (C=CH₂); MS m/z (rel. int.): 418.272 [M]⁺ (8) (calc. for C₂₅H₃₈O₅: 418.272), 400 [M-H₂O]⁺ (4), 286 [M-RCO₂H]⁺ (75), 268 [286-H₂O]⁺ (25), 115 [RCO]⁺ (100). Acetylation (DMAP, CHCl₃, Ac₂O) gave 4a, identical with the natural acetate.

19-Succinyloxy-ent-kaur-16-ene (2). Isolated as its methyl ester 2a; IR $\nu_{max}^{CCL_4}$ cm⁻¹: 1740 (CO₂R), 1650, 880 (C=CH₂); MS m/z (rel. int.): 402.277 [M]⁺ (18) (calc. for C₂₅H₃₈O₄: 402.277), 270 [M-RCO₂H]⁺ (66), 255 [270-Me]⁺ (38), 115 [RCO]⁺ (100); $[\alpha]_D^{24^*}$ -53 (CHCl₃; c 2.72). 10 mg 2a in 2 ml Et₂O was stirred for 1 hr with 50 mg m-chloroperbenzoic acid. The epoxide obtained was hydrolysed by stirring in H₂O-dioxane (1:1) with a drop of 1 M H₂SO₄ for 15 min at 20°. The crude diol was stirred in 2 ml MeOH-H₂O (4:1) with 30 mg NaIO₄ for 15 min. HPLC (MeOH-H₂O, 9:1) gave 2 mg of the methyl ester 6a; ¹H NMR identical with that of the natural product.

 3α -Succinyloxy-ent-kaur-16-ene (3). Isolated as its methyl ester 3a; IR v^{CC1}_{max} cm⁻¹: 1740 (CO₂R), 1660, 880 (C=CH₂); MS m/z (rel. int.): 402.277 [M]⁺ (17) (calc. for C₂₅H₃₈O₄: 402.277), 270 [M-RCO₂H]⁺ (43), 255 [270-Me]⁺ (40), 115 [RCO]⁺ (100); [α]²_b⁴ - 57 (CHCl₃; c0.74).

 3α -Acetoxy-19-succinyloxy-ent-kaur-16-ene (4). Isolated as its methyl ester 4a; IR v $_{max}^{CCl_4}$ cm⁻¹: 1745 (CO₂R), 1660, 880 (C=CH₂); MS m/z (rel. int.): 460.282 [M]⁺ (17) (calc. for C₂₇H₄₀O₆: 460.282), 400 [M-HOAc]⁺ (12), 328 [M-RCO₂H]⁺ (28), 268 [328-HOAc]⁺ (100), 253 [268-Me]⁺ (33), 115 [RCO]⁺ (85).

19-Hydroxy-3α-succinyloxy-ent-kaur-16-ene (5). Isolated as its methyl ester 5a; IR ν_{max}^{CCL} cm⁻¹: 3600 (OH), 1740 (CO₂R); MS m/z (rel. int.): 418.272 [M]⁺ (3) (calc. for C₂₅H₃₈O₅: 418.272), 400 [M-H₂O]⁺ (2), 286 [M-RCO₂H]⁺ (25), 256 [286-CH₂O]⁺ (65), 115 [RCO]⁺ (100).

19-Succinyloxy-17-nor-ent-kauran-16-one (6). Isolated as its

methyl ester **6a**; IR $\nu_{\text{max}}^{\text{CCL}_4}$ cm⁻¹: 1745 (C=O, CO₂R); MS m/z (rel. int.): 404.257 [M]⁺ (5) (calc. for C₂₄H₃₆O₅: 404.257), 389 [M-Mc]⁺ (0.3), 272 [M-RCO₂H]⁺ (62), 259 [M -CH₂OCOR]⁺ (86), 115 [RCO]⁺ (100), 107 (90); CD (MeOH): $\Delta \epsilon_{295}$ + 1.3.

Odixia acid (8). Isolated as its methyl ester 8a; IR v_{max}^{CC1} cm⁻¹: 3600 (OH), 1740 (CO₂R); MS m/z (rel. int.): 288.137 [M]⁺ (100) (calc. for C₁₇H₂₀O₄: 288.137), 259 (72), 257 (38), 233 (76), 203 (61), 173 (36), 115 (43), 91 (21); ¹H NMR (CDCl₃): δ 7.17 (br s, H-2, H-6), 7.63 (d, H-7), 6.23 (d, H-8), 3.40 and 3.06 (dd, H-1'), 6.13 (ddd, H-2'), 3.18 (d, OH), 3.30 (br d, H-1''), 5.30 (tqq, H-2''), 1.76 (br s, H-4''), 1.71 (br s, H-5''); J [Hz]: 7,8 = 16; 1'_1,2' = 17; 1'_2,2' = 6; 1'_2,2' = 2; 2'.OH = 5; 1'',2'' = 7; 2'',4'' = 2'',5'' = 1.5; [\alpha]_D^{24'} - 9 (CHCl₃; c0.1).

3-Prenyl-4-hydroxybenzoic acid senecioate (9). MS m/z (rel. int.): 288.136 [M]⁺ (0.6) (calc. for $C_{17}H_{20}O_4$: 288.136), 232 [M $-C_4H_8$]⁺ (5), 188 [M-RCO₂H]⁺ (21), 83 [RCO]⁺ (100), 55 [83-CO]⁺ (36). Purified as its methyl ester **9a**; IR v CCl_4 cm⁻¹: 1745 (PhOCOC=C), 1730 (PhCO₂R); MS m/z (rel. int.): 302.152 [M]⁺ (1) (calc. for $C_{18}H_{22}O_4$: 302.152), 271 [M-OMe]⁺ (0.5), 219 [M-COC₄H₇]⁺ (3), 83 [RCO]⁺ (100), 55 [83-CO]⁺ (57); ¹³C NMR (CDCl₃, C-1-C-7): δ 133.5, 131.5, 127.5, 160.7, 121.0, 128.4, 164.1; C-1'-C-5': 28.7, 122.5, 134.0, 25.6, 17.8; OSen: 166.6, 114.6, 152.6, 27.6, 20.5; OMe: 52.0.

3-Prenyl-4-hydroxybenzoic acid angelate (10). Isolated as its methyl ester 10a; IR $v_{max}^{CCl_4}$ cm⁻¹: 1745 (PhOCOC=C), 1730 (PhCO₂R); MS *m/z* (rel. int.): 302.152 [M]⁺ (1) (calc. for C₁₈H₂₂O₄: 302.152), 271 (0.5), 219 (6), 83 (100), 55 (53). To 50 mg 2a in 2 ml MeOH-dioxane (3:1), 100 mg KOH in MeOH-H₂O (3:1) was added. After addition of dil H₂SO₄ usual work-up gave 30 mg 14a; IR $v_{max}^{CCl_4}$ cm⁻¹: 3610 (OH), 1730 (PhCO₂R); MS *m/z* (rel. int.): 220.105 [M]⁺ (56) (calc. for C₁₃H₁₆O₃: 220.105), 189 [M-OMe]⁺ (17), 165 [M-C₄H₇]⁺ (100), 161 [189-CO]⁺ (30), 133 [165-MeOH]⁺ (28), 105 [133-CO]⁺ (31).

3-Prenyl-4-hydroxybenzoic acid isobutyrate (11). Isolated as its methyl ester 11a; IR ν_{max}^{CCL} cm⁻¹: 1770 (PhOCOR), 1730 (PhCO₂R); MS *m/z* (rel. int.): 290.152 [M]⁺ (3) (calc. for C₁₇H₂₂O₄: 290.152), 219 [M-COR]⁺ (32), 71 [RCO]⁺ (100).

3-Prenyl-4-hydroxybenzoic acid-[2-methyl-butyrate and isovalerate] (12 and 13). Isolated as their methyl esters 12a and 13a which could not be separated; $IR v_{max}^{Ccl_{a}} cm^{-1}$: 1775 (PhOCOR), 1730 (CO₂R); MS m/z (rel. int.): 304.167 [M]⁺ (1) (calc. for C₁₈H₂₄O₄: 304.167), 219 [M-COR]⁺ (20), 85 [RCO]⁺ (45), 57 [85-CO]⁺ (100).

REFERENCES

- 1. Anderberg, A. (1989) Can. J. Botany 67, 2277.
- 2. Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 1189.
- 3. Middleton, E. J. and Jeffries, P. R. (1968) Aust. J. Chem. 21, 2349.
- 4. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1989) Phytochemistry 28, 517.
- Jakupovic, J., Schuster, A., Bohlmann, F., Ganzer, U., King, R. M. and Robinson, H. (1989) Phytochemistry 28, 543.
- Zdero, C., Bohlmann, F., Haegi, L. and King, R. M. (1987) Lieb. Ann. Chem. 665.
- 7. Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 631.
- Jakupovic, J., Pathak, V. P., Bohlmann, F., King, R. M. and Robinson, H. (1987) Phytochemistry 26, 803.
- 9. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.