Liebigs Ann. Chem. 1984, 761-772

Chemie und Stereochemie der Iridoide, IV¹⁾

Synthese und Röntgenstrukturanalyse von 15-Methyl-12-*epi*-prostaglandin F₂₈

Klaus Weinges*, Wolfgang Huber, Ursula Huber-Patz, Hermann Irngartinger, Matthias Nixdorf und Hans Rodewald

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

Eingegangen am 19. September 1983

Ausgehend von dem aus Catalpol hergestellten (15,6R,7R,9R)-(+)-7,9-Bis(p-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan-2-ol (1) werden <math>(15R)- und (15S)-15-Methyl-12-epi-PGF₂₈ [(15R)-5b und 5b] kristallin und enantiomerenrein synthetisiert. Im Gegensatz zu der von uns beschriebenen Synthese von 12-epi-PGF₂₈ sind durch die Einführung der *p*-Phenylbenzoyl-Schutzgruppen auch die Zwischenprodukte 2-5a kristallin, so daß ihre physikalischen Konstanten eindeutig bestimmt werden konnten. Die Röntgenstrukturanalyse von (15R)-15-Methyl-12-epi-PGF₂₈ beweist, daß die von uns aus den analytischen und spektroskopischen Untersuchungen gemachten Aussagen richtig sind.

Chemistry and Stereochemistry of Iridoids, IV¹⁾. – Synthesis and X-Ray Structure Analysis of 15-Methyl-12-epi-prostaglandin $F_{2\beta}$

Crystalline (15*R*)- and (15*S*)-15-methyl-12-*epi*-PGF_{2β} [(15*R*)-5**b** and 5**b**] are synthesized enantiomerically pure starting from (1*S*,6*R*,7*R*,9*R*)-(+)-7,9-bis(*p*-phenylbenzoyloxy)-3-oxabicyclo-[4.3.0]nonan-2-ol (1), which is prepared from catalpol. Contrary to our described synthesis of 12-*epi*-PGF_{2β}, the intermediate products 2 - 5a are crystalline by virtue of the introduction of the *p*-phenylbenzoyl protecting group. Thus, their physical constants could be determined unequivocally. The X-ray structure analysis of (15*R*)-15-methyl-12-*epi*-PGF_{2β} proves the correctness of our earlier statements based on analytical and spectroscopical investigations.

Vor kurzem haben wir eine allgemeine Synthese für 12-epi-Prostaglandine aus Catalpol beschrieben¹⁾. Da die Zwischenprodukte als Öle anfielen und manche wegen der Tetrahydropyranyl-Schutzgruppe als Diastereomerengemische vorlagen, war ihr spektroskopischer Konstitutionsbeweis nicht eindeutig möglich. Nur die kristallinen Endprodukte bzw. ihre Derivate konnten spektroskopisch untersucht werden. Durch die Einführung der p-Phenylbenzoyl-Schutzgruppe gelang es, nun auch die Zwischenprodukte 2-5a kristallin zu erhalten und dadurch ihre Konstitution und Konfiguration analytisch und spektroskopisch zu beweisen. Diese Ergebnisse werden durch die Röntgenstrukturanalyse von (15R)-15-Methyl-12-epi-PGF₂₈ bestätigt.

Synthese von (15R)- und (15S)-15-Methyl-12-epi-PGF₂₈ [(15R)-5b und 5b]

Die freien Hydroxylgruppen des (1S,6R,7R,9R)-(-)-2-(Benzylthio)-3-oxabicyclo-[4.3.0]nonan-7,9-diols, dessen Herstellung aus Catalpol von uns beschrieben wurde^{1,2)},

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0170-2041/84/0404-0761 \$ 02.50/0 werden als *p*-Phenylbenzoylester geschützt. Nach Abspaltung der Benzylthiogruppe mit Quecksilber(II)-Salzen erhält man das (1S,6R,7R,9R)-(+)-7,9-Bis(*p*-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan-2-ol (1), das als Ausgangsverbindung für die Synthese von (15R)- und (15S)-15-Methyl-12-*epi*-PGF_{2B} [(15R)-5b und 5b] dient (s. Formelschema). Man erhält aus 32 g Catalpol ca. 11 – 12 g 1, welches in Lösung als C-2-Epimerengemisch vorliegt und deshalb im ¹³C-NMR-Spektrum eine Verdoppelung der Signale zeigt.

Die "untere" Seitenkette wird an 1 durch eine Wittig-Horner-Reaktion mit (2-Oxoheptyl)phosphonsäure-dimethylester und Natriumhydrid als Base in wasserfreiem Tetrahydrofuran eingeführt. 2 besitzt eine Enon-Struktur, die mit der Hydroxylgruppe an C-6 in alkalischer Lösung analog einer intramolekularen Michael-Addition zu dem 2-(2-Oxoheptyl)-7,9-bis(p-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan reagiert, das als Nebenprodukt isoliert wird (s. Experimenteller Teil). Die gleiche Reaktion wurde auch bei dem analogen Zwischenprodukt der 12-epi-PGF₂₈-Synthese beobachtet¹. Außerdem eliminiert 2 leicht p-Phenylbenzoesäure, wobei eine Doppelbindung in Konjugation zu der an C-13 entsteht. Die Eliminierung tritt nicht ein, wenn die Hydroxylgruppen als Benzylether geschützt sind¹). Wegen dieser Nebenreaktionen kann 2 nur in 30% Ausbeute rein isoliert werden. Wir fanden jedoch, daß eine "Eintopf-Reaktion" vorzuziehen ist, in der nach der Bildung von 2 direkt die Grignard-Reaktion zu 3 angeschlossen und 2 nicht als Zwischenprodukt isoliert wird. 3 ist eine stabile Verbindung und tritt wegen des neuen Chiralitätszentrums an C-15 in zwei epimeren Formen auf. In dem Formelschema sind nur die (15S)-Epimeren 3-5 wiedergegeben. Aus diesem Grund wird bei der Bezeichnung der (15R)-Epimeren vor die entsprechende Formelnummer (15R) gesetzt. 3 und (15R)-3 entstehen im Verhältnis 3:2 und werden säulenchromatographisch getrennt. Die sterische Reinheit der Epimeren wird durch ihre ¹³C-NMR-Spektren bewiesen (Tab. 3).

Die weiteren Reaktionen der Synthese werden mit den stereochemisch reinen Diastereomeren 3 und (15R)-3 ausgeführt. Die Oxidation von 3 und (15R)-3 gelingt mit

Pyridinium-chlorochromat in 66 - 68 % Ausbeute zu 4 und (15*R*)-4, an deren Aldehyd-Funktion die "obere" Seitenkette durch eine Wittig-Reaktion mit (4-Carboxybutyl)triphenylphosphonium-bromid und Kalium-*tert*-butylat als Base eingeführt wird. Hierbei erhält man die Z-Produkte, wie spektroskopisch bewiesen wird. Durch alkalische Umesterung von 5a und (15*R*)-5a werden die gut kristallisierenden und enantiomerenreinen 15-Methyl-12-*epi*-PGF_{2β} 5b und (15*R*)-5b erhalten. Aus 11 g 1 erhält man ca. 700 mg 5b und ca. 350 mg (15*R*)-5b. Als Derivate werden ihre Methylester 5c und (15*R*)-5c hergestellt.

Diskussion der NMR-Spektren

Da bei der Acylierung von optisch aktiven Alkoholen keine Inversion eintritt, ist die absolute Konfiguration des (1S, 6R, 7R, 9R)-(+)-7,9-Bis(*p*-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan-2-ols (1) durch unsere früheren Arbeiten festgelegt^{1,2)}. Die Wittig-Horner-Reaktion von 1 verläuft stereoselektiv zu 2, bei dem die Seitenketten an C-8 und C-12 in α -Stellung stehen. Ein Beweis hierfür könnte die Größe der ¹H-Kopplungskonstante $J_{8/12}$ sein, über die aber bisher bei den Prostaglandinen wegen der Überlappung mehrerer Protonensignale keine Angabe gemacht wurde. Als Hinweis für die α -Stellung der "unteren" Seitenkette in Verbindungen vom Typ 2 wird in der Literatur die ¹H-Kopplungskonstante $J_{12/13}$ mit ca. 11 Hz angegeben³⁻⁵⁾. Durch Doppelresonanz-Experimente findet man für 2 $J_{12/13} = 10.0$ Hz, was für eine 12 α -Konfiguration spricht. Dieses Ergebnis wird durch Vergleich der ¹³C-chemischen Verschiebungen von C-8 und C-12 der PGF_{2β}-Reihe mit denen der analogen 12-*epi*-Verbindungen sowie ihrer Methylester bestätigt. Die Signale der 12*-epi*-Verbindungen verschieben sich für C-8 um $\Delta \delta = 0.9 - 1.7$ ppm und für C-12 um $\Delta \delta = 5.0 - 5.4$ ppm nach höherem Feld (Tab. 1 und 2).

Die Konfiguration an C-15 von 3-5 und ihren (15*R*)-Epimeren läßt sich ¹H- und ¹³C-NMR-spektroskopisch nicht ermitteln. Das Signal der Protonen der Methylgruppe an C-15 zeigt für die Epimeren nur geringe Unterschiede im ¹H-NMR-Spektrum und ist bei den Endprodukten durch die Signale von 17-H, 18-H und 19-H verdeckt. Obwohl im ¹³C-NMR-Spektrum von **5b/c** und (15*R*)-**5b/c** die Signale für die Methylkohlen-stoffatome an C-15 hinreichend verschieden sind, ist eine konfigurative Zuordnung nicht ohne weiteres möglich. Erst durch die Röntgenstrukturanalyse wird die Konfiguration an C-15 bewiesen, so daß sich nachträglich die ¹³C-Signale der Epimeren eindeutig zuordnen ließen (Tab. 3).

Durch die bekannte Stereoselektivität der verschiedenen Carbonyl-Olefinierungen^{6,7)} erhält man an C-5/6 eine Z- und an C-13/14 eine E-Konfiguration, was auch durch die ¹H-Kopplungskonstanten $J_{5/6} \approx 10$ Hz und $J_{13/14} \approx 15$ Hz nachgewiesen wird. Die Diastereomerenreinheit geht aus den ¹³C-NMR-Spektren (Tab. 3) hervor, deren Signale eindeutig zugeordnet werden können, und die keine zusätzlichen Signale zeigen, die man bei Diastereomerengemischen, wie z. B. beim Halbacetal 1, beobachtet.

Röntgenstrukturanalyse von (15R)-15-Methyl-12-epi-PGF₂₈ [(15R)-5b]

Im Gegensatz zu den bisher röntgenstrukturanalytisch untersuchten Prostaglandinen sind in (15R)-**5b** die Seitenketten *cis*-ständig angeordnet (Abb. 1). Es kristallisiert mit zwei unabhängigen Molekülen A und C in der asymmetrischen Einheit.

			Tab. 1. ¹³	C-NMR-s	pektroskopischer Verg	gleich der Prostaglaı	ndine mit	(15S)-Konfiguratio	ų	
Ċ	PGF _{2ß}	Δδ	12- <i>epi</i> - PGF _{2\$}	Δδ	15-Methyl- 12 <i>-epi</i> -PGF _{2β} (5 b)	PGF ₂₆ - methylester	Δδ	12- <i>epi</i> -PGF ₂₆ - methylester	Δδ	15-Methyl-12 <i>-epi-</i> PGF _{2\$} -methylester (5 c)
8 12	52.0 56.2	- 1.3 - 5.3	50.7 50.9	-1.0 -5.2	51.0 51.0	51.9 56.1	- 1.2 - 5.4	50.7 50.7	- 0.9 - 5.1	51.0 51.0
			Tab. 2. ¹³	C-NMR-si	pektroskopischer Ver	gleich der Prostagla	ndine mit	(15 <i>R</i>)-Konfigurati	ы	
ి	(15 <i>R</i>)- PGF _{2β}	Δδ	(15 <i>R</i>)- 12- <i>epi</i> - PGF ₂₈	Δδ	(15 <i>R</i>)- 15-Methyl- 12 <i>-epi</i> -PGF ₂ ß ((15 <i>R</i>)- 5 b]	(15 <i>R</i>)- PGF _{2b} - methylester	Δδ	(15R)- 12-epi-PGF ₂ b- methylester	Δδ	(15.Methyl-12- <i>epi</i> - PGF ₂₆ -methylester [(15R)-5c]
8 12	52.3 55.7	- 1.6 - 5.0	50.7 50.7	-1.7 -5.1	50.6 50.6	52.4 56.1	-1.6 -5.2	50.8 50.9	-1.6 -5.2	50.8 50.9
Δδb	ziehen sich a	uf die ana	lloge PGF ₂₆	۲-Verbindر	nng.					

	5c	174.50	33.49	24.89	26.75	129.56	129.56	27.89	51.02	73.04	42.12	75.52	51.02	123.15	142.06	73.04	42.69	23.91	32.41	22.71	14.08	28.73
	(15R)-5c	174.44	33.43	24.80	26.72	129.48	129.48	27.68	50.81	72.89	42.03	75.43	50.90	123.36	142.09	72.83	42.99	23.88	32.35	22.65	14.05	27.17
Tab. 3. ¹³ C-Chemische Verschiebungen von $2-5$ und ihren (15R)-Epimeren in CDCl ₃	5 b	176.90	33.55	24.92	26.72	129.50	129.50	27.71	50.96	73.10	41.82	75.25	50.96	123.36	141.61	73.10	42.54	24.00	32.50	22.80	14.08	28.43
	(15R)-Sb	177.17	33.16	24.60	26.45	129.48	129.48	27.59	50.63	73.07	41.76	75.43	50.63	123.33	141.76	73.49	42.81	23.79	32.29	22.65	14.08	27.14
	5a	177.11	32.62	24.36	26.36	129.71	128.76	27.23	47.87	75.67	37.63	77.59	48.68	122.23	141.34	73.49	42.75	23.64	32.17	22.53	14.05	27.23
	(15R)- 5 a	177.54	32.84	24.46	26.46	129.67	128.65	27.03	48.03	75.74	37.58	77.54	48.36	121.76	141.41	73.50	42.37	23.50	32.06	22.36	13.97	28.26
	4	ł	I	I	I	1	200.59	44.01	42.09	75.25	36.91	77.17	47.84	121.09	143.20	72.92	42.66	23.76	32.17	22.62	14.05	28.22
	(15R)-4	I	ł	I	ł	I	200.74	43.95	42.27	75.31	36.88	77.20	47.72	120.91	143.23	72.77	42.57	23.55	32.08	22.41	14.02	28.28
	e	1	ł	I	I	I	60.09	32.20	45.00	75.91	37.51	78.13	48.17	121.69	142.27	72.77	42.69	23.73	31.93	22.56	14.05	27.74
	(15R)-3	1	ł	I	I	I	60.99	32.20	45.03	76.03	37.54	78.22	48.17	121.48	142.42	72.77	42.57	23.67	31.96	22.50	14.05	28.16
	7	1	I	ł	I	I	61.02	32.44	45.66	76.12	38.14	78.40	48.50	140.41	133.79	198.41	41.13	24.12	31.70	22.77	14.08	I
	Ċ	-	4	ę	4	Ś	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	СН3

765

Liebigs Ann. Chem. 1984

Abb. 1. Stereoskopische Ansicht des Moleküls C von (15R)-5b

Abb. 2. Molekül **A** von (15*R*)-**5b** mit den Atombezeichnungen und den Fehlordnungslagen von **B** (dünner gezeichnet)

Tab. 4. Torsionswinkel (°), Bindungslängen (Å) und Bindungswinkel (°) von (15R)-5b mit ihren Standardabweichungen

Molekül	ě	ç		À	ç		Ą	ç
01 - C1 - C2 - C3	118.5(13)	154.2(10)	01 - C1	1.27(1)	1.30(1)	01 - C1 - 02	118.4(8)	120.6(7)
02 -C1 -C2 -C3	-71.5(18)	-17.7(17)	02 - C1	1.14(1)	1.17(1)	01 - C1 - C2	111.7(8)	112.9(6)
03 -C9 -C10-C11	-122.2(6)	-122.2(6)	03 - C9	1.44(1)	1.43(1)	02 - C1 - C2	129.1(10)	126.0(7)
03 C9 C8 C7	-82.0(6)	-83.1(8)	04 - CII	1.42(1)	1.41(1)	C1 - C2 - C3	112.9(9)	117.2(7)
03 - C9 - C8 - C12	151.8(5)	149.7(6)	05 - C15	1.46(1)	1.43(1)	C2 - C3 - C4	115.7(11)	116.0(9)
04 -C11-C10-C9	-155.2(5)	-156.1(6)	C1 - C2	1.50(1)	1.49(1)	C3 – C4 – C5	109.6(13)	116.0(11)
04 -C11-C12-C8	172.2(5)	170.4(5)	C2 - C3	1.37(2)	1.39(1)	C4 – C5 – C6	124.9(15)	122.8(9)
04 -C11-C12-C13	52.2(7)	50.3(8)	C3 - C4	1.67(2)	1.54(1)	C5 - C6 - C7	133.5(15)	126.6(9)
05 -015-014-013	-122.6(7)	-120.5(8)	C4 - C5	1.46(2)	1.45(2)	C6 - C7 - C8	120.9(7)	115.9(7)
05 -015-016-017	175.5(5)	179.7(5)	C5 - C6	1.30(2)	1.28(1)	C7 - C8 - C9	114.6(5)	116.4(6)
C1 -C2 -C3 -C4	-175.7(12)	173.2(11)	C6 - C7	1.35(2)	1.49(1)	C7 - C8 - C12	115.5(6)	114.8(6)
C2 -C3 -C4 -C5	-68.6(18)	72.3(15)	C7 - C8	1.52(1)	1.52(1)	C9 - C8 - C12	102.8(5)	103.9(5)
C3 -C4 -C5 -C6	-133.5(15)	176.5(10)	C8 - C9	1.54(1)	1.52(1)	03 - C9 - C8	111.9(5)	114.5(5)
C4 -C5 -C6 -C7	4.8(26)	0.9(15)	C8 - C12	1.54(1)	1.53(1)	03 - C9 - C10	113.8(5)	113.6(6)
C5 -C6 -C7 -C8	-125.1(5)	-170.5(9)	C9 - C10	1.53(1)	1.54(1)	C8 - C9 - C10	106.9(5)	104.8(6)
C6 -C7 -C8 -C9	168.2(10)	64.0(9)	C10 - C11	1.51(1)	1.49(1)	C9 - C10 - C11	104.2(5)	105.9(5)
C6 -C7 -C8 -C12	-72.5(11)	-174.4(7)	C11 - C12	1.55(1)	1.52(1)	04 - C11 - C10	115.2(5)	114.2(5)
C7 -C8 -C9 -C10	152.7(6)	151.8(6)	C12 - C13	1.50(1)	1.50(1)	04 - C11 - C12	113.6(6)	115.0(6)
C7 -C8 -C12-C11	-168.8(5)	-171.0(6)	C13 - C14	1.31(1)	1.32(1)	$c_{10} - c_{11} - c_{12}$	104.7(5)	103.6(5)
C7 -C8 -C12-C13	-48.6(8)	-50.4(8)	C14 - C15	1.47(1)	1.40(1)	C8 - C12 - C11	99.2(5)	100.4(6)
C8 -C9 -C10-C11	1.9(7)	3.4(7)	C15 - C16	1.52(1)	1.55(1)	C8 - C12 - C13	112.9(5)	112.5(6)
C8 -C12-C11-C10	45.7(6)	45.1(6)	CI5 - C21	1.53(1)	1.53(1)	C11 - C12 - C13	113.3(5)	113.1(5)
C8 -C12-C13-C14	132.5(7)	128.1(7)	C16 - C17	1.50(1)	1.34(1)	C12 - C13 - C14	125.8(6)	126.6(6)
C9 -C8 -C12-C11	-43.2(5)	-42.8(6)	C17 - C18	1.47(1)	1.52(1)	C13 - C14 - C15	128.0(5)	128.6(6)
C9 -C8 -C12-C13	77.0(6)	77.8(7)	C18 - C19	1.47(1)	1.50(1)	05 - C15 - C14	110,5(5)	110.3(5)
C9 -C10-C11-C12	-29.6(7)	-30.3(7)	C19 - C2O	1.35(2)	1.44(1)	05 - C15 - C16	106.3(6)	108.0(6)
C10-C9 -C8 -C12	26.6(6)	24.6(7)				05 - C15 - C21	104.0(5)	104.0(5)
C10-C11-C12-C13	-74.2(7)	-75.0(7)				C14 - C15 - C16	109.0(5)	110.6(5)
C11-C12-C13-C14	-115.7(8)	-118.9(8)				C14 - C15 - C21	115.1(6)	113.4(6)
C12-C13-C14-C15	-175.3(6)	178.6(6)				C16 = C15 = C21	111.6(5)	110.3(6)
C13-C14-C15-C16	120.9(8)	120.1(8)				C15 - C16 - C17	118.2(7)	114.9(6)
C13-C14-C15-C21	-5.3(10)	-4.4(10)				C16 - C17 - C18	114.9(7)	112.5(7)
C14-C15-C16-C17	-65.4(8)	-59.6(8)				C17 - C18 - C19	115.7(8)	114.2(8)
C15-C16-C17-C18	164.7(6)	-169.8(6)				C18 - C19 - C20	118.1(12)	114.1(9)
C16-C17-C18-C19	179.1(8)	-177.6(6)						
C17-C16-C15-C21	62.8(8)	66.7(8)						
C17-C18-C19-C20	158.0(10)	-170.6(7)						

Molekül A zeigt in der Seitenkette an C8 Fehlordnungserscheinungen, die in Abb. 2 gezeigt werden. Das Verhältnis der Fehlordnungsbelegung A zu B beträgt 60: 40. Daher treten an dieser Stelle Abweichungen von Standardmeßwerten auf. Die Moleküle stimmen in ihrer Konfiguration überein. Der Fünfring zeigt jeweils eine Briefumschlagkonformation mit mittleren Torsionswinkeln von 3° , $\pm 28^{\circ}$ und $\pm 44^{\circ}$ (Tab. 4). C12 liegt 0.70 (A) bzw. 0.68 Å (C) unter der Ebene durch die vier restlichen C-Atome (Abb. 1 und 2). Unterhalb der gleichen Ebene sind auch die Substituenten O4, C7 und C13 angeordnet. Sie nehmen pseudoaxiale (C13) bzw. pseudoäquatoriale Lagen (O4, C7) ein. O3 ist *trans*-ständig zu O4.

Die Doppelbindung C13 – C14 ist E-konfiguriert, C5 – C6 liegt in Z-Form vor. Die absoluten Konfigurationen der C-Atome im Fünfring sind durch die Synthese vorgegeben. Auf der Basis dieser Zuordnung zeigt C-Atom 15 *R*-Konfiguration. In gleicher Weise wie bei Prostaglandinen mit *trans*-ständigen Seitenketten am Fünfring⁸⁾ tritt auch am (15*R*)-5b mit einer *cis*-Anordnung eine "Haarnadelform" der Seitenketten auf.

Dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung. Die Geräte wurden vom Land Baden-Württemberg zur Verfügung gestellt.

Experimenteller Teil

Schmelzpunkte: Bestimmung in Kapillaren, die Werte sind nicht korrigiert. – ¹H- und ¹³C-NMR-Spektren: Bruker WH-300. – Spezif. Drehwerte: Polarimeter 141 (Perkin-Elmer), "Uvasol"-Lösungsmittel (Merck). – $R_{\rm F}$ -Werte: DC-Fertigplatten Kieselgel 60 F₂₅₄ (Merck). Sprühreagenz: konz. H₂SO₄/ Formalin (9:1). Entwicklung: ca. 5 min bei 120°C. – Säulenchromatographie: Glasdrucksäulen (Reichelt Chemietechnik). Membranpumpen "Prominent" (Chemie und Filter GmbH). Kieselsäure Mallinckrodt unter 100 mesh (Roth).

(1S,6R,7R,9R)-(-)-2-(Benzylthio)-7,9-bis(p-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan: 8.5 g (30.3 mmol) (15,6R,7R,9R)-(-)-2-(Benzylthio)-3-oxabicyclo[4.3.0]nonan-7,9-diol¹) (über P₄O₁₀ i. Vak. getrocknet) werden in 30 ml wasserfreiem Pyridin gelöst und bei 0°C mit 13.8 g (63.6 mmol) p-Phenylbenzoylchlorid versetzt. Man läßt 2 h bei Raumtemp. rühren und gibt 100 g Eis zu der Reaktionslösung. Nachdem das Eis geschmolzen ist, wird das ausgefallene Produkt in 100 ml destilliertem Essigester aufgenommen und die wäßrige Phase dreimal mit je 100 ml Essigester ausgeschüttelt. Die vereinigten organischen Phasen werden mit 200 ml Wasser, 200 ml gesättigter NaHCO₃-Lösung und nochmals zweimal mit je 200 ml Wasser gewaschen. Der mit Na₂SO₄ getrocknete Essigester wird mit wenig Celite im Rotationsverdampfer zur Trockne eingedampft und der Rückstand auf einer Säule (25 cm \times 3 cm; Kieselgel 0.02 – 0.5 mm) mit 1.2 l Toluol als Elutionsmittel gereinigt. Gelbliches amorphes Produkt. Ausb. 18.2 g (94%), $R_F = 0.75$ (Toluol/ Aceton 9:1), $[\alpha]_{589}^{20} = -206.8$ (c = 0.9 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃): $\delta =$ 8.18 - 7.33 (m; 18H, Aromaten-H), 7.30 - 7.15 (m; 5H, SCH₂C₆H₄), 5.67 (m_c; 1H, 9-H), 5.47 (s; 1 H, 2-H), 5.29 (m_c; 1 H, 7-H), 4.21 (m_c; 1 H, 4-H), 3.80 - 3.72 (m; 1 H, 4-H), AB-Signal ($\delta_A =$ 3.80, $\delta_{\rm B}$ = 3.66, J = 13.25 Hz; 2H, SCH₂C₆H₅), 2.68-2.42 (m; 4H, 6-H, 8-H und 1-H), 1.92 - 1.79 (m; 2H, 5-H). $- {}^{13}$ C-NMR (75.46 MHz, CDCl₃): $\delta = 166.20$ und 166.02 (s; C = O), 145.98, 145.86, 140.20 und 140.05 (s; C-Aromaten), 138.31 (s; $SCH_2C_6H_5$), 130.37 – 126.93 (d; C-Aromaten), 79.69 (d; C-2), 78.01 (d; C-9), 76.24 (d; C-7), 58.09 (t; C-4), 43.83 (d; C-1), 40.77 (d; C-6), 39.54 (t; C-8), 34.51 (t; $SCH_2C_6H_5$), 25.91 (t; C-5).

C41H36O5S (640.8) Ber. C 76.85 H 5.66 S 5.00 Gef. C 77.05 H 5.90 S 4.95

(1S, 6R, 7R, 9R)-(+)-7,9-Bis(p-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan-2-ol (1): 18.2 g (28.4 mmol) (1S,6R,7R,9R)-(-)-2-(Benzylthio)-7,9-bis(p-phenylbenzoyloxy)-3-oxabicyclo[4.3.0]nonan werden in 500 ml Aceton gelöst. Unter Rühren fügt man bei Raumtemp, 20 ml Wasser und 3.1 g (14.2 mmol) Quecksilber(II)-oxid hinzu und läßt eine Lösung von 5.0 g (15.5 mmol) Quecksilber(II)-acetat in 100 ml Wasser rasch zufließen. Man läßt 20 min bei 35 °C rühren und verdünnt mit 1 l Wasser. Die Reaktionslösung wird dreimal mit je 300 ml Dichlormethan extrahiert, die vereinigten organischen Phasen werden zweimal mit je 200 ml Wasser gewaschen, mit Na₂SO₄ getrocknet und i. Vak. zur Trockne eingedampft. Der Rückstand wird in 50 ml Dichlormethan aufgenommen und filtriert. Das Filtrat versetzt man mit 150 ml Toluol und läßt ca. 12 h bei Raumtemp. stehen. Das auskristallisierte 1 wird abgesaugt und die Mutterlauge auf 50 ml eingedampft, wobei Quecksilbersalze auskristallisieren. Man saugt ab und dampft auf ca. 20 ml ein, wobei weiteres I auskristallisiert. I liegt in Lösung in einem C-2-Epimerengemisch vor. Ausb. 11.2 g (74%). Schmp. 161-163 °C, $R_F = 0.30$ (Toluol/Aceton 9:1), $[\alpha]_{589}^{20} = +28.8$ (c = 1.0 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.18 - 8.05$, 7.70 - 7.58 und 7.50 - 7.35 (m; 18H, Aromaten-H), 5.78 (mc; 1H, 9-H), 5.43 (s; 1H, 2-H), 5.38 (mc; 1H, 7-H), 4.06 (mc; 1H, 4-H), 3.73 (m_c; 1H, 4-H), 2.83-2.54 (m; 4H, 1-H, 6-H und 8-H), 1.92-1.80 (m; 2H, 5-H), 1.60 (s; 1H, OH). - ¹³C-NMR (75.46 MHz, CDCl₃): Das in höherer Konzentration vorliegende C-2-Epimere wird an erster Stelle angegeben. $\delta = 166.26$ (s; C = O), 145.95 und 140.14 (s; C-Aromaten), 130.79-127.20 (d; C-Aromaten), 91.22/94.31 (d; C-2), 79.12/78.97 (d; C-9), 75.22/76.63 (d; C-7), 58.45/63.45 (t; C-4), 44.25/46.37 (d; C-1), 40.26/43.32 (d; C-6), 39.36/39.69 (t; C-8), 25.22/25.79 (t; C-5).

C34H30O6 (534.6) Ber. C 76.39 H 5.66 Gef. C 76.36 H 5.61

2-Decarboxy-15-dehydro-6-hydroxy-9,11-bis(p-phenylbenzoyl)-2,3,4,5-tetranor-12-epi-PGF₁₈ (2): Unter Argon werden 0.34 g (11.2 mmol) Natriumhydrid (80% in Weißöl) in 400 ml wasserfreiem THF suspendiert und unter Rühren 3.2 g (14.6 mmol) (2-Oxoheptyl)phosphonsäuredimethylester zugegeben. Man läßt 1 h bei Raumtemp. und 1 h bei 30°C rühren. Das Natriumhydrid muß vollständig umgesetzt sein, da sonst 2 cyclisiert. Unter Einleiten eines schwachen Argonstroms gibt man 6.0 g (11.2 mmol) feingepulvertes 1 zu und läßt 15 h bei Raumtemp. rühren. Unter Eiskühlung fügt man 20 ml 0.1 M CH₃CO₂H und 150 ml Wasser zu, extrahiert dreimal mit je 100 ml Essigester, trocknet die vereinigten Extrakte mit Na₂SO₄ und dampft mit wenig Celite i. Vak. zur Trockne ein. Der Rückstand wird auf eine Kieselsäure-Drucksäule (80 cm × 2 cm) gegeben und nacheinander mit 1 l Dichlormethan, 1 l Dichlormethan/Aceton (98:2) und 11 Dichlormethan/Aceton (95:5) eluiert. 2 wird aus Toluol/n-Pentan umkristallisiert. Ausb. 2.1 g (30%), Schmp. 138-139°C, $R_{\rm F} = 0.60$ (Dichlormethan/Aceton 9:1), $[\alpha]_{89}^{29} = -67.8$ $(c = 1.0 \text{ g in } 100 \text{ ml CHCl}_3)$. - ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.15 - 8.03$, 7.71 - 7.60 und 7.51 – 7.36 (m; 18H, Aromaten-H), 6.87 (dd, $J_{13/14} = 15.5$ Hz, $J_{12/13} = 10.0$ Hz, 1H, 13-H), 6.23 (d, $J_{13/14} = 15.5$ Hz; 1 H, 14-H), 5.69 (m_c; 1 H, 11-H), 5.49 (m_c; 1 H, 9-H), 3.90 - 3.73 (m; 2H, 6-H), 3.45 (m_c, $J_{8/12} = 7.0$ Hz; 1H, 12-H), 2.73 – 2.62 (m; 2H, 8-H und 10-H), 2.56 (m_c, ${}^{2}J$ = 15.3 Hz; 1 H, 10-H), 2.44 (m_c; ${}^{2}J$ = 15.8 Hz; 2 H, 16-H), 2.18 (s; 1 H, OH), 1.85 (m_c; 2 H, 7-H), 1.52 (m_c; 2H, 17-H), 1.29 – 1.17 (m; 4H, 18-H und 19-H), 0.82 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, C₆D₆, Tab. 3).

C41H42O6 (630.8) Ber. C 78.07 H 6.71 Gef. C 78.15 H 6.77

Nebenprodukt: (1R, 6R, 7R, 9R) - (+) - 2 - (2 - Oxoheptyl) - 7, 9 - bis(p - phenylbenzoyloxy) - 3 - oxabicyclo[4.3.0]nonan. Farblose Kristalle aus Essigester. Ausb. 1.3 g (18%), Schmp. 133 - 134 °C, $<math>R_F = 0.79$ (Dichlormethan/Aceton 9:1), $[\alpha]_{589}^{20} = +64.0$ (c = 1.0 g in 100 ml CHCl₃). -¹H-NMR (300 MHz, CDCl₃): $\delta = 8.06 - 8.00$, 7.65 - 7.57 und 7.45 - 7.32 (m; 18H, Aromaten-H), 5.65 (m_c; 1H, 9-H), 5.50 (m_c; 1H, 7-H), 4.20 (m_c; 1H, 2-H), 3.81 - 3.61 (m; 2H, 4-H), ABX-Signal ($\delta_A = 2.70$, $\delta_B = 2.59$, $J_{AB} = 15.3$ Hz, $J_{AX} = 8.8$ Hz, $J_{BX} = 2.9$ Hz; 2H, 1'-H),

2.56 – 2.20 (m; 6H, 1-H, 6-H, 8-H und 3'-H), 1.96 – 1.70 (m; 2H, 5-H), 1.53 – 1.41 (m; 2H, 4'-H), 1.23 – 1.08 (m; 4H, 5'-H und 6'-H), 0.77 (t; 3H, 7'-H). – 13 C-NMR (75.46 MHz, CDCl₃): $\delta = 209.07$ (s; C-2'), 166.38 und 165.87 (s; C = O), 146.07, 145.95, 139.96 und 139.87 (s; C-Aromaten), 130.19 – 127.14 (d; C-Aromaten), 75.10 (d; C-9), 74.26 (d; C-7), 69.89 (d; C-2), 62.61 (t; C-4), 48.68 (t; C-1'), 43.74 (d und t; C-1 und C-3'), 40.74 (d; C-6), 37.75 (t; C-8), 31.34 (t; C-5'), 24.77 (t; C-5), 23.22 (t; C-4'), 22.44 (t; C-6'), 13.90 (q; C-7).

C41H42O6 (630.8) Ber. C 78.07 H 6.71 Gef. C 78.25 H 6.75

(15R)- und (15S)-2-Decarboxy-6-hydroxy-15-methyl-9,11-bis(p-phenylbenzoyl)-2,3,4,5-tetranor-12-epi-PGF_{1β} [(15R)-3 und 3]: Die Ausb. an C-15-Epimeren (15R)-3 und 3 wird erhöht, wenn man 2 nicht isoliert, sondern zu der Reaktionslösung, nachdem sie 15 h gerührt wurde (s. o.), zwischen -75 und -72 °C (Methanol/Trockeneis) 120 ml einer 2 \bowtie CH₃MgBr-Lösung in Ether tropft. Man läßt 2 h bei -75 °C unter Argon rühren und tropft bei dieser Temp. langsam 180 ml einer gesättigten NH₄Cl-Lösung zu. Die entstandene Suspension läßt man auf Raumtemp. erwärmen und fügt so viel Wasser zu, bis sich der Niederschlag gerade löst. Es wird dreimal mit je 200 ml Essigester extrahiert. Die vereinigten Essigesterphasen werden mit Na₂SO₄ getrocknet und i. Vak. eingedampft. Der Rückstand wird aus Ethanol umkristallisiert. Die Kristalle werden in Dichlormethan gelöst, auf Celite aufgezogen und auf eine Kieselsäure-Drucksäule (80 cm × 2 cm) gegeben, die nacheinander mit 1 I Dichlormethan, 1 I Dichlormethan/Aceton (98 : 2) und 3 1 Dichlormethan/Aceton (95 : 5) eluiert wird. (15R)-3 und 3 sind nach fünf Säulendurchgängen quantitativ getrennt.

(15*R*)-3: Farblose Kristalle aus Ethanol. Ausb. 1.0 g (14%, bez. auf 1), Schmp. 177 – 178°C, $R_{\rm F} = 0.29$ (Dichlormethan/Aceton 9:1), $[\alpha]_{589}^{20} = -34.2$ (*c* = 1.0 g in 100 ml CHCl₃). – ¹H-NMR (300 MHz, CDCl₃): $\delta = 8.13 - 8.05$, 7.70 – 7.60 und 7.51 – 7.35 (m; 18H, Aromaten-H), 5.72 – 5.56 (m; 3H, 11-H, 13-H und 14-H), 5.42 (m_c; 1H, 9-H), 3.88 – 3.72 (m; 2H, 6-H), 3.34 (m_c, $J_{8/12} = 6.6$ Hz; 1H, 12-H), 2.70 – 2.41 (m; 3H, 8-H und 10-H), 2.17 (s; 1H, OH), 1.95 – 1.74 (m; 2H, 7-H), 1.68 (s; 1H, OH), 1.42 – 1.33 (m; 2H, 16-H), 1.27 – 0.98 (m; 6H, 17-H, 18-H, 19-H), 1.20 (s; 3H, CH₃ an C-15), 0.75 (t; 3H, 20-H). – ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C42H46O6 (646.8) Ber. C 77.99 H 7.17 Gef. C 78.22 H 7.20

3: Farblose Kristalle aus Ethanol. Ausb. 1.6 g (22 %, bez. auf 1), Schmp. 159–160 °C, $R_{\rm F}$ = 0.22 (Dichlormethan/Aceton 9:1). [α]²⁰₅₈₉ = -30.1 (c = 1.1 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃): δ = 8.13–8.05, 7.70–7.60 und 7.51–7.35 (m; 18H, Aromaten-H), 5.71–5.55 (m; 3H, 11-H, 13-H und 14-H), 5.41 (m_c; 1H, 9-H), 3.85–3.69 (m; 2H, 6-H), 3.33 (m_c, $J_{8/12}$ = 7.1 Hz; 1H, 12-H), 2.69–2.41 (m; 3H, 8-H und 10-H), 2.25 (s; 1H, OH), 1.91–1.77 (m; 2H, 7-H), 1.52 (s; 1H, OH), 1.42–1.33 (m; 2H, 16-H), 1.28–1.02 (m; 6H, 17-H, 18-H und 19-H), 1.12 (s; 3H, CH₃ an C-15), 0.80 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C42H46O6 (646.8) Ber. C 77.99 H 7.17 Gef. C 77.93 H 7.25

(15R)- und (15S)-2-Decarboxy-15-methyl-6-oxo-9,11-bis(p-phenylbenzoyl)-2,3,4,5-tetranor-12epi-PGF_{1β} [(15R)-4 und 4]: 6.0 g Al₂O₃ und 1.5 g (7.0 mmol) Pyridinium-chlorochromat werden in 70 ml wasserfreiem Dichlormethan suspendiert und 30 min bei Raumtemp. gerührt. Nach Zugabe von 0.5 g (0.77 mmol) 3 bzw. (15R)-3 läßt man 2 h bei 15 – 20 °C rühren. Die dunkelbraune Suspension wird über Mg₂O₈Si₃ · 2H₂O filtriert, mit Dichlormethan gewaschen und i. Vak. zur Trockne eingedampft. Der Rückstand von 4 bzw. (15R)-4 wird aus Ethanol umkristallisiert.

(15*R*)-4: Ausb. 0.34 g (68 %), Schmp. 185 – 186 °C, $R_F = 0.65$ (Dichlormethan/Aceton 9:1), $[\alpha]_{589}^{20} = -28.1$ (c = 0.9 g in 100 ml CHCl₃). – ¹H-NMR (300 MHz, CDCl₃): $\delta = 9.79$ (s; 1 H,

6-H), 8.14-8.05, 7.70-7.59, 7.50-7.37 (m; 18H, Aromaten-H), 5.67-5.54 (m, $J_{13/14}$ = 15.0 Hz; 3H, 11-H, 13-H und 14-H), 5.35 (m_c; 1H, 9-H), 3.48 (m_c, $J_{8/12} = 6.2$ Hz; 1H, 12-H), 2.95 (m_c; 1 H, 7-H), 2.77 (m_c, ${}^{2}J = 7.5$ Hz; 2 H, 7-H und 8-H), 2.66 (m_c, ${}^{2}J = 15.0$ Hz; ${}^{3}J = 15.0$ Hz; 3 6.6 Hz; 1 H, 10-H), 2.42 ($m_{c_1}^2 J = 15.0$ Hz, $^3J = 4.9$ Hz; 1 H, 10-H), 1.66 (s; 1 H, OH), 1.40-1.32 (m; 2H, 16-H), 1.21 (s; 3H, CH₃ an C-15), 1.17-1.00 (m; 6H, 17-H, 18-H und 19-H), 0.75 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C42H44O6 (644.8) Ber, C 78.23 H 6.88 Gef, C 78.31 H 6.87

4: Ausb. 0.33 g (66%), Schmp. 164-165°C, $R_F = 0.70$ (Dichlormethan/Aceton 9:1), $[\alpha]_{389}^{20} = -25.3$ (c = 0.9 g in 100 ml CHCl₁). - ¹H-NMR (300 MHz, CDCl₁): $\delta = 9.79$ (s; 1H, 6-H), 8.14 – 8.05, 7.70 – 7.59 und 7.50 – 7.37 (m; 18H, Aromaten-H), 5.67 – 5.52 (m, $J_{13/14}$ = 15.5 Hz; 3H, 11-H, 13-H und 14-H), 5.36 (m_c; 1H, 9-H), 3.48 (m_c, $J_{8/12} = 6.6$ Hz; 1H, 12-H), 2.94 (m_c, ${}^{2}J = 7.1$ Hz; 1H, 7-H), 2.76 (m_c; 2H, 7-H und 8-H), 2.64 (m_c, ${}^{2}J = 15.0$ Hz, ${}^{3}J = 15.0$ Hz, ${}^{3}J$ 8.8 Hz; 1H, 10-H), 2.42 (m_c, $^{2}J = 15.0$ Hz, $^{3}J = 8.4$ Hz; 1H, 10-H), 1.63 (s; 1H, OH), 1.45 - 1.32 (m; 2H, 16-H), 1.30 - 1.12 (m; 6H, 17-H, 18-H und 19-H), 1.10 (s; 3H, CH₃ an C-15), 0.82 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C42H44O6 (644.8) Ber. C 78.23 H 6.88 Gef. C 78.37 H 7.05

(15R)- und (15S)-15-Methyl-9, 11-bis(p-phenylbenzoyl)-12-epi-PGF28 [(15R)-5a und 5a]: Unter Argon suspendiert man 1.33 g (3.0 mmol) (4-Carboxybutyl)triphenylphosphonium-bromid in 150 ml wasserfreiem THF, gibt 0.67 g (6.0 mmol) Kalium-tert-butylat zu und rührt 30 min bei Raumtemp. Nach Abkühlen auf - 78 °C wird 1.0 g (1.55 mmol) 4 bzw. (15R)-4 zugegeben. Die gelborangefarbene Suspension wird 2 h bei - 78°C gerührt und innerhalb von 1 h auf Raumtemp, erwärmt. Die Reaktionslösung wird nacheinander mit 30 ml 1 M Phosphatpuffer (pH = 4.5) und 30 ml Wasser versetzt, dreimal mit je 50 ml Essigester ausgeschüttelt, und die organischen Phasen werden mit Na₂SO₄ getrocknet. Nach dem Abdampfen des Lösungsmittels i. Vak. wird der Rückstand von 5a bzw. (15R)-5a aus Methanol umkristallisiert.

(15R)-5a: Ausb. 0.8 g (71%), Schmp. 121 – 123 °C, $R_F = 0.39$ (Dichlormethan/Aceton 9:1), $[\alpha]_{589}^{20} = -27.9 \ (c = 1.0 \ \text{g in 100 ml CHCl}_3). - {}^{1}\text{H-NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_3): \delta = 8.12 - 8.04,$ 7.68 – 7.57 und 7.50 – 7.34 (m; 18H, Aromaten-H), 5.75 – 5.35 (m; $J_{5/6}$ = 11.1 Hz, $J_{12/13}$ = 8.8 Hz, $J_{13/14} = 15.5$ Hz; 6H, 5-H, 6-H, 9-H, 11-H, 13-H und 14-H), 3.34 (m_c, $J_{8/12} = 6.6$ Hz; 1 H, 12-H), 2.67 (m_c , $^2J = 15.0$ Hz; 1 H, 10-H), 2.50 – 2.20 (m; 6 H, 2-H, 7-H, 8-H und 10-H), 2.10 (m_c; 2H, 4-H), 1.62 (m_c; 2H, 3-H), 1.42 – 1.29 (m; 2H, 16-H), 1.21 (s; 3H, CH₃ an C-15), 1.18 – 0.92 (m; 6H, 17-H, 18-H und 19-H), 0.70 (t; 3H, 20-H). – ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C47H52O7 (728.9) Ber. C 77.45 H 7.19 Gef. C 77.59 H 7.28

5a: Ausb. 0.8 g (71%), Schmp. 162 - 164 °C, $R_F = 0.41$ (Dichlormethan/Aceton 9:1), $[\alpha]_{589}^{20} = -25.8 (c = 1.0 \text{ g in 100 ml CHCl}_3). - {}^{1}\text{H-NMR} (300 \text{ MHz}, \text{CDCl}_3, \text{H/D-Austausch}):$ $\delta = 8.11 - 8.04$, 7.70 - 7.61 und 7.50 - 7.35 (m; 18H, Aromaten-H), 5.73 - 5.30 (m, $J_{5/6} =$ 11.1 Hz, $J_{12/13} = 9.3$ Hz, $J_{13/14} = 15.5$ Hz; 6H, 5-H, 6-H, 9-H, 11-H, 13-H und 14-H), 3.33 (m_c, $J_{8/12} = 6.2$ Hz; 1 H, 12-H), 2.66 (m_c, ²J = 15.2 Hz; 1 H, 10-H), 2.49 - 2.23 (m; 6H, 2-H, 7-H, 8-H und 10-H), 2.11 (m_c; 2H, 4-H), 1.64 (m_c; 2H, 3-H), 1.48 – 1.35 (m; 2H, 16-H), 1.26 – 1.05 (m; 9H, CH₃ an C-15, 17-H, 18-H und 19-H), 0.79 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C47H52O7 (728.9) Ber. C 77.45 H 7.19 Gef. C 77.50 H 7.27

(15R)- und (15S)-15-Methyl-12-epi-PGF₂₆ [(15R)-5b und 5b]: 0.5 g (0.69 mmol) 5a bzw. (15R)-5a werden in 25 ml wasserfreiem Methanol suspendiert und mit 0.56 g (4.02 mmol) K_2CO_3 (p.a.) versetzt. Nach 18 h Rühren bei 35 °C wird die Reaktionslösung mit 0.1 M CH₃CO₂H neutralisiert, mit 10 ml 10proz. NaCl-Lösung verdünnt und fünfmal mit je 15 ml Chloroform extrahiert. Die Extrakte werden mit Na₂SO₄ getrocknet und mit wenig Celite i. Vak. zur Trockne eingedampft.

770

Der Rückstand wird über eine Kieselsäure-Drucksäule (60 cm \times 1.5 cm) mit 1 l Chloroform/ Methanol (95:5) gereinigt. **5b** und (15*R*)-**5b** kristallisieren aus Essigester/*n*-Pentan (1:1).

(15*R*)-5**b**: Ausb. 0.19 g (75%), Schmp. 111 – 112°C, $R_F = 0.15$ (CHCl₃/Methanol 9:1). [α]₅₈₉²⁰ = -19.6 (*c* = 1.0 g in 100 ml CHCl₃). – ¹H-NMR (300 MHz, CDCl₃, H/D-Austausch): $\delta = 5.67 - 5.38$ (m, $J_{5/6} = 10.6$ Hz, $J_{12/13} = 9.7$ Hz, $J_{13/14} = 15.5$ Hz; 4H, 5-H, 6-H, 13-H und 14-H), 4.34 (m_c; 1 H, 11-H), 4.13 (m_c; 1 H, 9-H), 2.85 (m_c, $J_{8/12} = 6.6$ Hz; 1 H, 12-H), 2.35 – 2.25 (m; 3 H, 2-H und 7-H), 2.21 – 1.83 (m; 6 H, 4-H, 7-H, 8-H und 10-H), 1.75 – 1.63 (m; 2H, 3-H), 1.61 – 1.50 (m; 2 H, 16-H), 1.38 – 1.20 (m; 6 H, 17-H, 18-H und 19-H), 1.28 (s; 3 H, CH₃ an C-15), 0.88 (t; 3 H, 20-H). – ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C21H36O5 (368.5) Ber. C 68.45 H 9.85 Gef. C 68.61 H 9.66

5b: Ausb. 0.20 g (79%), Schmp. 84°C, $R_F = 0.15$ (Chloroform/Methanol 9:1), $[\alpha]_{20}^{20} = +4.9$ (c = 1.0 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃, H/D-Austausch): $\delta = 5.65 - 5.33$ (m; $J_{5/6} = 11.1$ Hz, $J_{12/13} = 10.2$ Hz, $J_{13/14} = 15.5$ Hz; 4H, 5-H, 6-H, 13-H und 14-H), 4.31 (m_c; 1H, 11-H), 4.09 - 4.03 (m; 1H, 9-H), 2.84 (m_c, $J_{8/12} = 6.2$ Hz; 1H, 12-H), 2.35 - 2.25 (m; 3H, 2-H und 7-H), 2.17 - 1.91 (m; 5H, 4-H, 7-H und 10-H), 1.83 (m_c; 1H, 8-H), 1.72 - 1.62 (m; 2H, 3-H), 1.56 - 1.44 (m; 2H, 16-H), 1.44 - 1.22 (m; 9H, CH₃ an C-15, 17-H, 18-H und 19-H), 0.88 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C21H36O5 (368.5) Ber. C 68.45 H 9.85 Gef. C 68.35 H 9.71

(15R)- und (15S)-15-Methyl-12-epi-PGF₂₈-methylester [(15R)-5c und 5c]: 5b bzw. (15R)-5b werden mit einer etherischen Diazomethanlösung verestert.

(15*R*)-5c: Farbloses Öl, Ausb. 91%, $R_{\rm F} = 0.25$ (Chloroform/Methanol 9: 1), $[\alpha]_{589}^{20} = -30.2$ (*c* = 1.0 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃, H/D-Austausch): $\delta = 5.68 - 5.34$ (m, $J_{5/6} = 11.1$ Hz, $J_{12/13} = 10.2$ Hz, $J_{13/14} = 15.5$ Hz; 4H, 5-H, 6-H, 13-H und 14-H), 4.35 (m_c; 1H, 11-H), 4.11 (m_c; 1H, 9-H), 3.67 (s; 3H, CO₂CH₃), 2.82 (m_c, $J_{8/12} = 6.6$ Hz; 1H, 12-H), 2.34 - 2.21 (m; 1H, 7-H), 2.32 (t; 2H, 2-H), 2.14 - 1.91 (m; 5H, 4-H, 7-H und 10-H), 1.84 (m_c; 1H, 8-H), 1.67 (m_c; 2H, 3-H), 1.50 - 1.47 (m; 2H, 16-H), 1.38 - 1.20 (m; 9H, CH₃ an C-15, 17-H, 18-H und 19-H), 0.88 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C22H38O5 (382.5) Ber. C 69.08 H 10.01 Gef. C 68.83 H 10.01

5c: Farblose Kristalle aus Essigester/n-Pentan. Ausb. 88 ‰, Schmp. 56–57 °C, $R_{\rm F} = 0.25$ (Chloroform/Methanol 9:1), $[\alpha]_{589}^{20} = -21.0$ (c = 1.0 g in 100 ml CHCl₃). - ¹H-NMR (300 MHz, CDCl₃, H/D-Austausch): $\delta = 5.67-5.35$ (m, $J_{5/6} = 11.1$ Hz, $J_{12/13} = 10.2$ Hz, $J_{13/14} = 15.5$ Hz; 4H, 5-H, 6-H, 13-H und 14-H), 4.34 (m_c; 1 H, 11-H), 4.12 (m_c; 1 H, 9-H), 3.67 (s; 3H, CO₂CH₃), 2.84 (m_c, $J_{8/12} = 6.6$ Hz; 1H, 12-H), 2.34–2.23 (m; 1H, 7-H), 2.32 (t; 2H, 2-H), 2.15–1.93 (m; 5H, 4-H, 7-H und 10-H), 1.85 (m_c; 1 H, 8-H), 1.68 (m_c; 2 H, 3-H), 1.55–1.48 (m; 2H, 16-H), 1.38–1.22 (m; 9H, CH₃ an C-15, 17-H, 18-H und 19-H), 0.87 (t; 3H, 20-H). - ¹³C-NMR (75.46 MHz, CDCl₃, Tab. 3).

C22H38O5 (382.5) Ber. C 69.08 H 10.01 Gef. C 68.99 H 10.13

Röntgenstrukturanalyse von (15R)-5b

(15*R*)-5**b** kristallisiert aus einem Gemisch von Essigester und *n*-Pentan in langnadeligen, flachen Kristallen. Sie reflektieren Röntgenstrahlung schlecht. Um dies zu verbessern, wurden alle Messungen bei -70° C durchgeführt. Bei dieser Temperatur ergeben sich folgende kristallographischen Daten: a = 9.491(3), b = 9.230(3), c = 24.970(4) Å, $\beta = 94.20(2)^{\circ}$; monokline Raumgruppe $P2_1$, Z = 4. Die Reflexintensitäten bis zu 21° in Θ eines Kristalles der Größe $0.3 \times 0.3 \times 0.25 \text{ mm}^3$ wurden auf einem automatischen Vierkreisdiffraktometer CAD4 (ENRAF-NONIUS, Mo- K_{α} -Strahlung, Graphitmonochromator, ω -2 Θ -Abtastung) vermessen. Lorentz- und Polarisationskorrektur wurden durchgeführt. Der unabhängige Datensatz enthielt 2190 Reflexe, von

denen 1562 als beobachtet angesehen wurden $(I > 3\sigma(I))$. Die Strukturlösung erwies sich als langwierig und schwierig. Erst nach Vorgabe der Geometrie eines mit zwei alkoholischen Sauerstoffatomen substituierten Cyclopentanringes ergaben die Direkten Methoden (MULTAN809) einen Strukturvorschlag aus zwei Fünfringen. Schrittweise durchgeführte Differenzfouriersynthesen vervollständigten das Schweratomgerüst. Die Verfeinerung nach F^2 im Vollmatrixverfahren mit anisotropen thermischen Parametern für alle Nichtwasserstoffatome konvergierte bei einem konventionellen *R*-Wert von 0.048 [$R_w = 0.053$, $w = 1/(\sigma(F))^2$]. Da die Anzahl der beobachteten Reflexe nicht ausreichte, um alle Variablen gleichzeitig zu verfeinern, wurde folgendermaßen vorgegangen: nacheinander haben wir alle Parameter eines der beiden unabhängigen Moleküle verfeinert, anschließend die der Nichtwasserstoffatome beider Moleküle gemeinsam. Die Temperaturfaktoren von 26 Wasserstoffatomen wurden auf einen Mittelwert gesetzt und nicht variiert. Sechs Wasserstoffkoordinaten haben wir an berechneten Positionen festgehalten. Die Struktur ist teilweise fehlgeordnet¹⁰⁾. Alle Rechnungen wurden mit einer modifizierten Version des SDP-Programmsystems (ENRAF-NONIUS) auf einem PDP-11/44-Computer durchgeführt¹¹).

- ²⁾ K. Weinges, H. von der Eltz und G. Hartz, Liebigs Ann. Chem. 1982, 872.
- ³⁾ E. W. Yankee, U. Axen und G. L. Bundy, J. Am. Chem. Soc. 96, 5865 (1974).
- ⁴⁾ M. Naruto, K. Ohno, N. Naruse und H. Takeuchi, Tetrahedron Lett. 1979, 251.
- ⁵⁾ W. F. Berkowitz, S. C. Choudhry und J. A. Hrabie, J. Org. Chem. 47, 824 (1982).
- ⁶⁾ L. Horner, in Fortschritte der chemischen Forschung (Heilbronner-Hofmann-Schäfer-Wittig), Bd. 7/1, S. 31, Springer Verlag, Berlin, Heidelberg, New York 1966/67.
 ⁷⁾ E. J. Corey, N. N. Weinshenker, T. K. Schaaf und W. Huber, J. Am. Chem. Soc. 91, 5675
- (1969).
- 8) N. H. Andersen und P. W. Ramwell, Arch. Intern. Med. 133, 30 (1974).
- 9) P. Main, MULTAN80, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, University of York, York, England (1980).
- ¹⁰⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50587, des Autors und des Zeitschriftenzitats angefordert werden.
- ¹¹⁾ Das SDP-Programmsystem wird beschrieben von B. A. Frenz, in Computing in Crystallography (Hrsg. H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld und G. C. Bassi), S. 64, Delft University Press, Delft, Holland (1978).

[221/83]

¹⁾ III. Mitteil.: K. Weinges, G. Braun und B. Oster, Liebigs Ann. Chem. 1983, 2197.