of the 3-pyrene complex (for the concentrations of host and guest see Table II).

Acknowledgment. We thank Prof. H. A. Staab for the support of the part of this work done at the Max-Planck-Institute in Heidelberg. We thank the administration of the University of California, Los Angeles, for providing set-up funds to support the part of this work done at UCLA.

Registry No. 2, 92816-67-6; 2.perylene, 100928-41-4; 2.pyrene,

92816-68-7; 2-naphthalene, 100928-42-5; 3, 92787-69-4; 3-perylene, 100928-38-9; 3-pyrene, 100928-39-0; 3-fluoranthene, 100938-76-9; 3naphthalene, 100928-40-3; 3.durene, 100938-77-0; 4, 92787-65-0; 5, 92787-66-1; 6, 92787-58-1; 7, 92787-59-2; 8, 92787-60-5; 9, 92787-61-6; 10, 92787-62-7; 11, 92787-63-8; 12, 92787-64-9; 13, 92816-66-5; 14, 92787-67-2; 15, 92787-68-3; 16-perylene, 100928-43-6; 16-pyrene, 100928-44-7; 16-fluoranthene, 100928-45-8; 16-naphthalene, 100928-46-9; 1-acetyl-4,4-bis(4-hydroxy-3,5-dimethylphenyl)piperidine, 86748-12-1; ethyl α-bromoacetate, 105-36-2; N-hydroxysuccinimide, 6066-82-6; benzyl chloroformate, 501-53-1.

Carbon Dioxide Chemistry. Synthesis, Properties, and Structural Characterization of Stable Bis(carbon dioxide) Adducts of Molybdenum

Rafael Alvarez,^{1a} Ernesto Carmona,^{*1a} José M. Marín,^{1a} Manuel L. Poveda,^{1a} Enrique Gutiérrez-Puebla,*1b and Angeles Monge1b

Contribution from the Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain, the Instituto de Química Inorgánica Elhúyar, C.S.I.C., Serrano 113, 28006 Madrid, Spain, and Departamento de Química Inorgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain. Received July 2, 1985

Abstract: The bis(carbon dioxide) adduct, trans- $Mo(CO_2)_2(PMe_3)_4$, 1, has been prepared from the reaction of cis- $Mo(N_2)_2(PMe_3)_4$ with CO_2 under pressure (4-5 atm). The interaction of 1 with several small molecules has been studied. In particular, reaction with COS affords a seven-coordinate S,S'-dithiocarbonate, $Mo(S_2CO)(CO)_2(PMe_3)_3$, 2, while interaction with various isocyanides yields the new carbon dioxide complexes trans, mer-Mo(CO₂)₂(CNR)(PMe₃)₃, 3 ($\vec{R} = Me$, 3a; i-Pr, 3b; t-Bu, 3c; Cy, 3d; CH₂C₆H₅, 3e). The new compounds have been characterized by analytical and spectroscopic (IR and ¹H, ¹³C, and ³¹P NMR) studies. The molecular structures of 2, 3b, and 3e have been determined by X-ray crystallography. Compound 2 is orthorhombic and belongs to the space group $Pna2_1$ with a = 14.003 (2) Å, b = 9.767 (2) Å, c = 15.127 (2) Å, $D_c = 1.52$ g·cm⁻³, and Z = 4. Refinement was achieved on 1939 independent observed reflections, leading to a final R value of 0.038. 3b crystallizes in the monoclinic space group C_2/c with unit cell parameters a = 24.47 (3) Å, b = 13.01 (1) Å, c = 16.77 (1) Å, $\beta = 132.41$ (3)°, and $D_c = 1.35$ g cm⁻³ for Z = 8. Least-squares refinement based on 3493 independent observed reflections led to a final *R* value of 0.076. Crystals of 3e are monoclinic, space group $P2_1/c$ with a = 11.563 (8) Å, b = 11.792 (7) Å, c = 18.57 (1) Å, $\beta = 90.42$ (4)°, $D_c = 1.39$ g·cm⁻³, and Z = 4, 1907 reflections were considered observed ($I \ge 3\sigma(I)$), and the final *R* value based on them was 0.093. 3b and 3e are isostructural, with the Mo atom bonded to two trans, staggered CO₂ molecules, the overall molecular geometry being approximately octahedral.

Molecular carbon dioxide complexes of transition metals have received considerable attention in the past years, in the hope of discovering model systems for the activation of CO_2 and its subsequent transformation into organic chemicals of commercial interest. Despite considerable and intensive research, attested by the number of review articles published in this subject in recent years,² only a few compounds have been authenticated as true carbon dioxide complexes. These include species containing side-on η^2 -coordinated³ and η^1 ,C-coordinated⁴ CO₂, as well as two examples of what is usually referred to as assisted coordination of carbon dioxide.⁵ In addition, numerous reports have appeared⁶ on CO₂ complexes whose structures have been proposed on the basis of spectroscopic and chemical evidences. A closer examination of these complexes7 discredited many of the initial formulations, and this, the difficulty in the spectroscopic characterization (due in part to the paucity of information on IR and NMR data for authentic CO_2 complexes), and other factors led Ibers to propose^{2d,8} structural determination by diffraction methods as the only criterion to adequately characterize transition metal-carbon dioxide complexes.

The continuous interest in carbon dioxide chemistry, and the existence of only a brief report on the reaction of this molecule with dinitrogen complexes of molybdenum,9 prompted us to investigate its interaction with the complex cis-Mo(N₂)₂(PMe₃)₄,

^{(1) (}a) Universidad de Sevilla. (b) Instituto Elhúyar and Universidad de Madrid.

ref 13, this paper. (3) (a) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero,

M. J. Chem. Soc., Chem. Commun. 1975, 36. Aresta, M.; Nobile, C. Chem. Soc., Dalton Trans. 1977, 708. (b) Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1981, 1145. (c) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1985, 107,

⁽⁴⁾ Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914.

⁽⁵⁾ Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. J. Am. Chem. Soc. 1982, 104, 5082. (b) Herskovitz, T.; Guggenberger, L. J. J. Am. Chem.

<sup>Soc. 1976, 98, 1615.
(6) See for instance: Ito, T.; Yamamoto, A. J. Chem. Soc., Dalton Trans.
1975, 1398. Bochkarev, M. N.; Fedorova, E. A.; Radkov, Yu. F.; Korshev, 1993, 258 (200)</sup> S. Ya.; Kalinina, G. S.; Razuvaev, G. A. J. Organomet. Chem. 1983, 258, C29. (7) Eisenberg, R.; Hendriksen, D. E. Adv. Catal. 1979, 28, 119.
(8) Mason, M. G.; Ibers, J. A. J. Am. Chem. Soc. 1982, 104, 5153.
(9) Chatt, J.; Kubota, M.; Leigh, G. J.; March, F. C.; Mason, R.; Yarrow,

D. J. J. Chem. Soc., Chem. Commun. 1974, 1033.

which had been recently prepared in our laboratory.¹⁰ In the present contribution, we wish to present a complete account of the work carried out on this system, which has led to the preparation of trans-Mo(CO₂)₂(PMe₃)₄, 1, and its characterization as the first stable bis(carbon dioxide) adduct of a transition metal. The reactions of 1 with COS, to afford $Mo(S_2CO)(CO)_2(PMe_3)_3$, 2, which has been studied by X-ray crystallography, and with various isocyanides, to produce new CO2 complexes, trans, mer- $Mo(CO_2)_2(CNR)(PMe_3)_3$ (R = Me, 3a; *i*-Pr, 3b; *t*-Bu, 3c; Cy, 3d; $CH_2C_6H_5$, 3e), are also reported. Complexes 1 and 3a-3e contain two CO₂ ligands bonded to the molybdenum atom in a dihapto manner through one of the C=O bonds, as conclusively demonstrated by X-ray structural determinations carried out on complexes 3b and 3e. Finally, a reinvestigation of the reaction of cis-Mo(N₂)₂(PMe₂Ph)₄⁹ with CO₂ has been effected and the results reported. Part of this work has appeared in preliminary form,¹¹ and while our work was in progress, a brief report concerning a possible CO₂ complex of molybdenum has been published.¹²

Results and Discussion

Synthesis of trans- $Mo(CO_2)_2(PMe_3)_4$ (1). Diluted petroleum ether solutions (ca. 10^{-2} M) of cis- $Mo(N_2)_2(PMe_3)_4$ absorb 2 mol of carbon dioxide per mole of the molybdenum complex, at room temperature and pressure, with the formation of complex 1 (eq 1). The absorption of CO_2 is irreversible and yields yellow

 $cis-Mo(N_2)_2(PMe_3)_4 + 2CO_2 \rightarrow trans-Mo(CO_2)_2(PMe_3)_4 + 2N_2 (1)$

microcrystals of 1 in good yields. Smaller amounts of the disproportionation products $Mo(CO_3)(CO)(PMe_3)_4$ and [Mo- $(CO_3)(CO)(PMe_3)_3]_2^{13}$ are also produced, but their formation can be minimized by carrying out the reaction under 4–5 atm of carbon dioxide. Under these conditions, complex 1 can be isolated in ca. 80% yield. Formation of the disproportionation products is, however, preferred if the reaction is carried out in coordinating solvents or in the presence of free PMe₃.^{11a}

In contrast with the behavior shown by other CO_2 complexes,^{3a,5a} 1 is stable toward loss of CO_2 at room temperature, both in solution and in the solid state. As a solid, it can be heated under vacuum at 50 °C for several hours without noticeable decomposition, but in solution it decomposes slowly at 20 °C, even under inert atmosphere, although decomposition is prevented by the addition of PMe₃. Analytical and molecular weight determinations for 1 are in accord with the proposed formulation but provide no information with regard to the bonding mode of the CO_2 molecules. Since efforts to grow crystals suitable for X-ray studies have proved unsuccessful, in order to ascertain the structural characteristics of 1, a detailed investigation of its spectroscopic and chemical properties has been undertaken.

Spectroscopic Properties of 1. Due to the limited number of structurally characterized transition metal-carbon dioxide complexes, and hence to the paucity of reliable IR and NMR data for these compounds, spectroscopic evidence for $M-CO_2$ coordination should be considered very carefully. Indeed, as already indicated, a number of CO_2 derivatives formulated as such on the basis of chemical and spectroscopic evidences were later shown to be otherwise.⁷

Complex 1 displays IR bands at 1670, 1155, and 1100 cm⁻¹ (Figure 1). A comparison with the spectrum of 1^* (50% ¹³CO₂-enriched) clearly demonstrates that these bands are due to vibrations arising from the coordinated CO₂ molecules, but no conclusions as to the coordination mode of the CO₂ ligands can

Figure 1. Infrared spectra of trans-Mo(CO₂)₂(PMe₃)₄: (a) natural isotopic abundance; (b) ca. 50% ¹³CO₂-enriched. The arrows indicate the absorptions due to the CO₂-metal-bonded groups.

be inferred. Thus, although similar data have been reported for the η^2 -CO₂ complexes Ni(PCy₃)₂(CO₂),^{3a} Nb(C₅H₄Me)₂-(CH₂SiMe₃)(CO₂),^{3b} and [Cp₂Mo(CO₂)]_n^{3c} in other CO₂ compounds containing C-bonded η^1 -carbon dioxide, the CO₂ ligands give rise to absorptions of similar energies (for instance, 1610 and 1210 cm⁻¹ in Rh(diars)₂Cl(η^1 -CO₂)⁴ and 1680, 1278, and 1212 cm⁻¹ in Co(salen)Na(CO₂)^{5a}). Furthermore, some carbonato^{13,14} and other complexes resulting from various transformations¹⁵ of coordinated CO₂ give rise to IR bands in the regions 1700–1600 and 1250–1100 cm⁻¹. It becomes, therefore, evident that IR data, per se, have very little value to attest CO₂ coordination in its intact form to a transition metal.

³¹P and ¹³C NMR studies are more informative. At 30 °C, the 24.3-MHz ³¹P{¹H} NMR spectrum of **1** is a slightly broad signal, which becomes a sharp singlet at 50 °C. Upon cooling, the singlet converts into a pattern of lines which at -40 °C correspond to an AA'BB' spin system. This is best observed in the 101.4-MHz spectrum at -60 °C, from which characteristic NMR parameters (see Experimental Section) have been computed. On the other hand, the ¹³C NMR spectrum of 1* displays a quintet, at 206.1 ppm (${}^{2}J_{CP}$ = 18 Hz) due to the CO₂ ligands. In addition, the 24.3-MHz ${}^{31}P{}^{1}H{}$ NMR spectrum of 1* recorded at 60 °C, although partially unresolved due to decomposition of the sample, clearly shows the three central lines of the 1:4:6:4:1 quintet expected for an isotopic mixture containing approximately 25% molecules of $Mo({}^{13}CO_2)_2(PMe_3)_4$, 25% $Mo(CO_2)_2(PMe_3)_4$, and 50% $Mo(^{13}CO_2)(CO_2)(PMe_3)_4$. The separation of the outer lines of the observed triplet gives a value of 17.5 Hz for ${}^{2}J_{CP}$, in excellent agreement with that deduced from the ¹³C spectrum. From the above data, a ground-state structure A can be proposed, in which

the coordinated C==O bonds are staggered with respect to one another and eclipsed with regard to the *trans*-P-Mo-P vectors of the equatorial plane, in a manner similar to that found for the ethylene molecules in the complexes *trans*-Mo(C₂H₄)₂L₄ (L₂ = dppe,¹⁶ L = PMe₃¹⁰). A fluxional process, probably involving

⁽¹⁰⁾ Carmona, E.; Marín, J. M.; Poveda, M. L.; Atwood, J. L.; Rogers, R. D. J. Am. Chem. Soc. 1983, 105, 3014.

^{(11) (}a) Alvarez, R.; Carmona, E.; Poveda, M. L.; Sánchez-Delgado, R. J. Am. Chem. Soc. 1984, 106, 2731. (b) Alvarez, R.; Carmona, E.; Gutiérrez-Puebla, E.; Marin, J. M.; Monge, A.; Poveda, M. L. J. Chem. Soc., Chem. Commun. 1984, 1326.

⁽¹²⁾ Chatt, J.; Hussain, W.; Leigh, G. J. Transition Met. Chem. 1983, 8, 383.

⁽¹³⁾ Carmona, E.; González, F.; Poveda, M. L.; Marín, J. M.; Atwood, J. L.; Rogers, R. D. J. Am. Chem. Soc. **1983**, 105, 3365.

⁽¹⁴⁾ Karsh, H. H. Chem. Ber. 1977, 210, 2213.

⁽¹⁵⁾ Demerseman, B.; Mahé, R.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1984, 1394. Cenini, S.; Porta, F.; Pizzoti, M.; Crotti, C. J. Chem. Soc., Dalton Trans. 1985, 163.

Figure 2. Molecular structure of $Mo(S_2CO)(CO)_2(PMe_3)_3$, 2, with the atoms represented by their 50% probability ellipsoids for thermal motion.

rotation of the CO₂ ligands, is clearly responsible for the temperature dependence of the NMR spectra. Further confirmation for this structure comes from the facile conversion of 1 into complexes 3a-3e, of which 3b and 3e have been characterized by X-ray studies (see below).

It is worth mentioning at this point that all the compounds Ni(PCy₃)₂(CO₂),^{3a} Nb(C_5H_4Me)(CH₂SiMe₃)(CO₂),^{3b} [Cp₂Mo-(CO₂)]_n^{3c} 1, and 3a-3e, which contain side-on coordinated CO₂, show a strong IR band at 1750-1650 cm⁻¹ and a ¹³C resonance at 210-195 ppm, due to the CO₂ ligands (no ¹³C data have been reported for $Ni(PCy_3)_2(CO_2)^{3a}$ and $[Cp_2Mo(CO_2)]_n^{3c}$). It seems, therefore, reasonable that a combination of IR and ¹³C NMR data can be used as a diagnosis for dihapto coordination of CO_2 to a transition metal. Further studies on already known and new transition metal-carbon dioxide complexes are desirable to confirm this hypothesis and to spectroscopically ascertain other bonding modes of this molecule.

Chemical Properties of trans-Mo(CO₂)₂(PMe₃)₄ (1). X-ray Structure of Mo(S_2CO)(CO)₂(PMe₃)₃ (2). The reaction of 1 with MeI or I₂ produces MoI₂(PMe₃)₄,¹⁷ with liberation of CO₂. In contrast with the behavior found for other CO_2 complexes^{3a,5a,18} substitution of the CO_2 ligands by N_2 , C_2H_4 , and other small molecules does not take place at appreciable rate under ambient conditions, while interaction with CO (20 °C, 30 min) produces $cis-Mo(CO)_2(PMe_3)_4$ and CO_2 . When complex 1 is reacted with COS, a yellow crystalline solid displaying IR bands at 1690 and 1570 cm⁻¹, which may be due¹⁹ to a S_2CO^{2-} ligand, is obtained. Since NMR and other data are inconclusive with regard to the molecular complexity of 2, an X-ray determination has been carried out. This has shown that the complex has formula Mo- $(S_2CO)(CO)_2(PMe_3)_3$ and contains a S_2CO^{2-} group resulting from the reductive disproportionation²⁰ of two COS molecules induced by the metal complex. Compound 2 is best obtained by reaction of COS with cis-Mo(N₂)₂(PMe)₄.

Figure 2 shows an ORTEP view of 2. The molecular structure is best described in terms of a pentagonal bipiramid (PB), with the axial positions occupied by one carbonyl and one PMe₃ ligands. The major distorsions from the ideal PB geometry are found in the equatorial sites and consist of some bending of the Mo-P(1)and Mo-P(3) bonds toward C(2) and C(3) simultaneously and some bending of the Mo-S(1), Mo-S(2), and Mo-C(2) bonds toward P(2). This obviously causes a decrease in the overcrowding of the ML₅ girdle, lessening the steric interactions. These steric interactions tend to yield, for the same ligand, a greater M-L bond distance for the equatorial sites, as compared with the less-crowded axial sites,²¹ and yet, as can be appreciated in Table I, the axial

(20) The reaction leading to 2 is very complex, the yield of this compound being generally lower than 50-60%. In addition to 2, some mixed carbonylphosphine complexes are formed, as revealed by IR and ³¹P NMR studies.

Table	I.	Bond	Distances	(Å)	and	Angles	(deg)	for
Mo(S;	${}_{2}CC$))(CO	$(PMe_3)_2$	3				

Mo-P(1)	2.478 (6)	P(2)-C(22) 1.	85 (1)
Mo-P(2)	2.620 (2)	P(2)-C(23) = 1.	72 (2)
Mo-P(3)	2.491 (6)	P(3)-C(31) = 1.	76 (2)
Mo-S(1)	2.577 (7)	P(3)-C(32) 1.	80 (2)
Mo-S(2)	2.533 (7)	P(3)-C(33) = 1.	92 (2)
Mo-C(2)	1.957 (8)	S(1)-C(1) 1.	83 (3)
Mo-C(3)	1.978 (8)	S(2)-C(1) 1.	68 (3)
P(1)-C(11)	1.86 (2)	C(1)-O(1) 1.	236 (12)
P(1)-C(12)	1.75 (2)	C(2)-O(2) 1.	15 (1)
P(1)-C(13)	1.91 (2)	C(3)-O(3) 1.	16 (1)
P(2)-C(21)	1.94 (2)		
P(1)-Mo-P(2)	107.2 (2)	Mo-P(1)-C(13)	118.0 (5)
P(1) - Mo - P(3)	124.6 (2)	$M_{0}-P(2)-C(21)$	113.8 (5)
P(2)-Mo-P(3)	107.0 (2)	Mo-P(2)-C(22)	120.0 (3)
P(1)-Mo-S(1)	147.9	Mo-P(2)-C(23)	119.3 (7)
P(1)-Mo-S(2)	81.0 (2)	Mo-P(3)-C(31)	120.4 (6)
P(1)-Mo-C(2)	78.8 (4)	Mo-P(3)-C(32)	119.0 (5)
P(1)-Mo-C(3)	75 (1)	$M_0 - P(3) - C(33)$	111.1 (5)
P(2)-Mo-S(1)	80.0 (2)	C(11)-P(1)-C(12)	103.0 (8)
P(2)-Mo-S(2)	81.5 (2)	C(11)-P(1)-C(13)	101.3 (7)
P(2)-Mo-C(2)	75.2 (2)	C(21)-P(2)-C(22)	97.7 (7)
P(2)-Mo-C(3)	176.5 (3)	C(12)-P(1)-C(13)	100.4 (7)
P(3)-Mo-S(1)	80.2 (2)	C(21)-P(2)-C(23)	100.7 (8)
P(3)-Mo-S(2)	146.4 (2)	C(22)-P(2)-C(23)	101.7 (7)
P(3)-Mo-C(2)	69.4 (4)	C(31)-P(3)-C(32)	102.6 (7)
P(3)-Mo-C(3)	73.5 (10)	C(31)-P(3)-C(33)	98.8 (7)
S(1)-Mo-S(2)	69.0 (2)	C(32)-P(3)-C(33)	101.6 (7)
S(1)-Mo-C(2)	132.5 (4)	Mo-S(1)-C(1)	87.6 (7)
S(1)-Mo-C(3)	96.7 (6)	Mo-C(2)-C(1)	92.3 (8)
S(2)-Mo-C(2)	142.9 (3)	S(1)-C(1)-S(2)	111.0 (5)
S(2)-Mo-C(3)	96.2 (6)	S(1)-C(1)-O(1)	115 (3)
C(2)-Mo-C(3)	108.1 (3)	S(2)-C(1)-O(1)	133 (3)
Mo-P(1)-C(11)	113.1 (6)	Mo-C(2)-O(2)	171 (2)
Mo-P(1)-C(12)	118.5 (6)	Mo-C(3)-O(3)	176.6 (7)

Table II. Selected IR and ¹³C NMR Data for the New Carbon Dioxide Complexes

		¹³ C NMR		
compound	IR, $cm^{-1}a$	δ^b	$^{2}J_{\rm PC},{\rm Hz^{c}}$	
$Mo(CO_2)_2(PMe_3)_4$	1670, 1155, 1100	206.1 q	18	
$M_0(CO_2)_2(PMe_3)_3(CNMe)$	1660, 1150, 1100	201.1 m		
$Mo(CO_2)_2(PMe_3)_3(CN-i-Pr)$	1675, 1160, 1100	201.4 m		
$\frac{Mo(CO_2)_2(PMe_3)_3(CN-t-Bu)}{t-Bu}$	1680, 1155, 1100	201.2 td	18, 11	
$Mo(CO_2)_2(PMe_3)_3(CNCy)$	1665, 1150, 1100	201.4 td	18, 11	
$\frac{Mo(CO_2)_2(PMe_3)_3}{(CNCH_2Ph)}$	1670, 1150, 1100	201.8 m		

^a Nujol mull. ^bC₆D₆ at 20 °C; m = unresolved multiplet, q = quintet, td = triplet of doublets. ^t Full multiplicity of the ${}^{13}CO_2$ signals only observed for enriched samples.

CO and PMe₃ groups are characterized by the longest Mo-CO and Mo-PMe₃ bond distances. This may be due to the high, mutual trans influence of these ligands. The C-S bond distances within the planar dithiocarbonate ligand are significantly different (C(1)-S(1), 1.83 (3) Å; C(1)-S(2), 1.68 (3) Å), the latter indicating partial double bond character.²² Other bond distances and angles within the S_2CO^{2-} group have similar values to those reported for other S,S'-dithiocarbonate complexes.^{22,23,24}

Reaction of 1 with Isocyanides. X-ray Structures of trans, mer-Mo(CO₂)₂(CNR)(PMe₃)₃ (R = *i*-Pr and CH₂C₆H₅). Complex 1 shows some structural and chemical similarities with the ethylene analogue trans-Mo $(C_2H_4)_2(PMe_3)_4$. Recent work carried out in our laboratory^{10,25,26} has shown that the ethylene compound

- Ber. 1982, 115, 1004.
- (25) Carmona, E.; Galindo, A.; Marin, J. M., unpublished results.

⁽¹⁶⁾ Byrne, J. W.; Blaser, H. U.; Osborn, J. A. J. Am. Chem. Soc. 1975, 97, 3871.

⁽¹⁷⁾ Carmona, E.; Doppert, K.; Marin, J. M.; Poveda, M. L.; Sánchez, L.; Sánchez-Delgado, R. Inorg. Chem. 1984, 23, 530.
(18) Herskovitz, T. J. Am. Chem. Soc. 1977, 99, 2391.
(19) Burke, J. M.; Facker, J. P., Jr. Inorg. Chem. 1972, 11, 2744.

⁽²¹⁾ Drew, M. G. B. Progr. Inorg. Chem. 1977, 23, 67.
(22) Lin, I. J. B.; Chen, H. W.; Fackler J. P. Inorg. Chem. 1978, 17, 394.
(23) Gould, R. O.; Gunn, A. M.; van den Hark, J. E. M. J. Chem. Soc., Dalton Trans. 1976, 1713. Pascuali, M.; Floriani, C.; Chiesi-Villa, A.; (24) Werner, H.; Bertleff, W.; Zimmer-Gasser, E.; Schubert, U. Chem.

Figure 3. Partial ${}^{13}C{}^{1}H$ NMR spectrum of *trans,mer*-Mo(CO₂)₂-(CNCy)(PMe₃)₃, ca. 33% enriched in ${}^{13}CO_2$, showing the coupling of ${}^{13}CO_2$ to the three meridional ${}^{31}P$ nuclei.

undergoes substitution of one or two PMe₃ groups by CO or CNR to yield new compounds of composition *trans,mer*-Mo(C₂H₄)₂L-(PMe₃)₃ and *trans,trans*-Mo(C₂H₄)₂L₂(PMe₃)₂. Surprisingly, substitution of the C₂H₄ ligands is not observed even under 2-3 atm of CO. In light of these results, a similar behavior was anticipated for complex 1, and although CO causes displacement of the CO₂ ligands, interaction with various isocyanides affords the new carbon dioxide complexes *trans,mer*-Mo(CO₂)₂-(CNR)(PMe₃)₃, 3 (R = Me, 3a; *i*-Pr, 3b; *t*-Bu, 3c; Cy, 3d; CH₂C₆H₅, 3e), as indicated in eq 2. In no case has substitution Mo(CO₂)₂(PMe₃)₄ + CNR \rightarrow

 $Mo(CO_2)_2(CNR)(PMe_3)_3 + PMe_3$ (2)

of a second PMe₃ or of CO₂ ligands been observed after stirring at room temperature for 2-3 days in the presence of 2 equiv of CNR. With the exceptions of some absorptions arising from the coordinated CNR group, the IR spectra of complexes **3a-3e** and **1** are strikingly similar. In particular, the bands at ca. 1670, 1155, and 1100 cm⁻¹, associated with the CO₂ ligands in **1**, have nearly the same frequencies in compounds **3** (Table II), and this indicates that the phosphine substitution reaction takes place without change in the coordination mode of the CO₂ ligands.

NMR spectroscopic studies are in accord with the ground-state trans, mer geometry proposed for compounds 3, since the PMe1 ligands give rise to a virtually coupled triplet and a doublet in the ¹H NMR spectrum and to a triplet and a doublet (in some cases partially superimposed) in the ${}^{13}C{}^{1}H{}$ NMR spectrum. The ${}^{31}P{}^{1}H{}$ NMR spectra of the complexes 3 are also in agreement with the proposed formulation, since they consist of a doublet and a broad, unresolved triplet (intensity ratio 2:1) which become a clear AX₂ pattern at higher temperatures (δ_A -8.4, δ_X 0.4, $^2J_{AX}$ = 19 Hz, data for 3c at 50 °C). As the parent complex 1, compounds 3 are fluxional, the process responsible for the observed fluxionality being possibly rotation around the Mo-CO₂ bonds. A detailed investigation of this process by means of variabletemperature ¹³C and ³¹P studies is under way. The relatively low solubility of 3a-3e, the long relaxation time of the $M^{-13}CO_2$ ¹³C nucleus, and the splitting of the ${}^{13}C$ resonance of the CO₂ ligands due to coupling to the phosphorus nuclei make difficult the clear observation of the full multiplicity of the CO₂ signals (see Table II for δ_{CO} , values and other data). Samples of 3c* and 3e* were for this reason prepared from 1* and the corresponding isocyanide, and a clear triplet of doublets, centered at ca. 201 ppm (${}^{2}J_{CP_{x}}$ = 18, ${}^{2}J_{CP_{A}} = 11$ Hz) was observed for these complexes, as shown in Figure 3 for 3e. A determination of the spin-lattice relaxation time of the ¹³C nuclei in 3e by the inversion-recovery technique led to a T_1 value of 40 s.

Complexes 3 are yellow, crystalline solids, moderately soluble in diethyl ether and aromatic hydrocarbons, and more soluble in tetrahydrofuran. In comparison with other known CO_2 complexes, they exhibit surprising thermal stability, and for instance, **3b** can be heated at 80 °C for several hours, under vacuum or under

Figure 4. ORTEP diagram and atom labeling scheme for *trans,mer*-Mo- $(CO_2)_2(CN-i-Pr)(PMe_3)_3$.

Figure 5. Molecular structure and atom labeling scheme for *trans*,mer-Mo(CO_2)₂($CNCH_2Ph$)(PMe_3)₃.

Me₃P PrNC

Figure 6. Interatomic distances in $trans,mer-Mo(CO_2)_2(CN-i-Pr)-(PMe_3)_3$.

nitrogen, without noticeable decomposition. In contrast to the behavior found for 1 (see above), toluene solutions of compounds 3 do not decompose at room temperature for periods of 3-4 days when kept under N₂, although extensive decomposition occurs at 60 °C. The enhanced stability of derivatives 3 toward ligand dissociation, as compared with 1, is likely due to a decrease both in the electron density at the metal and in the steric repulsions of the ligands, which is to be expected upon substitution of the basic, more steric demanding²⁷ PMe₃ ligand ($\theta = 118^{\circ}$) by the strong π -acceptor, less steric demanding ($\theta \simeq 100^{\circ}$) CNR group.

The crystal structures of **3b** and **3e** have been determined by X-ray crystallography, ORTEP views for these complexes are shown in Figures 4 and 5, and interatomic distances and bond angles are shown in Tables III and IV. The compounds are isostructural and have distorted octahedral geometries, with the CO_2 ligands dihapto bonded to the metal atoms through one of the C=O bonds. Interestingly, the coordinated double bonds exhibit the staggered-eclipsed conformation (the first term applies to the relative orientation of the coordinated C=O bonds, while the second defines the position of these axial bonds with respect to the *trans*-P-Mo-L (L = P and C) vectors of the equatorial plane)

⁽²⁶⁾ Carmona, E.; Galindo, A.; Poveda, M. L.; Rogers, R. D. Inorg. Chem. 1985, 24, 4033.

⁽²⁷⁾ Tolman, C. A. Chem. Rev. 1977, 17, 313.

Table III. Bond Distances (Å) and Angles (Å) for $Mo(CO_2)_2(CN-i-Pr)(PMe_3)_3$

Mo-O(11)	2.146 (7)	N(1)-C(2)	1.50 (4)
Mo-C(10)	2.10(1)	C(2) - C(3)	1.43 (4)
Mo-O(21)	2.147 (7)	C(2) - C(4)	1.37 (3)
Mo-C(20)	2.11(1)	P(1)-C(11)	1.83 (2)
Mo-C(1)	2.07 (2)	P(1)-C(12)	1.83 (2)
Mo-P(1)	2.488 (4)	P(1)-C(13)	1.83 (2)
Mo-P(2)	2.535 (4)	P(2) - C(21)	1.80 (1)
Mo-P(3)	2.548 (5)	P(2) - C(22)	1.81 (3)
O(11) - C(10)	1.26 (2)	P(2) - C(23)	1.79 (2)
C(10) - O(12)	1.22 (2)	P(3) - C(31)	1.83 (3)
O(21) - C(20)	1.26 (1)	P(3) - C(32)	1.81 (2)
C(20) - O(22)	1.22(1)	P(3) - C(33)	1.72(3)
C(1) - N(1)	1.14 (3)		
$P(2) - M_0 - P(3)$	933(1)	O(11) = C(10) = O(12)	133 (1)
$P(1)-M_0-P(3)$	941(2)	$M_{0}-C(10)-O(12)$	152 (1)
$P(1) - M_0 - P(2)$	162.7(1)	$M_{0}=O(21)=C(20)$	714(7)
$C(1) = M_0 = P(3)$	167.9 (3)	$M_0-C(20)-O(21)$	74 3 (6)
$C(1) - M_0 - P(2)$	87 2 (4)	$\Omega(21) = \Omega(20) = \Omega(22)$	134 (1)
$C(1) - M_0 - P(1e)$	88 8 (4)	$M_{0}-C(20)-O(22)$	157(1)
$C(20)-M_0-P(3)$	881(4)	$M_0 - C(1) - N(1)$	178(1)
$C(20) - M_0 - P(2)$	1175(4)	C(1) = N(1) = C(2)	177(2)
C(20) - Mo - P(1)	783(4)	M(1) - C(2) - C(4)	111(2)
C(20) - Mo - P(1)	81.0 (5)	M(1) = C(2) = C(3)	110(2)
$O(21) - M_0 - P(3)$	84.8 (2)	C(3)-C(2)-C(4)	135(2)
O(21) - Mo - P(2)	83.6 (3)	$M_0 = P(1) = C(13)$	1155(2)
$O(21) - M_0 - P(1)$	1126(3)	$M_0 - P(1) - C(12)e$	113.5(3)
$O(21) - M_0 - C(1)$	83 2 (4)	$M_0 - P(1) - C(11)$	121.6 (5)
O(21) - Mo - C(20)	342(4)	C(12) - P(1) - C(13)	1021(0)(2)
$C(10) - M_0 - P(3)$	115.3 (3)	C(11) - P(1) - C(13)	101.5 (9)
$C(10) - M_0 - P(2)$	80.7 (4)	C(11) - P(1) - C(12)	99.9 (7)
$C(10) - M_0 - P(1)$	82.0 (4)	$M_{0}-P(2)-C(23)$	116.5 (9)
$C(10) - M_0 - C(1)$	76.7 (5)	$M_0 - P(2) - C(22)$	115.0 (6)
$C(10) - M_0 - C(20)$	150.4 (4)	$M_0 - P(2) - C(21)$	117.7 (7)
$C(10)-M_0-O(21)$	155.0 (6)	C(22)-P(2)-C(23)	102.2 (9)
$O(11)-M_0-P(3)$	80.8 (2)	C(21)-P(2)-C(23)	104.3 (9)
$O(11)-M_0-P(2)$	83.5 (3)	C(21)-P(2)-C(22)	99 (1)
$O(11) - M_0 - P(1)$	82.3 (2)	$M_0-P(3)-C(33)$	116.2 (8)
$O(11)-M_0-C(1)$	111.1 (4)	$M_{0}-P(3)-C(32)$	119 (1)
$O(11)-M_0-C(20)$	156.9 (6)	$M_{0}-P(3)-C(31)$	117.1 (7)
$O(11) - M_0 - O(21)$	160.1 (3)	C(32) - P(3) - C(33)	104 (1)
O(11)-Mo-C(10)	34.5 (4)	C(31)-P(3)-C(33)	102 (1)
$M_{0}-O(11)-C(10)$	70.7 (6)	C(31)-P(3)-C(32)	95.6 (9)
Mo-C(10)-O(11)	74.8 (6)	· · · · · · · · · · · · · · · · · · ·	

found by Osborn,¹⁶ Veillard,²⁸ and us¹⁰ for analogous ethylene derivatives. It is therefore evident that in these complexes, C,Obonded CO₂ and ethylene have the same stereochemical preferences.

A consideration of bond distances within the Mo- η^2 -CO₂ units²⁹ (Figure 6) reveals strong $Mo-CO_2$ bonding interactions. The Mo-C bond lengths in 3b average 2.105 (10) Å, a value which is only slightly longer than the Mo-CNR distance in the same complex and considerably shorter than the Mo-C (ethylene) distances found in the analogous complexes¹⁰ trans-Mo- $(C_2H_4)_2(PMe_3)_4$ and *trans,mer*-Mo $(C_2H_4)_2(CO)(PMe_3)_3$ (2.270 (5) and 2.29 (3) Å, respectively). These Mo-CO₂ distances approach normal molybdenum-carbonyl distances (1.952 (6) Å in the latter complex; 1.970 (4) and 2.03 (1) Å, average for the two types of CO ligands in cis-Mo(CO)₄(PMe₃)₂³⁰). Since the Mo- η^2 -CO₂ fragments can be considered structurally similar to Mo-dihaptoacyl units, a comparison of bond parameters for both units is worthy at this point. The main difference between the

Table IV.	Bond Lengths (Å) and Bond Angles (deg) for)ľ
$Mo(CO_2)_2$	$(PMe_3)_3$ (CN-CH ₂ -C ₆ H ₅)	

-				
	Mo-C10	2.02 (2)	P2-C21	1.82 (2)
	Mo-011	2.14 (1)	P2-C22	1.81 (3)
	Mo-C20	2.02 (2)	P2-C23	1.83 (3)
	Mo-O21	2.16(1)	P3-C31	1.79 (2)
	Mo-P1	2.515 (6)	P3-C32	1.82 (2)
	Mo-P2	2.493 (6)	P3-C33	1.78 (3)
	Mo-P3	2.566 (6)	C1-N1	1.21 (2)
	Mo-C1	2.03 (1)	N1-C2	1.42 (2)
	C10-O11	1.25 (2)	C2-C3	1.51 (3)
	C10-O12	1.28 (3)	C3-C4	1.39 (3)
	C20-O21	1.20 (2)	C3-C8	1.35 (3)
	C20–O22	1.28 (3)	C4-C5	1.39 (3)
	P1-C11	1.82 (2)	C5-C6	1.35 (3)
	P1-C12	1.81 (3)	C6-C7	1.39 (3)
	P1-C13	1.82 (3)	C7-C8	1.35 (3)
	C10-Mo-O11	34.8 (6)	P2-Mo-C1	87.1 (6)
	C10-Mo-C20	150.5 (6)	P3MoC1	169.4 (6)
	O11-Mo-O21	160.5 (5)	O11-C10-O12	128 (2)
	C10-Mo-P1	83.3 (6)	O21-C20-O22	128 (2)
	C10-Mo-P2	81.3 (6)	Mo-P1-C11	116.9 (9)
	C10-Mo-P3	115.1 (5)	Mo-P1-C12	119.7 (9)
	C10-Mo-C1	75.4 (7)	Mo-P1-C13	113.1 (9)
	C20-Mo-P1	113.8 (6)	C11-P1-C12	104 (1)
	C20-Mo-O21	33.2 (6)	C11-P1-C13	100 (1)
	C20-Mo-P2	80.0 (6)	C12-P1-C13	100 (1)
	C20-Mo-P3	88.5 (5)	Mo-P2-C21	115.7 (8)
	C20-Mo-C1	81.0 (8)	Mo-P2-C22	113.4 (9)
	P1-Mo-P2	164.6 (2)	Mo-P2-C23	118.4 (8)
	P1-Mo-P3	94.4 (2)	C21-P2-C22	103 (1)
	P1-Mo-C1	88.4 (6)	C21-P2-C23	103 (1)
	P2-Mo-P3	92.8 (2)	C22-P2-C23	102 (1)
	Mo-P3-C31	112.1 (8)	N1-C2-C3	115 (2)
	Mo-P3-C32	121.6 (10)	C2-C3-C4	115 (1)
	Mo-P3-C33	115.6 (9)	C2-C3-C8	123 (2)
	C31-P3-C32	98 (1)	C4-C3-C8	122 (2)
	C31-P3-C33	107 (1)	C3-C4-C5	117 (2)
	C32-P3-C33	100 (1)	C4-C5-C6	120 (2)
	Mo-C1-N1	179 (2)	C5-C6-C7	122 (2)
	C1-N1-C2	170 (2)	C6-C7-C8	119 (2)

two structures lies in the Mo-O separations (and related bond angles) which are only 2.147 (7) and 2.15 (1) Å in 3b and 3e, while they range between 2.287 (2) and 2.324 (4) Å in dihaptoacyl derivatives.³¹⁻³³ The latter values are indicative of single Mo-O

bonds.³¹ The Mo-C bond lengths in Mo-C(O)R complexes are found in the range 1.996 (9)-2.005 (2) Å, only slightly shorter than the Mo-C bonds in **3b**, and of the same order of magnitude²⁹ than in 3e. As indicated above, these short Mo-C and Mo-O contacts in the CO₂ complexes are indicative of strong Mo-CO₂ binding. Related to these distances are the coordinated C=O bond lengths, which are of the same order of magnitude for the two types of complexes (ca. 1.26 (2) Å for 3b; 1.225 (4)-1.267 (11) Å in the dihaptoacyl complexes). Similarly, the O-C-O and C-Mo-O angles in the CO₂ complexes (133.5° and 34.5°, respectively) compare well with the corresponding R-C-O and C-Mo-O angles in the dihaptoacyl derivatives (127° and 32°).

The Mo-P distances found in 3b and 3e can be considered long for trimethylphosphine complexes of molybdenum(0).³⁴ The two mutually trans-PMe3 ligands have average Mo-P separations of 2.51 (2) and 2.50 (1) Å, respectively, while the PMe₃ groups trans to the isocyanide ligands are 2.548 (5) and 2.566 (6) Å (3b and 3e) apart from the molybdenum atom. The Mo-CNC entities are almost linear $(Mo-C(1)-N(1), 178.5 (9)^\circ; C(1)-N(1)-C(2),$ 177(1)° for 3b), and the Mo-CNR distances, at 2.07 (2) and 2.03

⁽²⁸⁾ Bachmann, D.; Demynck, J.; Veillard, A. J. Am. Chem. Soc. 1978, 100. 2366.

⁽²⁹⁾ Due to radiation damage, a progressive decrease in intensity occurred during data collection for 3e. This and the lack of suitable anisotropic models for the phosphine methyl groups may account for the relatively high final Rvalue of 0.093. For this reason, the precise meaning of the structural parameters found for the Mo-CO₂ units in this complex (Tables III and IV) cannot be ascertained. An X-ray determination on a third member of this series is intended with the aim of determining the significance (or otherwise) of the present results.

⁽³⁰⁾ Cotton, F. A.; Darensbourg, D. J.; Klein, S.; Kolthammer, B. W. S. Inorg. Chem. 1982, 21, 2661.

⁽³¹⁾ Carmona, E.; Sánchez, L.; Marin, J. M.; Poveda, M. L.; Atwood, J. (1) Carmona, E., Salchez, E., Harm, S. M., Forda, M. E., Rivera, J. (2000)
(32) Carmona, E.; Wilkinson, G.; Rogers, R. D.; Hunter, W. E.; Zaworotko, M. J.; Atwood, J. L. J. Chem. Soc., Dalton Trans. 1980, 229.
(33) Desmond, T.; Lalor, F. J.; Ferguson, G.; Ruhl, B.; Parvez, M. J.

Chem. Soc., Chem. Commun. 1983, 55 (34) See: Brokhart, M.; Cox, K.; Cloke, F. G. N.; Green, J. C.; Green, M. L. H.; Hare, P. M.; Bashkin, J.; Derome, A. E.; Grebenik, P. D. J. Chem. Soc., Dalton Trans. 1985, 423.

(2) Å (3b and 3e), are similar to those found in other Mo(0)-CNR complexes.35

Reaction of cis-Mo $(N_2)_2(PMe_2Ph)_4$ with CO₂. In 1974, Chatt and co-workers reported briefly on the reactions of CO2 with some molybdenum dinitrogen complexes.9 It was found that the complex cis-Mo(N₂)₂(PMe₂Ph)₄ reacts rapidly with CO₂ to give a new species showing IR bands at 1760, 1510, and 1335 cm⁻¹. When this complex, formulated as Mo(CO₂)₂(PMe₂Ph)₄, is dissolved in THF, a new derivative is formed, and this was characterized⁹ by X-ray crystallography as the dimeric carbonyl carbonate $[Mo(CO_3)(CO)(PMe_2Ph)_3]_2$.

Because of the dissimilarity of the IR data reported for the supposed CO_2 complex and those obtained for 1 and 3, we carried out the reaction of cis-Mo(N₂)₂(PMe₂Ph)₄ with CO₂ under various experimental conditions, including different solvents and pressures of CO_2 (1-5 atm). In our hands, this reaction yields only a red, very crystalline complex, "Mo(CO₂)₂(PMe₂Ph)₃", B, with IR bands at the frequencies reported for the supposed CO₂ complex, i.e., 1760, 1510, and 1335 cm⁻¹. It is important to note that the PMe_3 complex $[Mo(CO_3)(CO)(PMe_3)_3]_2$, obtained by reacting cis-Mo(N₂)₂(PMe₃)₄ with CO₂¹³ shows IR bands at nearly the same frequencies, 1765, 1500, 1335, and 840 cm⁻¹, due to the CO (1765 cm^{-1}) and to the CO₃²⁻ ligands. On the other hand, the reaction of B with neat PMe₂Ph at 50 °C yields, in addition to unreacted B, a red complex C, with IR bands at 1800 and 1600 cm⁻¹, which reconverts rapidly into B upon dissolution in THF. This behavior is very similar to that reported¹³ for the complexes Mo(CO₃)(CO)(PMe₃)₄ (which shows IR bands at 1810 (CO) and $1600 (CO_3^{2-}) \text{ cm}^{-1}$ and $[Mo(CO_3)(CO)(PMe_3)_3]_2$ and suggests that B and C may be carbonyl carbonate derivatives (eq 3) formed by reductive disproportionation of CO_2 induced by the molybdenum-dinitrogen complex. In spite of our efforts, we have been unable to obtain any evidence indicating the formation of a $Mo-CO_2$ complex in this reaction system.

$$Mo(CO_3)(CO)(PMe_2Ph)_4 \xrightarrow{THF}_{PMe_2Ph} \frac{1}{2} \frac{1}{2} [Mo(CO_3)(CO)(PMe_2Ph)_3]_2 (3)$$

Concluding Remarks

The ranges of transition metal-carbon dioxide complexes have been significantly enlarged with the preparation of the first representatives of a new class of carbon dioxide complexes, which contain two molecules of CO_2 coordinated to the metal atom. The complex trans- $Mo(CO_2)_2(PMe_3)_4$, although not structurally characterized, can be conclusively formulated as a bis-CO₂ adduct, based on its characteristic spectroscopic properties and reaction chemistry. The isolation of this complex and its conversion into the series of derivatives 3, trans, mer-Mo(CO_2)₂(CNR)(PMe_3)₃, two of which members have been structurally characterized, provide some experimental basis to ascertain dihapto coordination of CO₂ to a transition metal by a combination of IR and ¹³C NMR spectroscopic studies. All the new compounds prepared in this work, as well as others previously described, show a strong IR absorption in the region 1750-1650 cm⁻¹ and a characteristic ¹³C NMR resonance at 210-195 ppm, due to the dihapto-bonded CO₂ molecules. Due to the limited number of known $M-\eta^2-CO_2$ complexes, the usefulness of this diagnostic criterion for $M-\eta^2$ -CO₂ coordination cannot, as yet, be attested. Additional studies on other $M-CO_2$ complexes are, therefore, required to confirm (or otherwise) this hypothesis and to identify, by spectroscopic means, other bonding modes of this molecule.

Complexes 1 and 3 show relatively high thermal stabilities, which we believe are the results of a delicate balance of steric and electronic effects. The importance of these effects is shown by the tendency of 1 to decompose by dissociation of PMe₃ (as found¹⁰ for trans-Mo(C_2H_4)₂(PMe₃)₄), while complexes 3, which contain the strong π -acceptor and less steric demanding CNR ligand in substitution of one of the PMe₃ molecules, show no appreciable tendency toward ligand dissociation at room temperature. Our

failure to observe adduct formation with the bulkier PMe_2Ph (θ $= 122^{\circ}$) is also in agreement with this. Finally, the importance of electronic effects is also shown by the preferred formation of the disproportionation products when the reaction of cis-Mo- $(N_2)_2(PMe_3)_4$ with CO₂ is carried out in coordinating solvents or in the presence of free PMe₃.¹³

Experimental Section

Microanalyses were by Pascher Microanalytical Laboratory, Bonn. Molecular weights were measured cryoscopically in benzene, under nitrogen. Infrared spectra were recorded on Perkin-Elmer Models 577 and 684 spectrophotometers. ¹H NMR spectra were run on a Varian XL-200 spectrometer, and ³¹P and ³¹C NMR data were taken on the same in-strument and on Bruker WP 60 and WM 250 machines. ³¹P shifts were measured with respect to external 85% $H_3PO_4.\ ^{13}C$ NMR spectra were referenced by using the ¹³C resonance of the solvent as an internal standard but are reported with respect to SiMe4.

All preparations and other operations were carried out under oxygen-free nitrogen following conventional Schlenk techniques. Solvents were dried and degassed before use. The petroleum ether used had a boiling point range of 40–60 °C. The compounds cis-Mo(N₂)₂(PMe₃)₄¹⁰ and cis-Mo(N₂)₂(PMe₂Ph)₄³⁶ were prepared according to the literature procedures. The ligand PMe₃ was obtained by the method of Wolfs-berger and Schmidbaur.³⁷ Isocyanides were from commercial sources or prepared by standard methods.38

Synthesis of trans- $Mo(CO_2)_2(PMe_3)_4$ (1). The complex cis-Mo- $(N_2)_2(PMe_3)_4$ (0.68 g, ca. 1.5 mmol) was dissolved in 150 mL of petroleum ether and the solution transferred under N_2 to a 250-mL capacity pressure bottle. After degassing the contents, the vessel was pressurized with CO_2 (5 atm) and left aside over a 15-h period. The resulting flaky-yellow microcrystalline precipitate was filtered off, washed with 10 mL of Et₂O, and dried in vacuo (0.57 g, ca. 80% yield). Although in this form complex 1 is usually analytically and spectroscopically pure, it can be recrystallized from relatively large volumes of THF or toluene in which solvents it is only sparingly soluble. Less-diluted solutions of the bis(dinitrogen) starting material than those indicated above should be avoided in order to reduce contamination with the red disproportionation product $[Mo(CO_3)(CO)(PMe_3)_3]_2$. ¹³CO₂-enriched 1, 1*, was obtained by the same procedure using ¹³C-enriched CO₂ obtained from Ba*CO₃ and H_2SO_4 . Selected analytical and spectroscopic data for 1 are as follows: IR (Nujol mull) (CO₂ absorptions) 1670 s, 1155 m, and 1100 m cm⁻¹; for 1* (50% $^{13}CO_2$ -enriched) 1670 s, 1630 s*, 1155 m, 1135 m*, 1125 m*, 1100 m, 1090 m*, 1075 m* cm⁻¹. Absorptions marked with asterisks are due to molecules of 1 containing ${}^{13}CO_2$, and the appearance asterisks are due to molecules of 1 containing ¹³CO₂, and the appearance of six bands in the 1160-1070-cm⁻¹ region is probably due to the presence of three isotopomers of 1* (see text). ¹H NMR (200 MHz, C₆O₆, 55 °C) δ 1.15 (pseudoquintet, $J_{HPapp} = 1.6$ Hz); ¹³C{¹H} NMR (62.9 MHz, $C_6D_5CD_3$, room temperature, data for 1*) δ 206.1 (quintet, ² $J_{CP} = 18$ Hz, CO₂). ³¹P{¹H} NMR (101.4 MHz, C₆D₅CD₃, -60 °C) (AA'BB'system) δ_A 1.88, δ_B -3.25 (² $J_{AB} = 144.4$, ² $J_{AB'} = -17.8$, ² $J_{AA'} =$ 14.5 ² $J_{BB'} = 23.3$ Hz); (24.3 MHz, 60 °C, data for 1*) (1:4:6:4:1: quintet) (² $J_{PC} = 17.5$ Hz). M_w (cryoscopically, C₆H₆, N₂) calcd for Mo(CO₂)₂(PMe₃)₄, 488; found, 410. Microanal. Calcd for Mo-(CO₂)₂(PMe₃)₄, 484; H, 7.4: O, 13.1. Found: C. 34.7: H, 7.6: O. (CO₂)₂(PMe₃)₄: C, 34.4; H, 7.4; O, 13.1. Found: C, 34.7; H, 7.6; O, 13.1.

Reactions of trans-Mo(CO₂)₂(PMe₃)₄ (1) with I_2 , MeI, and CO. The interaction of these reagents with 1 afforded $MoI_2(PMe_3)_4$ (I₂ and MeI) and cis-Mo(CO)₂(PMe₃)₄ (with liberation of CO₂) after stirring at room temperature for ca. 0.5-1 h. The evolved CO_2 was analyzed by GC.

Synthesis of $Mo(\eta^2 - S_2CO)(CO)_2(PMe_3)_3$. A solution of 1 (0.48 g, ca. 1 mmol) in 50 mL of THF was pressurized at room temperature with 2 atm of COS. The color darkened considerably, and the mixture was stirred for 6 h and then taken to dryness. The residue was dissolved in the minimum amount of THF, filtered, and kept at -30 °C overnight. The resulting well-formed yellow crystals were washed with Et₂O and dried in vacuo (0.24 g, ca. 55% yield). The title compound is best obtained from the reaction of cis-Mo(N₂)₂(PMe₃)₄ with COS following an analogous procedure: IR (Nujol mull) (CO) 1910, 1820 cm⁻¹; (S₂CO²⁻) 1690, 1570 cm⁻¹; ¹H NMR (200 MHz, C₆D₆) δ 1.38 (d, J_{HPapp} = 8.5 Hz); ³¹P[¹H] NMR (81.1 MHz, C₆D₆, room temperature) δ 16.9 (br s, 2 P) and -18.0 (br s, 1 P). M_w (cryoscopically, C₆H₆, N₂) calcd for Mo(S₂CO)(CO)₂(PMe₃)₃, 472; found, 406. Anal. Calcd for Mo-

⁽³⁵⁾ Luck, R. L.; Morris, R. H.; Sawyer, J. F. Organometallics 1984, 3, 247.

⁽³⁶⁾ George, T. A.; Kovar, R. A. Inorg. Chem. 1981, 20, 285.
(37) Wolfsberger, W.; Schmidbaur, H. Synth. React. Inorg. Met.—Org.

Chem. 1974, 4, 149. (38) Schuster, R. E.; Scott, J. E.; Casanova, J. Org. Synth. 1966, 46, 75.
(b) Weber, W. P.; Gokel, G. W.; Ugi, I. K. Angew. Chem., Int. Engl. Ed. 1972, 11, 530.

(S₂CO)(CO)₂(PMe₃)₃: C, 30.5; H, 5.7; O, 10.2. Found: C, 30.7; H, 5.8; O, 10.6.

Synthesis of trans, mer-Mo(CO₂)₂(CNR)(PMe₃)₃ Complexes. To a clear solution of trans-Mo(CO₂)₂(PMe₃)₄ in toluene (40 mL) was added an excess of the corresponding isocyanide (ca. 3 equiv) via syringe. The resulting mixture was stirred at room temperature for 12 h, and the volatiles were removed under vacuum. Extraction with 40 mL of Et₂O, centrifugation, and cooling at -30 °C furnished the complexes as yellow crystalline materials. This procedure has been applied successfully to the following isocyanides: CNMe, CN-t-Bu, CNCy, CNCH₂Ph, and CNi-Pr. The yield varied considerably depending on the isocyanide: 80-90% for R = Me, *i*-Pr, and *t*-Bu; 60% for R = Cy and CH_2Ph . In the case of benzyl isocyanide, the use of only the required amount of this reagent makes workup of the reaction considerably easier. $Mo(CO_2)_2$ -(CNMe)(PMe₃)₃: IR (Nujol mull) ν_{CN} 2140 m, CO₂ absorptions 1660, 1150, and 1100 cm⁻¹; ¹H NMR (60 MHz, C₆D₆) δ 2.49 (s, 3 H, CNMe), 1.24 (t, 18 H, 2 PMe₅, J_{HPapp} = 3 Hz); and 1.06 (d, 9 H, 1 PMe₅, $^{2}J_{HP}$ = 7 Hz); $^{13}C^{[1H]}$ NMR (62.9 MHz, $C_{6}D_{6}$) δ 201.1 (nonresolved m, CO₂), 172.3 (nonresolved m, CNMe), 28.3 (br s, CNCH₃), 16.49 (d, PMe_3 cis, ${}^{1}J_{CP} = 18$ Hz), and 16.18 (t, 2 PMe_3 trans, $J_{CPapp} = 11$ Hz). Anal. Calcd for Mo(CO₂)₂(CNMe)(PMe₃)₃: C, 34.4; H, 6.6. Found: C, 34.6; H, 6.7. Mo(CO₂)₂(CN-*i*-Pr)(PMe₃)₃: IR (Nujol mull) ν_{CN} 2120 s, CO₂ absorptions 1675 s, 1160 m, and 1100 m cm⁻¹; ¹H NMR δ 3.40 (h, 1 H, CHMe₂, ${}^{3}J_{HH} = 6.5$ Hz), 1.27 (t, 18 H, 2 PMe₃ trans, J_{HPapp} ⁽¹⁾ = 3 Hz), 1.04 (d, 9 H, 1 PMe₃, ${}^{2}J_{HP}$ = 7 Hz), and 0.99 (d, 6 H, CHMe₂, ${}^{3}J_{HH}$ = 6.5 Hz); ${}^{13}C{}^{1}H$ NMR δ 201.4 (nonresolved m, CO₂), 47.82 (s, CHMe₂) 22.81 (s, CHMe₂), 16.52 (d, PMe₃ cis, ${}^{1}J_{CP} = 18$ Hz), and 16.11 (t, 2 PMe₃ trans, $J_{CPapp} = 11$ Hz); ${}^{31}P{}^{1}H{}$ NMR (101.4 MHz, C_6D_6 , room temperature) (approaching an AX₂ system) δ 0.13 (d, 2 P_X trans, ${}^{2}J_{PXPA} = 18$ Hz), and 8.82 (br s, 1 P_A cis). Anal. Calcd for Mo(CO₂)₂(CN-*i*-Pr)(PMe₃)₃: C, 37.4; H, 7.1. Found: C, 37.3; H, 7.1. $Mo(CO_2)_2(CN-t-Bu)(PMe_3)_3$: IR (Nujol mull) ν_{CN} 2100 s, CO₂ absorptions 1680 s, 1155 m, and 1100 m cm⁻¹; ¹H NMR δ 1.40 (t, 18 H, 2 PMe₃ trans, $J_{HPapp} = 3$ Hz), 1.22 (s, 9 H, CMe₃), and 1.17 (d, 1 PMe₃ cis, ${}^{3}J_{HP} = 6.5$ Hz); ${}^{13}C[{}^{1}H]$ NMR (C₆D₆, room temperature, 50% ${}^{13}CO_{2}$ -enriched sample) δ 201.2 (td, CO₂, ${}^{2}J_{CP_{2}} = 18$, ${}^{2}J_{CP_{4}} = 11$ Hz), 55.84 (s, CMe₃), 29.95 (s, CMe₃), 16.47 (d, 1 PMe₃ cis, ${}^{1}J_{CP} = 18$ Hz), and 16.12 (t, 2) (t, and 16.12 (t, 2 *PMe*₃ trans, $J_{CPapp} = 11$ Hz); ${}^{31}P_1^{[1]}H_1^{[3]}$ NMR (C₆D₆, 45 °C) (AX₂ system) δ 0.43 (d, 2 P_X trans, ${}^{2}J_{P_1P_A} = 19$ Hz), and -8.40 (t, P_A, this signal broadens at room temperature). Anal. Calcd for Mo-(CO₂)₂(CN-t-Bu)(PMe₃)₃: C, 38.8; H, 7.3. Found: C, 38.9; H, 7.2. $Mo(CO_2)_2(CNCy)(PMe_3)_3$: IR (Nujol mull) ν_{CN} 2100 s, CO₂ absorptions 1665 s, 1150 s, and 1100 s cm⁻¹; ¹H NMR δ 3.31 and 1.53 (br, tons 1605 s, 1150 s, and 1100 s cm², 11 Hint 6 5.51 and 1.55 (cf., C_6H_{11}), 1.36 (t, 18 Hz, 2 PMe₃ trans, $J_{HPapp} = 3$ Hz), and 1.10 (d, 9 H, 1 PMe₃ cis, ² $J_{HP} = 6.5$ Hz); ¹³C[¹H] NMR (33% ¹³CO₂-enriched sample) δ 201.4 (td, CO₂, ² $J_{CP_X} = 18$, ² $J_{CP_A} = 11$ Hz), 53.74 (s, CN-C=), 32.53, Δ 4.72 exclusion of the same shows a start of 24.73, and 22.96 (s, other cyclohexyl carbons), 16.54 (d, 1 PMe₃ cis, ${}^{1}J_{CP}$ = 18 Hz), and 16.16 (t, 2 PMe₃ trans, J_{CPapp} = 11 Hz); ³¹P{¹H} NMR (C₆D₆, room temperature) (approaching an AX₂ system) δ 0.99 (d, 2 P_X, ² $J_{P_XP_A}$ = 18 Hz (in the spectrum of a 33% ¹³CO₂-enriched sample, a superimposed triplet can be observed) ${}^{2}J_{P_{X}P_{A}} = {}^{2}J_{P_{X}C} = 18$ Hz), and -7.85 (br, P_{X}). Anal. Calcd for Mo(CO₂)₂(CNCy)(PMe₃)₃: C, 41.5; H, 7.3. Found: C, 41.7; H, 7.4. Mo(CO₂)₂(CNCH₂Ph)(PMe₃)₃: IR (Nujol mull) ν_{CN} 2090 s, CO₂ absorptions 1670 s, 1150 m, and 1100 m cm⁻¹; ¹H NMR δ 7.46–7.05 (m, 5 H, CH₂C₆H₅), 4.28 (s, 2 H, CH₂C₆H₅), 1.28 (t, 18 H, 2 PMe₃ trans, $J_{HPapp} = 3$ Hz), and 1.08 (d, 9 H, 1 PMe₃ cis, ${}^{2}J_{HP} = 6.5$ Hz); ${}^{13}C[{}^{1}H]$ NMR δ 201.8 (nonresolved m, CO₂), and 175.2 (nonresolved m, CNCH₂Ph); ${}^{31}P[{}^{1}H]$ NMR (C₆D₆, 45 °C) δ 0.85 (d, 2 $P_{X}, J_{P_XP_A} = 20$ Hz), and -10.10 (t, P_A). Anal. Calcd for Mo(CO₂)₂-(CNCH₂Ph)(PMe₃)₃: C, 43.1; H, 6.4. Found: C, 43.2; H, 6.6.

Reaction of cis**-Mo**(N₂)₂(**PMe**₂**Ph**)₄ with CO₂. Although the interaction of CO₂ with this dinitrogen complex has been studied under a variety of experimental conditions, including different solvents, pressures of CO₂, and variable concentrations of the dinitrogen complex, only one molybdenum-containing product of composition, [Mo(CO₃)(CO)-(**PMe**₂**Ph**)₃]₂,⁹ has been isolated. Two representative experiments are described below.

(A) A stirred solution of *cis*-Mo(N₂)₂(PMe₂Ph)₄ (0.5 g, ca. 0.9 mmol) in 20 mL of THF was exposed to 1 atm of CO₂. The initial yellow color of the reaction mixture rapidly (1-2 min) turned red. Monitoring the course of the reaction by IR spectroscopy showed this to be essentially complete after 1 h. Reduction of the volume in vacuo and cooling at -30 °C overnight furnished small well-formed red crystals, which were filtered, washed with a small amount (ca. 5-10 mL) of Et₂O, and dried in vacuo: yield, 0.4 g; IR (Nujol mull) ν_{CO} 1760, CO₃²⁻ absorptions 1510 and 1335 cm⁻¹. Anal. Calcd for [Mo(CO₃)(CO)(PMe₂Ph)₃]₂: C, 52.2; H, 5.5. Found: C, 53.3; H, 5.9.

(B) cis-Mo(N_2)₂(PMe₂Ph)₄ (0.5 g) was dissolved in a mixture of 65 mL of Et₂O and 10 mL of THF. The resulting solution was transferred to a pressure bottle, pressurized with CO₂ (5 atm), and left aside for 24

Table V. Crystal Data for Compounds 2, 3b, and 3e

	2	3b	3e
formula	C12H27MoP3S2O3	C ₁₅ H ₃₄ MoNO ₄ P ₃	$C_{19}H_{34}MoNO_4P_3$
fw	472.33	481.29	529.34
cell			
dimen-			
sions			
a, Å	14.003 (2)	29.47 (3)	11.563 (8)
b, Å	9.767 (2)	13.01 (1)	11.792 (7)
c, Å	15.127 (2)	16.77 (1)	18.57 (1)
β , deg		132.41 (3)	90.42 (4)
$V, Å^3$	2068.9 (6)	4747 (7)	2532 (2)
system	orthorhombic	monoclinic	monoclinic
space group	Pna2	C2/c	$P2_1/c$
ż	4	8	4
$d_{\text{calcd}},$	1.52	1.35	1.39
g·cm ⁻³			
$\begin{array}{c} \mu \ (\operatorname{Mo} K\alpha), \\ \operatorname{cm}^{-1} \end{array}$	10.46	7.54	7.13

Table VI.	Atomic Coordinates	for	$Mo(S_2CO)(CO)_2(PMe_3)_3$

atom	X/A	Y/B	Z/C
M0	0.2074 (0)	0.1753 (1)	0.0000 (0)
P 1	0.1746 (6)	0.2828 (7)	0.1453 (4)
C11	0.1290 (11)	0.4610 (16)	0.1359 (11)
C12	0.2684(10)	0.2986 (15)	0.2206 (10)
C13	0.0798 (10)	0.2013 (15)	0.2189 (10)
P2	0.1202 (1e	-0.0619(2)	-0.0014(6)
C21	0.0318(11)	-0.0871(16)	0.0957(11)
C22	0.1895 (6)	-0.2213(10)	0.0140 (9)
C23	0.0487 (13e	-0.1040 (18)	-0.0894(12)
P3	0.1756 (5)	0.2856(7)	-0.1455 (4)
C31	0.1230(10)	0.1914(14)	-0.2321(10)
C32	0.1103(10)	0.4439(15)	-0.1486(10)
C33	0.2928(10)	0.3363(14)	-0 2034 (9)
SI	0.3233(6)	0.0375(7)	-0.0979 (4)
S2	0.3250(5)	0.0417(7)	0.0936(4)
CI	0.3286(5)	-0.0258 (8)	0.0038(26)
01	0.4473(5)	-0.1031(7)	-0.0065 (20)
\tilde{C}^{2}	0.0719(6)	0.2202(8)	-0.0118 (8)
$\tilde{0}$	-0.0093(4)	0.2202(0)	-0.0085 (20)
C3	0.0075 (4)	0.2384 (7)	-0.0011(20)
03	0.2000(50)	0.4539 (7)	-0.0020(21)
H111	0.071(0)	0.4337(7)	0.0020(21)
H112	0.178 (0e	0.445(0)	0.120(0)
H113		0.310(0) 0.487(0)	0.100(0)
H121	0.333(0)	0.407(0)	0.210(0)
H122	0.282(0)	0.245(0)	0.210(0)
H123	0.262(0)	0.350(0)	0.230(0)
H131	0.244(0) 0.087(0)	0.238(0) 0.114(0)	0.230(0)
H132	0.086(0)	0.263(0)	0.269(0)
H133	0.000(0)	0.205(0)	0.207(0)
H211	0.032(0)	-0.187(0)	0.172(0)
H212	0.010(0)	-0.027 (0)	0.070(0)
H213	0.000(0)	0.088 (0)	0.000(0)
H215	0.075(0)	-0.306(0)	-0.003(0)
H222	0.140(0)	-0.300(0)	-0.003(0)
H222	0.207 (0)	-0.214(0)	-0.067(0)
H231	0.209(0)	0.080 (0)	-0.154(0)
H232	0.070 (0)	-0.028 (0)	-0.088 (0)
H232	0.000(0)	-0.187(0)	-0.073(0)
H311	0.017(0)	0.137(0)	-0.276(0)
H312	0.098 (0)	0.176(0)	-0.208(0)
H313	0.090 (0)	0.100(0)	-0.235(0)
H321	0.039(0)	0.281(0)	-0.233 (0)
H372	0.070(0)	0.433 (0)	-0.158 (0)
H323	0.082(0)	0.349 (0)	-0.199 (0)
H331	0 355 (0)	0.320 (0)	-0.162 (0)
H332	0.333 (0)	0.320(0)	-0.257 (0)
H333	0.255(0)	0.425(0)	-0.206 (0)

h. The resulting red crystals were filtered, washed with Et_2O , and dried in vacuo: yield, 0.4 g. The IR spectrum of this material is indistinguishable from that of the compound obtained by method A.

The reaction of this complex with neat PMe_2Ph at 40–50 °C gave a red solid which has been shown by IR spectroscopy to contain unreacted starting material and a new compound displaying IR absorptions at 1800

Table VII. Atomic Coordinates for Mo(CO₂)₂(*i*-PrNC)(PMe₃)₃

J. Am. Chem. Soc., Vol. 108, No. 9, 1986 2293

Table VIII. Atomic Coordinates for Mo(CO₂)₂(PMe₃)₃(CNCH₂Ph)

atom	X/A	Y/B	Z/C
H22	0.173 00 (0)	0.412 50 (0)	-0.042 40 (0)
M0	0.12460 (4)	0.202 30 (6)	0.15240 (6)
O 11	0.07510(33)	0.06000 (50)	0.085 50 (57)
C10	0.079 90 (51)	0.09900 (78)	0.02280 (87)
012	0.06500 (43)	0.069 50 (68)	-0.061 50 (63)
O21	0.194 30 (34)	0.311 30 (59)	0.267 70 (59)
C20	0.14280 (56)	0.354 30 (81)	0.21190 (92)
022	0.12640 (44)	0.44160 (62)	0.209 20 (79)
CI	0.13220(52)	0.27210(81)	0.05090(92)
NI C2	0.13540 (61)	0.30900(91)	-0.000 / 0 (93)
C2	0.13030(101) 0.15330(00)	0.33740(181) 0.28200(160)	-0.08070(178) -0.12550(160)
C4	0.105 30 (90)	0.28230(100) 0.44870(170)	-0.12330(100) -0.12400(167)
P1	0.10330(90)	0.274.20 (20)	0.12400(107) 0.038.80(24)
CII	-0.005.90 (63)	0.27420(20) 0.343.80(107)	0.09810(110)
C12	0.001 20 (63)	0.36970 (107)	-0.05880(110)
C13	-0.04340(70)	0.181 80 (121)	-0.047 60 (123)
P2	0.21560 (14)	0.092 00 (24)	0.220 50 (24)
C21	0.29060 (84)	0.13040 (147)	0.344 10 (149)
C22	0.231 70 (79)	0.088 70 (135)	0.133 90 (117)
C23	0.210 90 (81)	-0.041 40 (140)	0.239 10 (142)
P3	0.12980 (16)	0.147 10 (26)	0.304 20 (25)
C31	0.120 30 (90)	0.247 40 (158)	0.368 20 (158)
C32	0.201 90 (92)	0.098 90 (158)	0.428 40 (161)
C33	0.077 30 (106)	0.056 30 (183)	0.271 60 (185)
H131	-0.047 00 (0)	0.13410(0)	-0.004 30 (0)
H132	-0.08410(0)	0.21580 (0)	-0.104 40 (0)
H133	-0.03000 (0)	0.14260 (0)	-0.08000 (0)
H121	-0.043 80 (0)	0.386 60 (0)	-0.11490 (0)
H122	0.02490 (0)	0.435 40 (0)	-0.023 80 (0)
H123	0.01480 (0)	0.332 30 (0)	-0.092 20 (0)
HIII	0.17 50 (0)	0.409 70 (0)	0.13460 (0)
H112	-0.051 20 (0)	0.36080 (0)	0.043 50 (0)
HIIJ	0.003 50 (0)	0.29260(0)	0.15200 (0)
H231	0.24340(0)	-0.08280 (0)	0.249 /0 (0)
H232	0.21390(0)	-0.05390(0)	0.30140(0)
LI222	0.10890(0)	-0.00300(0)	0.10950(0) 0.12760(0)
H221 H222	0.24490(0)	0.13070(0)	0.12700(0) 0.15820(0)
H222 H223	0.20420(0)	0.03380(0)	0.15820(0) 0.06450(0)
H211	0.12000(0)	$0.007 \times (0)$	0.00450(0) 0.37180(0)
H212	0.30470(0)	0.19860(0)	0.34120(0)
H213	0.282.90 (0)	0.13220(0)	0.39480(0)
H321	0.23670(0)	0.15160(0)	0.466 90 (0)
H322	0.20000(0)	0.071 90 (0)	0.48140 (0)
H323	0.208 30 (0)	0.043 40 (0)	0.395 00 (0)
H331	0.087 70 (0)	0.026 20 (0)	0.337 70 (0)
H332	0.03480 (0)	0.079 70 (0)	0.219 90 (0)
H333	0.08270 (0)	-0.003 30 (0)	0.23670 (0)
H311	0.117 30 (0)	0.22310(0)	0.420 20 (0)
H312	0.15400 (0)	0.30280 (0)	0.405 70 (0)
H313	0.080 50 (0)	0.276 50 (0)	0.30010(0)
H41	0.121 20 (0)	0.489 80 (0,	-0.15130(0)
H42	0.061 70 (0)	0.42370 (0)	-0.191 90 (0)
H43	0.09410(0)	0.503 60 (0)	-0.097 40 (0)
H31	0.11160 (0)	0.253 40 (0)	-0.19210(0)
H32	0.171 10 (0)	0.319 50 (0)	-0.151 50 (0)
H33	0.178 90 (0)	0.215 60 (0)	-0.095 80 (0)

and 1600 cm⁻¹. Upon dissolution in THF and evaporation of the solvent in vacuo, the starting $[Mo(CO_3)(CO)(PMe_2Ph)_3]_2$ was obtained as the only observable product.

X-ray Structure Determinations. A summary of the fundamental crystal data for the three compounds 2, 3b, and 3e is given in Table V. Single crystals of the CO₂ adducts are difficult to obtain, and only very freshly prepared samples diffract properly enough as to permit the X-ray analysis. Furthermore, 3e decomposes quickly upon X-ray radiation. The chosen crystals of the three compounds were mounted under nitrogen in glass capillaries and the data collected on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71069$ Å) using $\omega - 2\theta$ scans. The scattering factors for neutral atoms and anomalous dispersion corrections for Mo, P, and S were taken from ref 39. Most of the calculations were carried out with the X-RAY 80 system.⁴⁰

atom	X/A	Y/B	Z/C
M0	0.772 00 (12)	0.233 50 (11)	0.248 40 (10)
P 1	0.878 80 (45)	0.31310 (43)	0.355 40 (36)
C11	1.023 80 (196)	0.366 30 (205)	0.33980 (148)
C12	0.81200 (232)	0.422 00 (246)	0.409 50 (178)
C13	0.908 10 (203)	0.207 90 (226)	0.42470 (164)
P2	0.625 20 (41)	0.14510 (46)	0.166 90 (38)
C21	0.475 20 (181)	0.178 20 (186)	0.18680 (143)
C22	0.627 30 (204)	-0.008 50 (211)	0.168 70 (155)
C23	0.63410 (215)	0.173 30 (226)	0.07040 (166)
P3	0.76610 (44)	0.422 70 (42)	0.180 20 (39)
C31	0.621 20 (188)	0.467 50 (193)	0.16100 (144)
C32	0.81900 (210)	0.55380 (227)	0.221 20 (164)
C33	0.84290 (223)	0.425 80 (232)	0.09730(169)
011	0.643 80 (158)	0.21100(121)	0.32060(120)
011	0.02130(80)	0.30070(97) 0.15780(108)	0.29550(78)
C20	0.39170(108) 0.87650(147)	0.13780(108) 0.17200(134)	0.37000(91) 0.17080(127)
021	0.87000(147) 0.947.20(80)	0.17200(134) 0.21560(102)	0.17030(127) 0.20970(74)
022	0.892 50 (118)	0.21500(102) 0.12660(123)	0.108.90 (89)
C1	0.799.70 (127)	0.07600(129)	0.10000(00)
N1	0.81720(114)	-0.01700(125)	0.313.90 (98)
C2	0.82270 (182)	-0.132 30 (139)	0.33500 (144)
C3	0.764 10 (135)	-0.161 30 (135)	0.404 90 (118)
C4	0.805 10 (157)	0.259 20 (146)	0.438 40 (132)
C5	0.748 90 (182)	-0.294 00 (178)	0.500 60 (135)
C6	0.65710(178)	-0.235 20 (195)	0.524 90 (130)
C 7	0.61980 (155)	-0.136 50 (157)	0.491 30 (126)
C8	0.67480 (133)	-0.101 20 (142)	0.431 40 (123)
H4	0.87500 (0)	-0.305 40 (0)	0.417 50 (0)
HS	0.78440(0)	-0.359 90 (0)	0.529 /0 (0)
по 117	0.61170(0)	-0.27100(0)	0.30940(0)
117 148	0.55130(0) 0.64530(0)	-0.03030(0)	0.31100(0) 0.40330(0)
H21	0.78820(0)	-0.18130(0)	0.29450(0)
H22	0.908 70 (0)	-0.15410(0)	0.337 60 (0)
H111	1.023 40 (0)	0.440 60 (0)	0.312 30 (0)
H112	1.070 40 (0)	0.37570 (0)	0.384 40 (0)
H113	1.063 60 (0)	0.30710(0)	0.307 50 (0)
H121	0.85630(0)	0.428 80 (0)	0.457 00 (0)
H122	0.809 30 (0)	0.493 70 (0)	0.38480 (0)
H123	0.732 50 (0)	0.390 90 (0)	0.420 30 (0)
H131	0.957 70 (0)	0.144 80 (0)	0.40750(0)
H132	0.941 /0 (0)	0.24130(0)	0.469 /0 (0)
П133	0.82040(0)	0.17810(0) 0.14650(0)	0.43310(0) 0.14960(0)
H217	0.41990(0)	0.140.00(0)	0.14900(0) 0.23550(0)
H213	0.47200(0)	0 264 30 (0)	0.25550(0) 0.18500(0)
H221	0.604 90 (0)	-0.04030(0)	0.21900(0)
H222	0.573 90 (0)	-0.04510(0)	0.13310(0)
H223	0.709 60 (0)	-0.030 90 (0)	0.159 50 (0)
H231	0.577 90 (0)	0.12410(0)	0.041 40 (0)
H232	0.61480 (0)	0.25520(0)	0.058 30 (0)
H233	0.71470(0)	0.15510(0)	0.058 40 (0)
H311	0.57510(0)	0.481 30 (0)	0.206 20 (0)
H312	0.61520(0)	0.535 /0 (0)	0.128 90 (0)
H313 H221	0.391.30 (0)	0.373 30 (0)	0.130 20 (0)
H321	0.01 + 30(0) 0.774.20(0)	0.02200 (0)	0.27130(0) 0.23650(0)
H323	0.89960(0)	0.531.00 (0)	0.236 50 (0)
H331	0.809 20 (0)	0.370 00 (0)	0.061 70 (0)
H332	0.844 80 (0)	0.502 20 (0)	0.075 70 (0)
H333	0.927 00 (0)	0.400 30 (0)	0.106 90 (0)

Compound 2. A total of 2565 reflections was measured in one octant out to $2\theta = 56^{\circ}$ from a yellow spherical crystal. The three periodically monitored standard reflections exhibited random variation in intensity within $\pm 5\%$. The data were corrected for Lorentz and polarization effects, and 1939 reflections were considered observed $(I > 3\sigma(I))$. The structure was solved by Patterson and Fourier techniques, and an empirical absorption correction⁴¹ was applied at the end of the isotropic refinement. Subsequent full matrix least-squares isotropic refinement cycles for the phosphine carbon atoms and anisotropic for the rest led to

(41) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, A39, 158.

^{(39) &}quot;International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, U.K., 1974; Vol. IV, pp 72-98.

⁽⁴⁰⁾ Stewart, J. M. "The XRAY 80 System"; Computer Science Center, University of Maryland: College Park, 1985.

R = 0.044. Successive Fourier synthesis calculated with reflections having $\sin \theta / \lambda < 0.5 \text{ Å}^{-1}$ showed 19 of the 27 H atoms, the remainder being geometrically placed. The final refinement cycles, with the H atoms held invariant, yielded a final R value of 0.038 ($R_W = 0.044$). Unit weights were used, and no trend in ΔF vs. F_o or $\sin \theta / \lambda$ was observed.

Compound 3b. A yellow-orange, block-shaped crystal was used, and 4163 unique reflections were measured in a quadrant within the θ range $0 \le \theta \le 25$, of which 3493 were considered observed $[F_o^2 \ge 3\sigma(F_o^2)]$ after data reduction (Lorentz and polarization but no absorptions corrections were made) and used in the subsequent calculations. The Patterson map permitted the location of the Mo atom, and successive F_{obsed} Fourier synthesis provided the coordinates of the remaining non-H atoms. The refinement was carried out by full-matrix least-squares procedures (isotropic for the rest) using unit weights as no bias on ΔF was appreciated. The final R value was 0.076 ($R_w = 0.080$).

Compound 3e. A yellow irregular-shaped crystal was studied, and 4044 unique reflections from it were measured up to $\theta = 28^{\circ}$. Due to radiation damage, a progressive decrease in intensity occurred as revealed for the three periodically checked standard reflections. To minimize the effect, a time limit of 45 s was adopted for the final scan of a reflecting position. The data were scaled from the standard intensities variations (ca. 30% at the end of the collecting process) and corrected for Lorentz, polarization, and absorption⁴¹ effects; 1907 reflections were considered observed ($I > 3\sigma(I)$) and used for structure solution and refinement. Three-dimensional Patterson and Fourier syntheses allowed location for all non-H atoms, and subsequent full-matrix least-squares refinement,

using F's and unit weights, keeping the methyl carbon atoms isotropic, led to R = 0.096. The H atoms were included in the refinement with fixed contributions at their calculated positions.

In order to prevent bias on ΔF vs. F_o or sin θ/λ , the last steps of the refinement were carried out with weights⁴² $w = 1/(a + b|F_o|)^2$, where a = 5.91, b = -0.09, if $|F_o| < 32$, and a = 1.31, $\beta = 0.06$, if $|F_o| \ge 32$. The final R values were R = 0.093 and $R_W = 0.093$.

Acknowledgment. We are very grateful to the Comisión Asesora de Investigación Científica y Técnica for continuous support of this work (to E.C. and E.G.-P.). R.A. acknowledges a research grant to the Ministerio de Educación y Ciencia.

Registry No. 1, 89711-40-0; $1^{-13}C_2$, 100790-42-9; **2**, 100790-43-0; **3a**, 94985-87-2; **3b**, 94985-86-1; **3c**, 94985-88-3; **3d**, 100790-44-1; **3e**, 100790-45-2; *cis*-Mo(N₂)₂(PMe₃)₄, 82044-78-8; MoI₂(PMe₃)₄, 82456-13-1; *cis*-Mo(CO)₂(PMe₃)₄, 30513-06-5; *cis*-Mo(N₂)₂(PMe₂Ph)₄, 32457-67-3; [Mo(CO₃)(CO)(PMePh)₃]₂, 55913-76-3.

Supplementary Material Available: Thermal parameters and observed and calculated structure factor amplitudes for Mo- $(S_2CO)(CO)_2(PMe_3)_3$, Mo $(CO_2)_2(CN-i-Pr)(PMe_3)_3$, and Mo- $(CO_2)_2(CNCH_2Ph)(PMe_3)_3$ (Tables A-F) (75 pages). Ordering information is given on any current masthead page.

Molecular Hydrogen Complexes of the Transition Metals. 3.¹ Preparation, Structure, and Reactivity of $W(CO)_3(PCy_3)_2$ and $W(CO)_3(P(i-Pr)_3)_2$, η^2 -H₂ Complex Precursors Exhibiting M...H—C Interaction

Harvey J. Wasserman, Gregory J. Kubas,* and Robert R. Ryan

Contribution from the University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. Received July 5, 1985

Abstract: The synthesis, reactivity, and molecular structures of coordinatively and electronically unsaturated complexes $M(CO)_3(PR_3)_2$ [M = Mo, W; R = Cy, *i*-Pr] are described. Ligands that bind reversibly to $W(CO)_3(PCy_3)_2$ include H₂, N₂, C₂H₄, H₂O, ROH, and thiophene; irreversibly bound ligands are MeCN, pyridine, NH₃, CyNH₂, and PR₃. The structures of $W(CO)_3(PCy_3)_2$ and $W(CO)_3(P(i-Pr)_3)_2$ involve incipient intramolecular oxidative addition of a distal phosphine C-H bond to the metal. The three-center M···H—C interaction in $W(CO)_3(PCy_3)_2$ has $W-H(11a)-C(11) = 127.6^\circ$, W-C(11) = 2.945 (6) Å, and $W-H(11a) \cong 2.27$ Å. Crystal data for $W(CO)_3(PCy_3)_2$ are the following: space group $P\overline{1}$, a = 10.300 (1) Å, b = 12.675 (2) Å, c = 15.473 (1) Å, $\alpha = 91.44$ (1)°, $\beta = 90.37$ (1)°, $\gamma = 103.99$ (1)°, Z = 2, $\rho(calcd) = 1.34$ g cm⁻³, R = 0.025, 6211 reflections. Crystal data for $W(CO)_3(P-iPr_3)_2$ are the following: $P2_1/m$, a = 8.425 (1) Å, b = 13.375 (2) Å, c = 12.039 (2) Å, $\beta = 109.58$ (1)°, Z = 2, $\rho(calcd) = 1.53$ g cm⁻³, R = 0.034, 2212 reflections. Since these molecules add dihydrogen to form stable η^2 -H₂ complexes, they afford an unprecedented opportunity to observe both H–H and C–H bond activation at a single metal center.

Recently we reported the preparation and complete characterization of complexes in which a dihydrogen *molecule* is present as an η^2 -bound ligand.¹ These species, of composition M-(CO)₃(PR₃)₂(η^2 -H₂) [M = Mo, W; R = cyclohexyl, isopropyl], were prepared at room temperature by addition of H₂ to solutions containing the formally five-coordinate, 16-electron complexes, M(CO)₃(PR₃)₂. The synthesis of the latter compounds from available reagents was reported in preliminary form several years ago.² We now report in full the properties and reactions of these unusual formally coordinatively and electronically unsaturated complexes, including full three-dimensional single-crystal X-ray diffraction analyses of $W(CO)_3(PCy_3)_2$ and $W(CO)_3(P(i-Pr)_3)_2$. The results of these investigations show that the stable form of these compounds involves incipient intramolecular oxidative addition of a distal phosphine C-H bond to the metal. The complexes thus join a rapidly expanding class of molecules possessing three-center M····H···C ("agostic") interactions,³ although they present rare examples in which this type of interaction occurs in

⁽⁴²⁾ Martinez-Ripoll, A.; Cano, F. M. "PESOS (Program for Calculating Weights)"; Instituto Rocasolano: CSIC, Madrid, Spain, 1985.

^{(1) (}a) Part I: Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. **1984**, 106, 451. (b) Part II: Kubas, G. J.; Ryan, R. R.; Wrobleski, D. J. Am. Chem. Soc., in press. (c) Part III: submitted to J. Am. Chem. Soc. (d) Kubas, G. J.; Ryan, R. R. Polyhedron, in press.

⁽²⁾ Kubas, G. J. J. Chem. Soc., Chem. Commun. 1980, 61.
(3) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395

⁽³⁾ Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395 and references therein.